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Structural corrections to Stokes-Einstein relation for liquid metals near freezing
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Using recent progress relating the self-diffusion coefficient to excess entropy, structural corrections to the
Stokes-Einstein relation are proposed for liquid metals near the melting temperature.
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In an earlier work [1,2] we have been concerned with a
correlation between a transport property, namely the shear
viscosity 7 of liquid metals and a thermodynamic quantity,
the surface tension 7. If, as for the s-p liquid metals, a pair
potential ®(r) represents a useful approximation to the inte-
rionic force field (see Ref. [3] for monovalent Na and Ref.
[4] for the divalent metal Be), then an early formula of
Fowler [5] expresses vy in terms of ®(r) and the pair corre-
lation function g(r) of the bulk liquid

y=T fr (r)aq’(r) (1)

8

where p is the particle number density. But for Na and Be,
knowledge of the experimental g(r) for a given thermody-
namic state is enough to determine ®(r) for that state, as
demonstrated explicitly by Reatto er al. [6] for the case of
sodium, using x-ray measurements [7] of g(r). Thus, Eq. (1)
then shows that, at least approximately, y is a functional of
g(r) and the number density p, for a specific thermodynamic
state. While this should occasion no surprise for such a ther-
modynamic property, the correlation between y and 7 we
exhibited in an earlier work [1,2] leads us to conclude that
the transport property 7 is also, to a useful approximation, a
functional of number density p and pair correlation function
g(r), at least for simple s-p metals like Na.

It is our purpose here to invoke now the important study
of Dzugutov [8], who proposed, on the basis of computer
simulation using pair potentials of various types, a relation
between a further transport property, namely the self-
diffusion coefficient D, and the excess entropy, this later
quantity being the total entropy minus the ideal gas contri-
bution. The result of Dzugutov, followed up in later work
[9,10], reads

k T 1/2
D=O.194a4g(a)p{ﬂ-73} eS/ks, (2)

where kg is the Boltzmann constant, 7 the temperature, and
M is the atomic mass. Here S, denotes the two particle ap-
proximation to the excess entropy [11,12], given in terms of
the radial distribution function g(r) by
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== ZWPJ {g(Mng(r) ~[g(r) = 1%dr  (3)

while a in Eq. (2) is the principal peak position of g(r). For
completeness we notice at this point that (a) some aspects of
the Dzugutov result in Eq. (2) have appeared in the literature
previously [13], and (b) corrections to the two-particle en-
tropy approximation in Eq. (3) have been discussed by Laird
and Haymet [14].

Since our main purpose here is to refine the Stokes-
Einstein relation by introducing structural corrections via
g(r), we first stress that, to date, there is no direct analog of
Egs. (2) and (3) for the shear viscosity 7. But fortunately, in
a very early study, Brown and March [15] used physical
arguments appropriate to liquid metals which were based
fundamentally on the Green-Kubo transport theory, to evalu-
ate 7 at the melting point 7,,. They derived via this route the
shear viscosity at the melting temperature as

mr, = clles )M 20"y 4)

where c is a constant. Actually, in studies in the 1930s, An-
drade [16] proposed a similar formula using kinetic theory
but, as Faber [17] points out in his book, such a treatment is
no longer adequate.

Evidently, then, by combining Eq. (4) with Egs. (2) and
(3), but now evaluated specifically at T=T,,, we can form the
Stokes-Einstein combination, denoted x,, following March

and Tosi [18]
D
xm:{ ’7”3] : (5)
kgTp T,

The result for x,, then takes the form, after utilizing Egs. (4)
and (2)

5= e[a*p"g(a)eS el (6)

where ¢ is a constant. This expression hence gives structural
corrections to the Stokes-Einstein combination at the melting
temperature, appearing on the right hand side of Eq. (5).
While Eq. (6) constitutes the main result of the present study,
we shall attempt in what follows to gain insight into likely
reasons why x,, defined in Eq. (5) is rather constant for s-p
electron liquid metals. To quantify this later statement, Table
1 in the paper of March and Tosi [18] shows that x' has an
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average value of 47 for five s-p metals, with a scatter of +5.

Let us begin with the combination a*p*?g(a) appearing in
Eq. (6) at the melting temperature 7,,. We invoke then Egq.
(6) of Bhatia and March [19] to write

a*g(a)Ar= %a3 - %Ri[l -S(0)] (7)

to be utilized here at T=T,,. Ar in Eq. (7) is to be identified
with the root mean square displacement of the ions, which in
turn is a measure of the half width of the principal peak of
g(r), at position a. But Lindemann’s law of melting, accord-
ing to Faber [17], gives (Ar/RA)TWZO.Z, where the mean
interatomic separation R, is related to the number density,
p=3/47TRZ. Since a=1.8R,, Ar/a=0.11 at T,,, and hence
from Eq. (7) it follows that

g(a) =3.0-0.06[1 - S(0)] . (8)

But the long wavelength limit ¢— 0 of the structure factor
S(g) at T, for s-p liquid metals is very much less than unity.
Hence, since a® R} p~!, it follows that a*p*3g(a) appear-
ing in Eq. (6) at T,, is a constant from Eq. (8). It is worth
remarking here that Eq. (8) is the counterpart in r space of
the so-called Verlet rule that freezing occurs when the struc-
ture factor S(g) has its principal maximum at a height of 2.8.
No claim is made here that the r space criterion is (a) of
comparable accuracy to the Verlet rule or (b) of easy access
to experimental check (Reatto et al. [6] get [g(a)]; =2.43
for liquid metal Na, which is substantially lower than the
“prediction” (8)).

But naturally, given the proposal of Eq. (6), the most
likely variation of x,, through the s-p metals will arise from
the factor e5?*8. To seek a little further insight here, it is
natural enough to write Eq. (3) as the sum of two parts

Sa) Sk} _ L
<k3>Tm_<kB)Tm S = SOy, ©)

Here, S, denotes the contribution to S, from the product
g(r)U(r), where U(r) denotes the potential of mean force
defined by the Boltzmann-like relation

g(r) — e—U(r)/kBT_ (10)
While one form of Lindemann’s law gives [S(0)]; =const

for liquid metals, this is quite approximate. More impor-
tantly, at 7,, it is known from the fluctuation theory result
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that S(0)=pkzTK, where K is the isothermal compressibil-
ity, is such that [S(O)]Tm< 1, and hence the second contribu-
tion on the right hand side of Eq. (9) is essentially constant.

To date, the only evaluation of S,/kp near to the melting
point from diffraction experiments is that made by Wallace
[20] for Na, who used Waseda’s data to yield (S,/kg)
=-2.6(+0.2). For Na, this is therefore the dominant contri-
bution to S,/kp appearing in the basic Eq. (6). But why
might this be rather constant among s-p electron metals? We
conjecture, but of course, experiment will be needed eventu-
ally to allow confirmation or refinement, that [g(r)U(r)d’r
might correlate closely with [g(r)®(r)d®r. Thus, Tankeshwar
and March [21] have compared graphically U(r) and ®(r)
for Na near freezing, using U(r) given by Eq. (10)
from g(r) taken from x-ray diffraction studies [7]. It is then
clear from Fig. 1 of Tankeshwar and March [21] that
|[e(nU(r)d®r| <|fg(r)®(r)d*r| but that they may well be re-
lated to one another via a numerical factor, as their overall
shapes are quite similar. From the work of Bhatia and March
[221, LS g(r)q)(r)d3r]7m is related, for Na say, to the vacancy
formation energy E, in the hot solid near 7,,, E, being scaled
with the thermal energy of melting kg7,. This ratio is =9
from experiment for close-packed s-p metals, as can be seen,
for example, from Rashid and March [23], with again a scat-
ter, however, =+2. These considerations show how it may
be possible still to understand using Eq. (6) the relative con-
stancy of x;ll of around 50 for five s-p metals, with a scatter
of £10%. Of course, the true test of the practical utility of
Eq. (6) must await further “experimental” data on the pair
correlation function g(r) near melting: we trust the present
proposal (6) will stimulate further careful diffraction mea-
surements near freezing on other s-p electron metals.

Our final comment concerns materials with force fields
transcending pair potential representations, and in particular
d-electron liquid metals such as Ni or W. It should not be
assumed that the above arguments take over simply to such
cases: appeal being made to pair potential simplifications
frequently in the present study.
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