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The field-induced Berezinskii-Kosterlitz-Thouless �BKT� transition in the ground state of the triangular
antiferromagnetic Ising model is studied by the level-spectroscopy method. We analyze dimensions of opera-
tors around the BKT line, and estimate the BKT point Hc�0.5229±0.001, which is followed by the level-
consistency check to demonstrate the accuracy of our estimate. Further we investigate the anisotropic case to
clarify the stability of the field-induced string-density plateau against an incommensurate liquid state by the
density-matrix renormalization-group method.
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It was exactly proven that the nearest-neighbor �NN� an-
tiferromagnetic Ising model on the triangular lattice shows
no phase transition at finite temperature, and possesses a
ground-state ensemble carrying the finite residual entropy
per spin, S�0.3231kB �1�. This circumstance stems from the
frustration effect that not all spins at the corners of each
elementary triangle can be energetically satisfied, and then
brings about the power-law decays of the correlation func-
tions of physical quantities in the ground state �2�. There is a
long history of research on various types of perturbation ef-
fects on this ground-state degeneracy �3–8�, where, as we
will see in the following, the exact mapping to the so-called
triangular Ising solid-on-solid �TISOS� model �9,10� fol-
lowed by a coarse graining provides an effective field theory
to describe the low-energy physics �11�. In addition, it should
be remarked that the ground-state spin configurations can be
classified according to the number of strings �see below� �9�,
which provides an intuitive connection to one-dimensional
�1D� quantum systems with global U�1� symmetry under the
path-integral representation.

In this paper, we treat an anisotropic triangular antiferro-
magnetic Ising model �TAFIM� under a magnetic field; its
reduced Hamiltonian H=�HTAFIM is given as

H�K1,�,H� = �
�j,k�

Kjk��j,�k
− H�

j

��j,0
. �1�

The binary variable � j =0,1 is on the jth site of the triangular
lattice �, which consists of interpenetrating three sublattices
�l �l=0,1 ,2�, and the first �second� sum runs over all NN
pairs �sites�. The AF coupling Kjk takes two values K1+�
or K1 depending on whether the bond �j ,k� lies in the x1

direction or not �see Fig. 1�. Here we define a quantity
Q=� j1

Nj1,j2
with Nj1,j2

=1−��j1,j2
,�j1+1,j2

for all j2, and further

restrict ourselves to the zero temperature case K1→�. Then
Q is independent of j2 and the Boltzmann weight per row is
given by e�Q. Therefore, the anisotropy parameter � plays a
role of the chemical potential to control the number of
strings �an example of the string representation is given in
Fig. 1� �9�. Our main goal is to clarify the phase diagram of
the model �1� in its ground state K1→�. For this, we shall

use the level-spectroscopy �LS� method �12� to treat the
Berezinskii-Kosterlitz-Thouless �BKT� transition induced by
H in the isotropic case �=0. On the other hand, for the
anisotropic case ��0, the Pokrovski-Talapov �PT� transition
�13� between a commensurate ordered phase and an incom-
mensurate liquid phase is expected. We directly calculate the
� dependence of the number of strings by the use of the
density-matrix renormalization-group �DMRG� method �14�.
Then, we provide a reliable phase diagram.

As we will see in the following, the string degrees of
freedom in which the frustration effects are encoded play a
central role for both understanding the phase diagram and
relating it to the magnetization plateaus observed in the 1D
frustrated quantum spin systems �15�. This comes from the
fact that the quantity Q corresponds to the uniform magneti-
zation, and thus � can be regarded as the magnetic field in
the quantum spin systems. Further, quite recently, the string
representation has been also employed in investigations of
the 2D frustrated quantum magnets �16�, so the precise
analysis on the present fundamental model may also offer a

FIG. 1. An example spin configuration with the 	3		3 struc-
ture. The jth site is specified by two integers �j1 , j2� as labeled. The
long �short� side of the rectangle frame is in the x1 �x2� direction.
The spins on two �one� of three sublattices �0 and �1 ��2� are
parallel � �antiparallel �� to the field direction. Four gray stripes in
the x2 direction give the string representation of the spin
configuration.
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hint for a further understanding of quantum systems.
Now we shall start with the isotropic case �=0. For H

=0, from the exact asymptotic behavior of the spin-spin cor-
relation function the scaling dimension of the staggered mag-
netization �S� is given by xS= 1

4 �2�, while the dimension of
the uniform magnetization �s� is by xs= 9

4 �10�. Thus the
magnetic field is irrelevant, and the critical region continues
up to a certain value Hc. For H
Hc, the criticality of the
ensemble disappears and the threefold-degenerate ground
state with the 	3		3 structure of the sublattice is realized,
where a majority spin is in the field direction �see Fig. 1�.
The transition at Hc is the BKT type, and is described, in the
scaling limit, by the 2D sine-Gordon Lagrangian density �11�

L��� =
1

2�K
����2 +

y

2�
2 cos 3	2�, K �
4

9
, �2�

where y�H and the continuous field in the 2D Euclidean
space �x1 ,x2� proportional to the height variable of the
TISOS model satisfies 	2�+2�=	2� �17�. Since the lattice
model is not exactly solvable, there have been several at-
tempts to numerically estimate Hc: Blöte and Nightingale
investigated this problem in detail by the transfer-matrix
method �3,4�. Actually, they evaluated finite-size estimates
Hc�L� by numerically solving the equation for the scaled gap,
i.e., the so-called KT criterion xS�H ,L�= 2

9 �this is referred to
as KT1 in Table I�. Then, in order to accelerate the slow
convergence of Hc�L�, the iterated fits with taking account of
the logarithmic correction were performed �for a more recent
estimation, see �8��. On the other hand, de Queiroz et al.
treated the same model by the phenomenological
renormalization-group �PRG� method �18�; they exhibited a
much smaller value inconsistent with the previous estima-
tions �see Ref. �8��. However, it is often pointed out that
PRG calculations fail to estimate the BKT points �19�, so
their result may suffer from an inadequacy of the method.
Consequently, to accurately determine Hc, there still remains
some difficulty.

In the studies of 1D quantum systems, however, the LS
method provides an efficient way to treat the BKT transitions
�12�. This is also true for the investigations of 2D classical
spin systems �20�. Let us consider the system on � with M
�→� � rows in the x2 direction of L �a multiple of 3� sites in
the x1 direction wrapped on the cylinder and define the trans-
fer matrix connecting the next-nearest-neighbor rows. Since,

in our discussion, the number of the strings Q �or its density
�=Q /L� is the most important conserved quantity in the
transfer, we explicitly specify a block of the matrix as TQ�L�
and denote its eigenvalues as �p,Q�L� or their logarithms as
Ep,Q�L�=− 1

2 ln 
�p,Q�L�
 �p specifies a level�. In the isotropic
case, the smallest one corresponding to the ground state is in
the block Q0=2L /3 �4,9�; we shall denote it and the excita-
tion gaps from it as Eg,Q0

�L� and �Ep,Q�L�=Ep,Q�L�
−Eg,Q0

�L�, respectively. Then the conformal invariance pro-
vides direct expressions for the central charge c and a scaling
dimension xp,Q in the critical system as Eg,Q0

�L��Lf
−�c /6L� and �Ep,Q�L��2�xp,Q /L�. Here � �=2/	3� and f
are the geometric factor for � and a free energy per site,
respectively �21,22�.

Blöte and Nightingale precisely checked various scal-
ing dimensions based on the Coulomb-gas scenario �4�,
whereas Nomura pointed out the importance of logarith-
mic corrections in the renormalized scaling dimensions
x�l�=�E�L� / �2� /L�� to determine the BKT point �l=ln L�
�12�. In the present effective theory �2�, there are two mar-
ginal operators on the BKT point, i.e., M= �1/K�����2 and
s=	2 cos 3	2�, which hybridize along the RG flow and re-
sult in two orthogonalized ones, i.e., the “M-like” and the
“cos-like” operators �12�. Writing the former and the latter as
O0� �M+s /	2� and O1� �−M /	2+s�, their renormalized
scaling dimensions can be calculated near the multicritical
point; the results up to the first-order perturbations are given
as follows: x0�l��2−y0�1+ 4

3 t� and x1�l��2+y0�2+ 4
3 t�,

where �y0 ,y1�= �9K /2−2,y� and the small deviation
from the BKT point t=y1 /y0−1 �12�. Another important
operator is a relevant one, i.e., the staggered magnetization
S=exp�±i	2�� whose dimension is expressed as xS�l�� 2

9
�1

+ 1
2 y0� in the same region. Consequently, the level-crossing

condition,

x0�l� = 4 − 9xS�l� , �3�

provides a finite-size estimate of the BKT point. Since these
operators are described by �, we can calculate the renormal-
ized scaling dimensions from excitation gaps found in the Q0
block. Further, the symmetry properties such as the transla-
tion of one lattice spacing �or a cyclic permutation among
sublattices �i� T, the space inversion P, and the spin reversal
S at H=0 are also important for the precise specification of
relevant excitations levels. These symmetry operations can
be interpreted in the field language as T: 	2��	2�
+2� /3, P: 	2��−	2�, and S: 	2��	2�+� �4,10,23�.
For instance, s is invariant for T and P, but is odd for S as
expected, while S is in the 
k 
 =2� /3 block and is odd for S.
Therefore, the corresponding excitations to O0 and O1 can be
found in the subspace of the wave vector k=0 and the even
parity for the space inversion. We calculate the excitation
levels by utilizing these symmetry operations.

We perform the exact-diagonalization �ED� calculations
of TQ0

�L� for systems up to L=30. We show the level-
crossing data in Fig. 2 and the extrapolation of the finite-size
estimates Hc�L� to the thermodynamic limit L→� using the
least-squares fitting of the polynomial in 1/L2 �the inset�

TABLE I. Estimates of Hc. We label the estimate by the spin-
wave excitation �the vortex excitation� as KT1 �KT2�. We also give
the results by the phenomenological renormalization-group �PRG�
and the level-spectroscopy �LS� methods.

Reference Method Extrapolation Hc Error

�3� KT1 A rough estimate 0.6

�4� KT1 Iterated fit 0.532 ±0.02

�8� KT2 Iterated fit 0.52 ±0.04

�18� PRG Finite-size scaling 0.422 ±0.014

This work LS Polynomial fit 0.5229 ±0.001
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�4,24�. Then we find that while our result is consistent with
previous estimations, it is much more accurate owing to the
fast convergence of finite-size estimates �see Table I�. Next
we shall check a universal relation among excitation levels.
For instance, the following relation is to be satisfied at the
BKT point: �2x0�l�+x1�l�� /3�2 �12�. In Table II, we give
the scaling dimensions at Hc, where the left-hand side of the
relation is denoted as xav�l�. Although x0�l� and x1�l� consid-
erably deviate from the value for the free-boson case 2 due to
the logarithmic corrections, their main parts cancel each
other, so the average takes a value close to 2. These data
provide the check of the accuracy of our estimate and the
evidence to ensure that numerically studied levels have the
above-mentioned theoretical interpretations.

In the remaining part, we shall discuss the anisotropic
case ��0. As we have seen in the above, the magnetic field
H favors the long-range ordered commensurate �C� phase
through the potential cos 3	2�. On the other hand, �, which
newly introduces a local density term �1� to the effective
theory �2�, tends to stabilize an incommensurate �IC� liquid
phase �13,25�. Therefore, as can be found in the literature,
the PT-type C-IC transition may occur �6,9,26�. For H=0, we
know the exact �-� curve ����=arccos�1/2e2�−1� /�,
which is given in Fig. 3 �9�. On the other hand, for H�0, we
employ numerical methods and estimate the curve from the
finite-size system data as ���Eg,Q+2�L�−Eg,Q�L�� /2 �6�.
While, like the exact solid curve, � is a smooth function of �
showing the compressive liquid state for H�Hc, there is the
string-density plateau ��−�H� ,�+�H�� with �= 2

3 for H
Hc

�see the DMRG data denoted by marks�. In this plot, the top
and the bottom of each step correspond to �Q+2� /L and Q /L

respectively, so we can estimate the C-IC phase boundary
lines from the edges of the plateau.

In Fig. 4, we provide our phase diagram. Here it is noted
that the threshold �0�H� below which the doubly degenerate
vacuum of strings with �=0 is realized �see Fig. 3� is exactly
given by �0�H�=−ln�2 cosh�H /4�� �9,27�. So, we also draw
it in the figure. The cross on the isotropic line �=0 shows
the BKT point obtained by the LS method. For large H, we
can use the ED data �±�H ,L�= ± �Eg,Q0±2�L�−Eg,Q0

�L�� /2
and the extrapolation formula �±�H ,L���±�H�+const/L2

�see open circles� �28�. For H�4, assuming the square-root
behavior around the plateau, we estimate �±�H� from the �-
� curve obtained by DMRG. From this plot, we find that two
PT-transition lines �±�H� seem to be terminated at the BKT
point �� ,H�= �0,Hc� and that the plateau region becomes
wider with the increase of the magnetic field. For H�Hc, it
is still difficult to determine the narrow plateau region corre-
sponding to the exponentially small energy gap even by the
use of the DMRG method. However, by combining the LS
result and the DMRG data, we can obtain the reliable phase
diagram of our model.

Lastly, we shall discuss some related topics. The magne-

FIG. 2. The spectroscopy of levels observed in the L=24 sites
system. The crossing of x0�l� �diamonds� and 4−9xS�l� �triangles�
gives the finite-size estimate of the transition point Hc�L�. Inset
shows the extrapolation of finite-size estimates to the thermody-
namic limit L→�.

TABLE II. The L dependences of dimensions x0�l� and x1�l� at
Hc. The average xav�l� �see text� is extrapolated to L→� using the
least-squares fitting of the polynomial in 1/L2.

L 18 21 24 27 30 �

x0�l� 1.88528 1.88110 1.87913 1.87835 1.87823

x1�l� 2.40464 2.37543 2.35551 2.34096 2.32981

xav�l� 2.05840 2.04587 2.03792 2.03256 2.02875 2.01292

FIG. 3. The �-� curves: Triangles �diamonds� with dotted line
show the DMRG data at H=2 �H=4�, and the solid line exhibits the
exact result at H=0. The flat region with �= 2

3 corresponds to the
string-density plateau ��−�H� ,�+�H��. �0�H� is the threshold below
which the string is absent.

FIG. 4. The ground-state phase diagram. The vacuum of strings
is stabilized on the left of the solid curve �0�H�. The field-induced
ordered phase corresponds to the string-density plateau state with
�= 2

3 . The cross on the �=0 line shows the BKT point obtained by
the LS method. The filled �open� circles show estimates �±�H� by
the DMRG �ED� method. Dotted curves give a guide to the eyes.
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tization process observed in the ground state of the S= 1
2

anisotropic AF chain with a strong frustration exhibits the
plateau at 1

3 of the saturation magnetization �15�. This pla-
teau state exhibits spontaneous breaking of the translational
symmetry down to the period n=3, so it is threefold degen-
erate �i.e., ↑↑ ↓ ↑ ↑ ↓ , . . .�, and thus satisfies the necessary
condition for the magnetization plateau �29�, i.e., n�S−m�
=integer with the average magnetization per site m= 1

6 . Ac-
cording to the bosonization treatment �30�, this
magnetization-plateau-formation transition is described by
the sine-Gordon field theory, which is identical to the present
case. And more generally, since Q is the conserved quantity
in our system, the above necessary condition can be trans-
lated to the density plateau condition for the string systems
as n�=integer, where � is the possible density at the plateau
and n is the periodicity of the plateau state. For its derivation,
U=exp�−i� j1=1

L �2�j1 /L�Nj1,j2
� plays a role of the twist opera-

tor. While the present system only possesses the �= 2
3 plateau

state with the spontaneous symmetry breaking of T down to
the period n=3, Noh and Kim intensively investigated the
interacting string or domain-wall systems based on TAFIM
with spatially anisotropic further-neighbor couplings �26�.
They used the Bethe-ansatz method to diagonalize the trans-
fer matrix, and found the �= 1

2 plateau phase. Furthermore
the period n=2 of the plateau state has been suggested in that
case. Therefore, we think that the above necessary condition
for the plateau can provide an important viewpoint for the
understanding of the interacting strings embedded in TAFIM
with various extensions.
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