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Using recent progress relating the self-diffusion coefficient to excess entropy, structural corrections to the
Stokes-Einstein relation are proposed for liquid metals near the melting temperature.
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In an earlier work �1,2� we have been concerned with a
correlation between a transport property, namely the shear
viscosity � of liquid metals and a thermodynamic quantity,
the surface tension �. If, as for the s-p liquid metals, a pair
potential ��r� represents a useful approximation to the inte-
rionic force field �see Ref. �3� for monovalent Na and Ref.
�4� for the divalent metal Be�, then an early formula of
Fowler �5� expresses � in terms of ��r� and the pair corre-
lation function g�r� of the bulk liquid
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where � is the particle number density. But for Na and Be,
knowledge of the experimental g�r� for a given thermody-
namic state is enough to determine ��r� for that state, as
demonstrated explicitly by Reatto et al. �6� for the case of
sodium, using x-ray measurements �7� of g�r�. Thus, Eq. �1�
then shows that, at least approximately, � is a functional of
g�r� and the number density �, for a specific thermodynamic
state. While this should occasion no surprise for such a ther-
modynamic property, the correlation between � and � we
exhibited in an earlier work �1,2� leads us to conclude that
the transport property � is also, to a useful approximation, a
functional of number density � and pair correlation function
g�r�, at least for simple s-p metals like Na.

It is our purpose here to invoke now the important study
of Dzugutov �8�, who proposed, on the basis of computer
simulation using pair potentials of various types, a relation
between a further transport property, namely the self-
diffusion coefficient D, and the excess entropy, this later
quantity being the total entropy minus the ideal gas contri-
bution. The result of Dzugutov, followed up in later work
�9,10�, reads

D = 0.194a4g�a����kBT

M
�1/2

eS2/kB, �2�

where kB is the Boltzmann constant, T the temperature, and
M is the atomic mass. Here S2 denotes the two particle ap-
proximation to the excess entropy �11,12�, given in terms of
the radial distribution function g�r� by

S2

kB
= − 2���

0

�

�g�r�ln g�r� − �g�r� − 1�	r2dr �3�

while a in Eq. �2� is the principal peak position of g�r�. For
completeness we notice at this point that �a� some aspects of
the Dzugutov result in Eq. �2� have appeared in the literature
previously �13�, and �b� corrections to the two-particle en-
tropy approximation in Eq. �3� have been discussed by Laird
and Haymet �14�.

Since our main purpose here is to refine the Stokes-
Einstein relation by introducing structural corrections via
g�r�, we first stress that, to date, there is no direct analog of
Eqs. �2� and �3� for the shear viscosity �. But fortunately, in
a very early study, Brown and March �15� used physical
arguments appropriate to liquid metals which were based
fundamentally on the Green-Kubo transport theory, to evalu-
ate � at the melting point Tm. They derived via this route the
shear viscosity at the melting temperature as

�Tm
= c��kBT�1/2M1/2�2/3�T=Tm

, �4�

where c is a constant. Actually, in studies in the 1930s, An-
drade �16� proposed a similar formula using kinetic theory
but, as Faber �17� points out in his book, such a treatment is
no longer adequate.

Evidently, then, by combining Eq. �4� with Eqs. �2� and
�3�, but now evaluated specifically at T=Tm, we can form the
Stokes-Einstein combination, denoted xm following March
and Tosi �18�

xm = � D�

kBT�1/3�
Tm

. �5�

The result for xm then takes the form, after utilizing Eqs. �4�
and �2�

xm = c1�a4�4/3g�a�eS2/kB�Tm
, �6�

where c1 is a constant. This expression hence gives structural
corrections to the Stokes-Einstein combination at the melting
temperature, appearing on the right hand side of Eq. �5�.
While Eq. �6� constitutes the main result of the present study,
we shall attempt in what follows to gain insight into likely
reasons why xm defined in Eq. �5� is rather constant for s-p
electron liquid metals. To quantify this later statement, Table
1 in the paper of March and Tosi �18� shows that xm
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average value of 47 for five s-p metals, with a scatter of ±5.
Let us begin with the combination a4�4/3g�a� appearing in

Eq. �6� at the melting temperature Tm. We invoke then Eq.
�6� of Bhatia and March �19� to write

a2g�a��r = 1
3a3 − 1

3RA
3�1 − S�0�� �7�

to be utilized here at T=Tm. �r in Eq. �7� is to be identified
with the root mean square displacement of the ions, which in
turn is a measure of the half width of the principal peak of
g�r�, at position a. But Lindemann’s law of melting, accord-
ing to Faber �17�, gives ��r /RA�Tm


0.2, where the mean
interatomic separation RA is related to the number density,
�=3/4�RA

3 . Since a
1.8RA, �r /a
0.11 at Tm, and hence
from Eq. �7� it follows that

g�a� 
 3.0 − 0.06�1 − S�0��Tm
. �8�

But the long wavelength limit q→0 of the structure factor
S�q� at Tm for s-p liquid metals is very much less than unity.
Hence, since a3	RA

3 	�−1, it follows that a4�4/3g�a� appear-
ing in Eq. �6� at Tm is a constant from Eq. �8�. It is worth
remarking here that Eq. �8� is the counterpart in r space of
the so-called Verlet rule that freezing occurs when the struc-
ture factor S�q� has its principal maximum at a height of 2.8.
No claim is made here that the r space criterion is �a� of
comparable accuracy to the Verlet rule or �b� of easy access
to experimental check (Reatto et al. �6� get �g�a��Tm

=2.43
for liquid metal Na, which is substantially lower than the
“prediction” �8�).

But naturally, given the proposal of Eq. �6�, the most
likely variation of xm through the s-p metals will arise from
the factor eS2/kB. To seek a little further insight here, it is
natural enough to write Eq. �3� as the sum of two parts

�S2

kB
�

Tm

= �Su

kB
�

Tm

−
1

2
�1 − S�0��Tm

. �9�

Here, Su denotes the contribution to S2 from the product
g�r�U�r�, where U�r� denotes the potential of mean force
defined by the Boltzmann-like relation

g�r� = e−U�r�/kBT. �10�

While one form of Lindemann’s law gives �S�0��Tm
=const

for liquid metals, this is quite approximate. More impor-
tantly, at Tm it is known from the fluctuation theory result

that S�0�=�kBTKT, where KT is the isothermal compressibil-
ity, is such that �S�0��Tm


1, and hence the second contribu-
tion on the right hand side of Eq. �9� is essentially constant.

To date, the only evaluation of Su /kB near to the melting
point from diffraction experiments is that made by Wallace
�20� for Na, who used Waseda’s data to yield �Su /kB�
=−2.6�±0.2�. For Na, this is therefore the dominant contri-
bution to S2 /kB appearing in the basic Eq. �6�. But why
might this be rather constant among s-p electron metals? We
conjecture, but of course, experiment will be needed eventu-
ally to allow confirmation or refinement, that 
g�r�U�r�d3r
might correlate closely with 
g�r���r�d3r. Thus, Tankeshwar
and March �21� have compared graphically U�r� and ��r�
for Na near freezing, using U�r� given by Eq. �10�
from g�r� taken from x-ray diffraction studies �7�. It is then
clear from Fig. 1 of Tankeshwar and March �21� that
�
g�r�U�r�d3r�� �
g�r���r�d3r� but that they may well be re-
lated to one another via a numerical factor, as their overall
shapes are quite similar. From the work of Bhatia and March
�22�, �
g�r���r�d3r�Tm

is related, for Na say, to the vacancy
formation energy Ev in the hot solid near Tm, Ev being scaled
with the thermal energy of melting kBTm. This ratio is 
9
from experiment for close-packed s-p metals, as can be seen,
for example, from Rashid and March �23�, with again a scat-
ter, however, 
±2. These considerations show how it may
be possible still to understand using Eq. �6� the relative con-
stancy of xm

−1 of around 50 for five s-p metals, with a scatter
of ±10%. Of course, the true test of the practical utility of
Eq. �6� must await further “experimental” data on the pair
correlation function g�r� near melting: we trust the present
proposal �6� will stimulate further careful diffraction mea-
surements near freezing on other s-p electron metals.

Our final comment concerns materials with force fields
transcending pair potential representations, and in particular
d-electron liquid metals such as Ni or W. It should not be
assumed that the above arguments take over simply to such
cases: appeal being made to pair potential simplifications
frequently in the present study.
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