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Random isotropic structures and possible glass transitions in diblock copolymer melts
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We study the microstructural glass transition in diblock-copolymer melts using a thermodynamic replica
approach. Our approach performs an expansion in terms of the natural smallness parameter—the inverse of the
scaled degree of polymerization N—which allows us to systematically study the approach to mean-field
behavior as the degree of polymerization increases. We find that in the limit of infinite chain length, both the
onset of glassiness and the vitrification transition (Kauzmann temperature) collapse to the mean-field spinodal,
suggesting that the spinodal can be regarded as the mean-field signature for glass transitions in this class of
microphase-separating system. We also study the order-disorder transition (ODT) within the same theoretical
framework; in particular, we include the leading-order fluctuation corrections due to the cubic interaction in the
coarse-grained Hamiltonian, which has been ignored in previous studies of the ODT in block copolymers. We
find that the cubic term stabilizes both the ordered (body-centered-cubic) phase and the glassy state relative to
the disordered phase. In melts of symmetric copolymers the glass transition always occurs after the order-
disorder transition (below the ODT temperature), but for asymmetric copolymers, it is possible for the glass

transition to precede the ordering transition.
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I. INTRODUCTION

Block copolymers are macromolecules built with blocks
of chemically distinct monomers. Melts of block copolymers
are attractive from both theoretical and experimental stand-
points, as they undergo microphase transitions and produce
diverse ordered microstructures [1-4].

The simplest block copolymer is the AB diblock copoly-
mer made of two types of monomers A and B. Below the
order-disorder transition (ODT) temperature, a diblock-
copolymer melt can exhibit rich mesophases [5], including
body-centered-cubic (bcc), hexagonally ordered cylinder
(hex), lamellar (lam), and several bicontinuous (e.g, gyroid)
structures. Experimentally these structures have been identi-
fied using transmission electron microscopy (TEM) [6,7],
small-angle neutron scattering (SANS) [6,8,9], and dynamic
mechanical measurements [8—10]. Theoretically these struc-
tures are well described by the self-consistent-mean-field
theory [11,12].

Generally these periodically ordered structures are ex-
pected to be the thermodynamically equilibrium states [8].
However, they are difficult to attain either in experiments [8]
or in computer simulations [13]. Bates and co-workers [3,8]
found that quenching a nearly symmetric diblock-copolymer
melt without symmetry-breaking external field, such as re-
ciprocal shearing, generally results in isotropic, locally
microphase-separated structures with a characteristic length
scale of the radius of gyration of the polymer. In addition,
such structures were also obtained (as a rule) in dynamic-
density-functional calculations [1,13,14]. The ordering kinet-
ics in these random structures are very slow, suggesting that
they are metastable states corresponding to free-energy
minima. It is therefore quite possible that the ordered phases,
though energetically favored, are not easily reached due to
the kinetic trapping caused by the presence of a large number
of metastable free-energy minima. These metastable states
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correspond to the locally microphase-separated states with-
out long-range order.

Dynamic mechanical measurements by Bates and co-
workers on melts of both symmetric, lamellae-forming, and
asymmetric, hex-forming PE-PEP [partially deuterated
poly(ethylene-propylene)-poly(ethylethylene)]  copolymers
revealed [8,9] that the system may be frozen in random
structures upon a deep quench. Comparing the quenched
sample with the slowly supercooled sample and the shear-
ordered sample, they found that the quenched sample exhib-
its very slow relaxations and extraordinarily large elastic
moduli at low frequencies, but the supercooled sample be-
haves more like the disordered melt continuously extended
to below the ODT temperature. Balsara and co-workers
[15,16] studied the grain structure of asymmetric, hex-
forming PI-PS (polyisoprene-polystyrene) melt by light scat-
tering, SANS, and rheological measurements. Similar to the
findings of Bates et al., they found that upon a deep quench,
randomly microphase-separated structures are obtained,
which do not appear to evolve towards the equilibrium struc-
ture with long-range order within the time scales of the ex-
periments. Besides these, Pochan et al. [17] found randomly
oriented wormlike cylinder structures in an I,S
[polyisoprene(I)-polystyrene(S)] star copolymer system.

The above results suggest that the ordering process in
block-copolymer melts follow a two-step mechanism: a fast
step in which unlike monomers locally phase separate into
random, macroscopically isotropic structures with domains
of the size of a single polymer, followed by a domain coars-
ening (or growth) step in which local defects in the random
microstructures anhilate and long-range order develops. The
second step is generally much slower than the first and most
likely involves activated processes. Therefore a rapid deep
quench can result in randomly microphase-separated struc-
tures that are kinetically trapped and unable to develop long-
range order within normal laboratory time scales.

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.73.031804

C.-Z. ZHANG AND Z.-G. WANG

This two-step mechanism is in fact consistent with the
thermodynamic  two-step  scenario implicit in the
Fredrickson-Helfand (FH) fluctuation theory for diblock-
copolymer melts [18] (which only applies to symmetric or
nearly symmetric copolymers). Instead of the featureless
background as assumed in the random-field-approximated
structure factor of Leibler [19], the FH theory suggests that
when the temperature approaches the ODT, the disordered
state is a fluctuating, heterogeneous structure consisting of
locally A- and B-rich domains, which then orders into peri-
odic mesophases upon further cooling.

The most dramatic manifestation of the first step is the
existence of disordered-spherical-micelle state in highly
asymmetric copolymer melts, which almost has the appear-
ance of a distinct phase between the featureless disordered
phase and the bec-ordered phase [20-27]. The micelle state
was first predicted by Semenov [28]. Recently Dormidon-
tova and Lodge [29] extended the Semenov theory by includ-
ing the translational entropy of the disordered spherical mi-
celles and predicted a phase diagram that is in qualitative
agreement with experiments. More recently, Wang and co-
workers [30] examined the nature of the disordered spherical
micelles and their connection to concentration fluctuations
using the self-consistent-field theory. Taking a nucleation
perspective, these authors showed that the disordered mi-
celles are large, localized concentration fluctuations through
a thermally activated process.

In this work, we study the metastable states consisting of
random structures in block-copolymer melts and address the
possibility of glass transition using a thermodynamic replica
approach. This approach was first proposed by Monasson
[31] and subsequently employed by a number of authors in
studying structural glass transitions [33-37]. In this frame-
work, the onset of glassiness is identified with broken
ergodicity [38], which occurs as a result of the appearance of
an exponentially large number of metastable free-energy
minima [32]. The broken ergodicity is manifested through a
nonvanishing long-time correlation (here manifested as the
cross replica correlation function), whose first appearance
defines the onset temperature of glassiness 74 (also called the
dynamic glass transition temperature [31,36]). An equivalent
Kauzmann temperature Ty as in molecular liquids [39] can
also be defined as signaling the complete vitrification of the
random structures.

The possibility of glass transitions in bicontinuous
microemulsions—a system closely related to diblock
copolymers—was recently examined by Wu, Westfahl,
Schmalian, and Wolynes [40], using both a dynamic mode-
coupling theory and the thermodynamic replica approach.
There authors have also studied glass transitions in the
Coulomb-frustrated-magnet model using the replica method
with a self-consistent-screening approximation [35,36] and,
more recently, a local field-calculation [37]. Both the micro-
emulsion and the Coulomb-frustrated-magnet systems be-
long to the general class of models first proposed by Bra-
zovskii [41], featuring the existence of low-energy
excitations around some finite wave number ¢,, and the for-
mation of microphase-separated structures with length scales
~1/gq,, at low temperatures. These studies showed that as a
result of the large degeneracy in ground states [32], a glass
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transition can occur when the ratio of the correlation length
of the system to the modulation length 27/g,, exceeds some
critical value. Similar conclusions were also obtained by
Grousson ef al. [42] using the mode-coupling theory.

Our work follows a similar approach to that employed by
Schmalian and co-workers [35,36]. However, we perform
calculations specifically for the block-copolymer system by
taking advantage of the natural smallness parameter (the in-

verse of the scaled degree of polymerization, N); this allows
us to study how the glass transitions are affected by increas-
ing the chain length of the polymer when the system gradu-
ally approaches the mean-field limit. An important conclu-
sion of our work is that in the limit of infinitely long chains,
both the onset of glassiness and the Kauzmann temperature
coincide with the mean-field spinodal of the disordered
phase. Therefore the spinodal is the mean-field signature for
the glass transition in the block copolymer system; the same
conclusion is likely to hold in general for microphase-
separating systems. Another feature of our work is the inclu-
sion of the order-disorder transition in the phase diagram.
This is important because it places the glass transition in
proper relationship to the ordering transition. We find that,
for symmetric, lam-forming copolymers, the glass-transition
temperatures are below the ODT temperature, while for
asymmetric, sphere-forming copolymers, the onset of glassi-
ness can precede the ODT into the bcc phase. On a technical
point, we propose a method for incorporating fluctuations
due to the cubic interaction in the Brazovskii model, using a
renormalization scheme motivated by the 1/n expansion of
the n-vector model in critical phenomena. The effects of
these fluctuations have not been addressed in any of the pre-
vious studies [18,43—46] on block-copolymer systems. We
find that in the leading-order approximation these fluctua-
tions stabilize both the bcc phase and the glassy state.

II. MODEL AND SOLUTION
A. Model description

We consider the melt of AB diblock copolymers of degree
of polymerization N=N,+Np and block composition
f=N,/N. The monomer volume v and Kuhn length b are
taken to be equal for both monomers. We describe the ther-
modynamics of the system using the random-field-
approximated (RPA) free-energy functional with local ap-
proximations for the cubic and quartic interactions
[18,19,47] as the Hamiltonian

1 d*q

1
H[¢] = N_U|:E W(ﬁ(— 9)7:.(q,- Q) é(q)

+ 2 | dxgy+ 7 f d3x¢>(x)4}, (1)
where the order parameter ¢p=p,(x)v—f is the density de-
viation from the mean value. Throughout the paper we take
kgT=1 except for our discussion of the thermodynamic ap-
proach to the glass transition in Sec. II C. To simplify the
notation, we use plain letters (x, ¢, etc.) to denote position
and wave vectors; when the plain letter is used to denote the
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magnitude of the wave vector (wave number), the context
should make it clear.

Near the mean-field spinodal y,(q,—¢) can be approxi-
mated as

2
C
¥(q.—q) = Z(qzl\’b2 — @2, Nb?)? +2(xN)s - 2N,

where yN is the Flory-Huggins interaction parameter be-
tween A and B blocks, (yN)y is its value at the spinodal, and
¢ is a parameter independent of N. (yN)s, ¢, and ¢, are
functions of f and N, which can be calculated using the RPA
theory of Leibler [19]. Note that Eq. (1) as a Hamiltonian is
applicable to a broad class of copolymer systems, including
multiblock copolymers [43] and copolymer/homopolymer
blends [48], where the dependence on chain architectures,
block compositions, and volume fractions of copolymers can
be incorporated into the parameters (yN)s, ¢,,, etc. Therefore
our results on diblock-copolymer systems should be qualita-
tively applicable to these systems as well.

The degree of polymerization, N, plays the role of Gin-
zburg parameter, which controls the magnitude of fluctua-
tions [18]. To highlight this feature, we nondimensionalize
the lengths and wave numbers by the ideal end-to-end dis-
tance of the polymer: x=x/(\Nb), §=q\Nb, §,,=q,,'Nb,
and concurrently rescale the order parameter as ¢(X)
= p(X)cq,n H(G)=p(q)cq,,/(\Nb)>. Now the Hamiltonian
[Eq. (1)] becomes

W1 ([ &g
H[p]= » {zj(zw)gg

(@' (@) P(- q)

+2 d3f$(f)3+% J d%?g?:(f)“} =N'"2H[ &],

3!
(2)
where
N I, _ _
8@ = (F -7+ 7@ 3)
44,
Z(XN)S—zXN
P AL el AR 4
o 7 (4)
Y3
=— 5
” o7 (5)
Y.
A= (6)
¢4,

The scaled couplings # and A\ are, respectively, the same as
NT'3 and NT', defined in Ref. [18]. For notational simplicity,
we drop the overbars on the variables and the order param-
eter henceforth.

We point out that, although the parameters in Eq. (2) are
written in molecular terms, this model is best interpreted as
phenomenological. The random-phase approximation used in
deriving the Hamiltonian, the approximation of higher-order
interactions as spatially local, and the truncation at quartic
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order in the order-parameter expansion all introduce inaccu-
racies whose effects are difficult to evaluate [49]. In particu-
lar, the order-parameter expansion to quartic order is not jus-
tified for strongly asymmetric block compositions as chain
stretching effects become important and the weak-
segregation assumption no longer holds [50]. However, we
note that taking Eq. (2) as the Hamiltonian, one can repro-
duce the experimental phase diagram of microphase transi-
tions qualitatively at all compositions, including the disor-
dered spherical-micelle states at very asymmetric
compositions, as the state-of-the-art self-consistent-field
theory. Therefore while the quantitative accuracy of our
theory may not be reliable, we expect that most of our pre-
dictions should be qualitatively correct. Such an expectation
is further boosted by the general success of the Fredrickson-
Helfand theory [also using Eq. (2) as the Hamiltonian] in
capturing many key features of the physics of diblock-
copolymer melts at length scales comparable to or larger
than the size of the polymer chain.

In addition, studying glass transitions in the system de-
scribed by Eq. (2) is of intrinsic theoretical value, as Eq. (2)
corresponds to the weak-coupling limit of the Brazovskii
model. Therefore our results elucidate the physics of systems
in the Brazovskii class in this limit.

Finally we notice that the parameter N'2=N'"2b%/y
(henceforth referred to as the “chain length”) is a natural
combination emerging in any study of the fluctuation effects
in polymer melts, which gives the number of other chains
within the spatial extension of a single polymer chain

[18,51]. N plays a role similar to 1/% in quantum field theory
[52]—controlling the magnitude of fluctuations. In the limit

of N—, mean-field behavior is recovered. For systems
with large but finite N we can apply a systematic loop ex-
pansion using 1/N'? as the smallness parameter.

The presence of the N'/2 factor in front of the Hamiltonian
also has important consequences on the free-energy barriers
separating the multiplicity of free-energy minima. In the
mean-field approximation, we expect that the free-energy
barriers should be proportional to this factor. For long poly-
mer chains, the barriers can be much larger than the thermal
energy, resulting in slow relaxations from these free-energy
minima to the lower-free-energy-ordered phases and between
the metastable minima themselves. This justifies the applica-
tion of the energy-landscape theory of glass transitions in
polymer systems.

B. Ordered states and order-disorder transition

Our current understanding of the effects of fluctuations on
the ODT in block-copolymer melts is largely based on the
Brazovskii-Leibler-Fredrickson-Helfand ~ (BLFH)  theory
[18,19,41]. This theory uses the self-consistent Brazovskii
approximation (a Hartree-type approximation) for the quartic
interaction and ignores fluctuations due to the cubic interac-
tion. Therefore, strictly speaking, it is only valid for symmet-
ric or nearly symmetric block copolymers where cubic inter-
action is small (see our discussions at the end of this
subsection). Here we extend this theory to include the
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leading-order one-loop correction from the cubic interaction,
which accounts for the fluctuation effects due to asymmetry
in the copolymer composition. This improved theory should
give more accurate predictions on the ODT in asymmetric
copolymer melts (and other asymmetric systems) and, more
important, enables a consistent comparison with the glass
transition in the same system, where the cubic term is shown
to play a dominant role.

As in previous weak-segregation theories [18,19], we
adopt the single-mode approximation for the periodic mi-
crophases, representing the density wave by

AH[ Y ¢]= H[¢+ ¢] - H| ¢]
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() =a [exp(iQ;-x) +exp(=iQ;-»].  (7)
J

where a is the magnitude of the density wave and Q,(1<j
<n) are the first set of vectors on the reciprocal lattice of the
periodic structure of the ordered microphases [18,19]. Now
we introduce the fluctuation field around the minimum,
#(x)= p(x)— @(x), and perform an expansion of the Hamil-
tonian H[¢] in Eq. (2) around ¢. The fluctuation part of

H[$] is

3
:%j (;Tq)w(_q)g(‘”_l‘”(q“;n,fd3xw(x)3+—jd3x¢(x)4

7 J Lqid’qrd’qy
2 2m)°

fd3pld3 2d p3d P4
4‘ (2 )12

The linear term of ¢ vanishes because ¢ is at the minimum
of the Hamiltonian. For the quadratic term we only keep the
dominant isotropic part

D(¢)™" =g(q)™" + nka?, )

which is defined as the shifted bare propagator.
The free energy (effective potential) of the microphase-
separated system is given by

Flg]=~N""In{exp{- N'H[¢]})

= Hl¢] - N"" In{exp{- N'"*AH[ ¢ ¢l}).  (10)

172

Here the free energy is scaled by N2 such that the mean-

field part H[¢] is independent of N and reduces to the
Leibler free energy [19]. The second term in Eq. (10) con-
tains corrections due to the fluctuation part of the Hamil-
tonian [Eq. (8)]. In the one-loop approximation we have

3
Trln QH )\_{J (;1 )ggH(q):|

7 [ d’pdq

1onJ @m°

Fle) = Hl¢)+ —
N2

Gu(P)Gu(@)Gu(=q—-p), (11)

where Gy(g) is the Hartree-renormalized propagator deter-
mined from

W(q)¥(q2) (q3) 5 (g, + g2+ g3)

[44(p ) ¥(p2) ¥(p3) ©(ps) + 60(p1) @(p2) p3) Hp) 18 (P + pa+ p3+ps).  (8)

- f oo (12)

Our one-loop approximation is slightly different from the
conventional diagrammatic expansion; details are discussed
in Appendix B.

Under this approximation the renormalized correlation
function is given by

) FH ] }
1_____Z“-trl
9@ —{5¢<q)5¢(_q)
2

N2 )3

Gulq) ' =D(g)™" +

_gH(Q)l Gu(k)Grlg k).

(13)

In the replica calculation G(g) gives the renormalized diago-
nal correlation function in the replica space.

The second term in Eq. (13), corresponding to the one-
loop cubic diagram, was absent in previous theories on the
ODT, as it was shown to be subdominant to the Hartree term
[the first term in Eq. (13)] near the mean-field ODT for
asymmetric copolymers [41,53]. The arguments for ignoring
this term no longer hold for the supercooled disordered phase
(below the ODT temperature), and here we need a free-
energy function that remains valid even below the mean-field
spinodal temperature. Therefore the one-loop cubic term can-
not be dropped as in Refs. [41,18]. Also in the 1/N expan-
sion employed here (equivalent to a loop expansion), the
one-loop cubic term is of the same order as the Hartree term
and their numerical values are comparable in the part of the
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phase diagram of interest, except for nearl?f symmetric com-
positions when the cubic term is small.” Furthermore, as
shown in Appendix A the corresponding term is the leading
term in the self-consistent equation for the cross-replica cor-
relation function. Earlier work also showed that it is the lead-
ing term that generates long-time correlations in the mode-
coupling theory for glass transitions [54]. We therefore
include the one-loop cubic term in our treatment of the ODT
to have a consistent comparison with glass transition.

C. Random structures and glass transition

Traditionally two different approaches have been devel-
oped to study frustrated systems with quenched disorder. The
dynamic approach, most notably the mode-coupling theory
[55], focuses on dynamic correlation functions (e.g, the
Edwards-Anderson order parameter defined as the long-time
spin-spin correlation function in the Ising-spin-glass model
[56]) and characterizes the glassy state with nonvanishing
long-time correlations and broken ergodicity. On the other
hand, the equilibrium thermodynamic approach, including
the density functional approach [57] and the replica approach
[58], describes glass transitions in terms of the energy-
landscape features of the system [39]. The connection be-
tween these two approaches was explicitly demonstrated in
the mean-field spin-glass models [58,59] where it was shown
that these two approaches yield consistent predictions. We
now briefly describe the essential concepts in the thermody-
namic approach.

The central assumption in the thermodynamic approach is
that the dynamic behavior of glass-forming systems reflects
the underlying free-energy-landscape features
[31,34,39,60,61]. At high temperatures, there is only one
minimum corresponding to the uniform liquid state. As tem-
perature decreases, multiple metastable minima begin to ap-
pear that are separated by sizable activation barriers, and
below some temperature 7, the number of these minima
becomes thermodynamically large, giving a finite contribu-
tion to the partition sum of these “disjoint” metastable states
and generating extensive configurational complexity mani-
fested in a nonvanishing configurational entropy [61]. This
signals the onset of glassiness or broken ergodicity [38] in
the sense that within times scales of typical liquid relax-
ations, the system is trapped in these metastable free-energy
minima; transitions between the minima, however, can still
occur through activated processes [59]. Dynamically, one ex-
pects a significant slowing down of structural relaxations,
often accompanied by the appearance of long plateaus in the
time correlation functions [39,54]. Complete vitrification oc-
curs at a lower temperature Ty, below which the system is
dominated by one or less than an exponentially large number
of deep free energy minima; thermodynamically, this is sig-
naled by the vanishing of the configurational entropy. T is
often termed the ideal glass transition temperature and is

a complementary perturbative expansion motivated by the 1/n
expansion, this cubic diagram is subdominant to the Hatree term
(see Appendix B for a discussion). But their numerical values turn
out to be comparable.
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conceptually identified with the underlying thermodynamic
glass transition at which the viscosity of the supercooled
liquid diverges [31,39,60,62].

Recently Monasson [31] proposed a replica method which
allows explicit implementation of the thermodynamic ap-
proach for studying structural glasses resulting from self-
generated randomness. Using this method Westfahl ef al.
[36] successfully predicted the glass transitions in the
Coulomb-frustrated-magnet model. Here we adopt this ap-
proach to study the glass transition in block-copolymer
melts.

Following [31], we introduce an external pinning field ¢
and calculate the pinned free energy of the system, F[{]:

FI{]==kpTIn Z[{]

1
=— kBTlnf Do exp(— k_T{H[d)]
B

+§fd3X[¢(X)—§(x)]2}>, (14)

where a>0 is the coupling between the pinning field and the
order parameter. [In Egs. (14)—(20), we reintroduce the kzT
factor in order to allow explicit temperature derivatives.] The
effect of { is to locate the basins on the free-energy land-
scape. The coupling constant will be taken to be infinitesi-
mally small at the end and serves as a convenient device for
breaking ergodicity—i.e., localizing the system into separate
basins. Its role is similar to that of the infinitesimal field that
breaks the up-down symmetry of the Ising model below the
critical temperature. One can show that the minima of F[{]
coincide with those of the effective potential of H[¢] as «
—0; proof is given in Appendix D. Thus { serves as a run-
ning index for labeling different basins on the free-energy
landscape, and sampling the configuration space of { gives
information on the metastable free-energy minima (the en-
ergy minima with their location fluctuations) of the system.
Therefore one can use F({) as an “effective Hamiltonian” for
the metastable free energy minima and compute the
“quenched-average” free energy

f DEFLLlexpl— FLVksT)
F= i (15)

J D¢ exp{- F[{V/kpT}

If the system is fully ergodic, one can verify that F is
equal to the equilibrium free energy

F=—kgTn f Do exp{— H[p)/kpT}

in the thermodynamic limit as «— 0*. However, when er-

godicity is broken lim, +F can be different from F. Their
difference

F-F=TS. (16)

defines the configurational entropy that measures the con-
figurational complexity due to an exponentionally large num-
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ber of metastable states [31,36,38,58]. In the thermodynamic
approach, S, jumps discontinuously from zero to an exten-
sive finite value at 7, implying broken ergodicity due to
disjoint metastable states; S. decreases upon further cooling
and vanishes at Tk, when the system becomes completely
vitrified.

To calculate S, it is convenient to introduce the “repli-
cated” free energy

F,=— lim kLTlnfD(exp{—iF[ﬂ}

a0t M kBT

kgT kgT

=— lim 2~ 1nfpgz[§]m:— ‘1z, 17
a—ot M m

where T/m is introduced as the effective temperature conju-

gate to F[Z]. F and S, are obtained from Eq. (17) straighfor-
wardly as

—  JdmF,
7o dmEy) ’ (18)
am m=1
oF,, 1 0F,
So=— —| = -Zn (19)
NTIm) |,y T Im |,

When m is an integer, Z,, in Eq. (17) can be simplified by
introducing m copies of ¢ and integrating out the ¢ field,
which gives

Z, = lim fD(ﬁaexp —LE Hl ]

a—0F kBTa=1

T

zkaTlSa<bSm

f X[ blx) = BT [, (20)

where a,b are replica indices. Equation (20) has the same
form as the replicated partition function for a random system
with quenched disorder [58], although here we are interested
in the physical limit corresponding to m=1.

To characterize the physical states of the system, we in-
troduce the (renormalized) correlation functions G(g)
=(¢(@)bu(=q)) and F(q)=(bu(q) Pp(=q))arp- G(q) is the
normal physical correlation function of the system, whereas
F(g) measures the correlation between different replicas. It
has been shown that F(g) is equivalent to the long-time cor-
relation function in the conventional mode-coupling ap-
proach [31,36,54]. At high temperatures the system is er-
godic, and in the limit a—O0* different replicas are not
coupled; thus, F(g)=0. When ergodicity is spontaneously
broken, different replicas become coupled even in the limit
a— 0%, and F(g) # 0. Using F(q) as the order parameter for
ergodicity breaking, we can define the onset of glassiness T,
as the temperature when there first appears a solution with
F(q) #0. T, defined in this way coincides with the dynamic-
transition temperature in mean-field-spin-glass models char-
acterized by the appearance of drastically slow dynamic re-
laxation [31,36].
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To obtain the replica free energy defined by Eq. (17), we
adopt the self-energy approach [52] and express the effective
potential F,, as a functional of bare and renormalized corre-
lation functions:

1)1 1

F,[G]=—)=TrinG™'+ =Tr(D7'G) - T,[G] . (21)
m| 2 2

Here D and G are bare and renormalized correlation func-

tions, with

G=(G-F)Il+FE, (22)

where E, =1 and I,=45,, [Henceforth we use bold face
uppercase letters (G, D, %) for the matrices of functions in
the replica space, plain uppercase letters with subscript indi-
ces (Gg, Dy, etc.) for the matrix elements. G and F are
reserved for the renormalized diagonal (physical) and cross-
replica correlation functions respectively. ]

D,, is the replica-symmetric bare correlation function,
D,(q)=g(q) 6,5 With g(g) given from Eq. (3):

1 qZ 2
-2 -1 _ | L
qmé’(‘]) _4<qi_1) +TO'

The self-energy functions 3, are defined by

3=G'-D! (23)
and obtained through variation of F,;
268I,[G]

S=——T—. 24

G (24)

I',[G] contains all two-particle-irreducible (2PI) diagrams,
which is evaluated perturbatively. Detailed calculations are
given in Appendix A.

Taking the inverse of G defined in Eq. (22), we find that
the self-energy from Eq. (23) takes the form

2 =CEg=2p) 0+ 27, (25)
where
S6(@)=6(9) " -glg)", (26)
1
_ N
2 Hq)=6(q) G —F@ (27)

Assuming that the momentum dependence of self-energy
functions 34(g) and 3 (q) is negligible compared with g(g),
we can approximate the renormalized diagonal correlation
function as

> ., 1 q2 2 >
qm g(‘]) = Z _2 -1 + To + Zg(q'n)qm
9m
1 2 2
E—<q—2—1) 7. (28)
4\ q,

And the off-diagonal correlation function F(g) takes the
form

Flg)=6(q) - (29)

1
Glg)™" -2 q)
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I B
1 q2 )2 1<q2 )2 5
—=-1] + —\5-=-1] +r-qg.>
4 ( Qi r 4 qi =4y f(Qm)
(30)
-2 -2
D T (31)

=1 qz 2 _1 qz 2 .
- —2—1 +r - —2—1 + s
4 qﬂl 4 qm

Equations (23) and (24) give the self-consistent equations
for G and F (algebraic equations for r and s in our case).
Solving these equations we obtain a normal replica-
symmetric solution with r=s and a replica-symmetry-broken
solution with r<<s below the dynamic-transition temperature
T, [corresponding to some (yN), in our diblock-copolymer
model].

The configurational entropy is obtained from Egs. (19)
and (21) to be

Se__1[ & M@)@]
kg 2) @n)? Gq)) G
9 (I
- o'?m<m> m=1 (32)

One indeed finds that S. becomes extensive below 7, and
decreases to zero at T=Tx<T,; Tx determines the Kauz-
mann temperature or the thermodynamic glass transition de-
fined above.

III. RESULTS AND DISCUSSION
A. Glass transition

Glass transitions in the Coulomb-frustrated-magnet model
have been addressed by several groups in recent years
[32,35-37,42,63-66]. These studies establish that in this
model glass transitions are possible and could be kinetically
favored. However, all these studies focus on the strong-
coupling regime, and except in Ref. [37], the asymmetric
cubic interaction has been ignored. The block-copolymer
system we are studying belongs to the same universality
class as the Coulomb-frustrated-magnet—both are examples
of the Brazovskii model. But for long chains our system
corresponds to the weak-coupling regime of the Brazovskii
model. Furthermore, the presence of the cubic interaction,
reflecting compositional asymmetry in the copolymer, is the
rule rather than exception. It has a strong effect on the ODT
and the glass transition, as we will discuss in this work.

We start with the glass transition. Figure 1 shows the tran-

sition lines for two chain lengths N=10* and N=5 X 10*. The
dotted line represents the mean field spinodal; dashed lines
represent the Kauzmann temperature (or the thermodynamic
glass transition temperature [36]) Tx. The dynamic glass
transition temperature 7, is found to be close to the Kauz-
mann temperature 7 on the scale of this figure in both cases,
so we do not present 7, here and only include it in Figs. 2
and 3. In the energy-landscape theory of glass transitions, 7,
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FIG. 1. Glass transitions in diblock-copolymer melt. Dashed
lines are for the Kauzmann temperature and the dotted line for the

mean-field spinodal. The upper dashed line is for chain length N

=10%; the lower one for N=5 X 10*. Since T}, and T are very close,
only the T transition is shown here.

signals the onset of glassy behavior (e.g, slow dynamics),
whereas Ty represents the limit of supercooling below which
the system becomes vitrified [39]. (Note that we use the term
“temperature” even though the phase diagram is presented in
terms of the Flory-Huggins interaction parameter yN; the
actual temperature can be determined from the temperature
dependence of yN.) These results show that in diblock-
copolymer melts, glass transitions occur at finite tempera-
tures at any chain composition f. The narrow gap between 7
and Ty suggests that the system becomes vitrified right after
the onset of glassiness. Furthermore, as the chain length in-
creases, both 7, and T transitions approach the mean-field
spinodal. This latter result is consistent with our anticipation
that a large number of inhomogeneous metastable free-
energy minima emerge as the system approaches the mean-
field spinodal.

Figure 1 also shows the full crossover from nearly sym-
metric copolymer, whose glass transitions are dominated by
the quartic coupling, to highly asymmetric copolymer domi-
nated by the cubic coupling. (We again remind the reader
that the results for highly asymmetric block compositions
should only be taken as qualitatively but not quantitatively
valid.) For symmetric or nearly symmetric copolymer, it is
well known [18,67] that the mean-field spinodal is destroyed
by fluctuations and the disordered phase is always locally
stable. Also the transition from the disordered phase to lam
phase is a first-order transition with rather complicated (and
probably slow) kinetics [46,68]. Therefore a deep quench
without annealing can result in the trapping of the system in
randomly microphase-separated structures; these structures
represent the glassy state captured here. This scenario is con-
sistent with the experimental observations of Bates et al. [8],
where they studied the mechanical properties of three differ-
ent samples: a rapidly quenched sample, a slowly super-
cooled sample, and a shear-oriented sample. By analogy to
molecular liquids, these three samples can be likened to the
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glassy state, the supercooled-liquid state, and the ordered
crystalline state, respectively. The quenched sample in this
study exhibits solidlike responses at low frequencies while
the supercooled sample has typical liquidlike responses.

We notice that in going from symmetric to asymmetric
compositions on either side, the transition lines exhibit a
minimum. This is attributed to the crossover from the
quartic-coupling dominant to the cubic-coupling dominant
regime. As we will discuss later, the cubic term considerably
stabilizes the glassy state and enlarges the region of glassy
state in the phase diagram. This results in the initial drop of
xN values at the transitions as f deviates from 0.5.

For very asymmetric copolymers, mean-field theory pre-
dicts a first-order transition into ordered spherical phases
[face-centered cubic (fcc) or bec] at yN smaller than the
mean-field spinodal (yN)g [12]. However, experiments show
that between the featureless disordered phase and the ordered
bce phase, there exists an intervening disordered-micelle
state [20-29]. In a self-consistent-field calculation, it was
shown [30] that the micelles are formed via a thermally ac-
tivated process, with a free-energy barrier vanishing at the
mean-field spinodal. Therefore, if the system is quickly
quenched to the vicinity of the spinodal, micelles will prolif-
erate all over the sample; the jamming of these micelles
causes their translational diffusion to be so slow that long-
range order cannot be developed.

The interplay between the glass transition and the ODT is
complicated. We will present some tentative results in the
next subsection. But here we simply note that, in contrast to
the symmetric case where glass transitions occur at yN
> (xN)g (or below the mean-field spinodal temperature), for
asymmetric copolymer glass transitions can occur at yN
<(xN)g (or above the mean-field spinodal temperature). We
attribute this to the fact that different arrangements of mi-
celles could generate a large number of metastable states,
which significantly stabilize the glassy state.

As highlighted in Eq. (2), the chain length N controls the
magnitude of nonlinear fluctuations and, hence, the deviation

from mean-field behavior that is recovered in the limit N
— o, Figure 2 shows the chain-length dependence of the
glass transition temperatures [measured by (yN), and (yN),
respectively] relative to the mean-field spinodal for symmet-
ric and asymmetric (f=0.3) copolymer melts. It is clear that
in both cases the glass transitions (both 7,4 and Tk) approach

the mean-field spinodal as N goes to infinity (though from
different directions in symmetric and asymmetric cases), im-
plying that in this limit the mean-field spinodal is true stabil-
ity limit of the disordered phase (with respect to either or-
dered or randomly phase-separated structures). In other
words, the mean-field spinodal is ultimately responsible for
the appearance of random structures, thus is the mean-field
signature for the glass transition. This general conclusion is
likely to be universal to the class of models with continuous
degeneracy in the ground states, such as the Brazovskii
model (see Ref. [66] for other models of the same class). We
note that the connection between the spinodal and the glass
transition was also implied in an earlier study by Bagchi and
co-workers [69] of the Lennard-Jones liquid, where the au-
thors conjectured that the liquid spinodal corresponds to the
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FIG. 2. Chain-length dependence of glass transitions. Plot of
A(xYN)= xN—-(xN)s against N. Dashed lines are for the Kauzmann
temperature, dash-dotted lines for the onset of glassiness. Upper
dashed and dash-dotted lines are for the symmetric copolymer,
lower lines for the asymmetric copolymer with f=0.3.

state of random close packing in an equivalent hard-sphere
system.

We now discuss the chain-length dependence of the gap
between glass transitions and the spinodal, (YN),—(xN)s and
(xN)xk—(xN)s. By a simple scaling analysis given in Appen-
dix C, we find that both should scale as N3 for symmetric
copolymer. This is consistent with the analysis of Wu et al.

[37]if we substitute the N dependence of the parameters into
their scaling relation. Our more accurate numerical calcula-
tions confirm this result, as shown in Fig. 3, where the first-
order transition into LAM phase is also included for com-
parison.

For asymmetric copolymers, the results are more compli-
cated: for short chains, both (yN), and (yN)g are larger than

the spinodal value (yN)g; as N increases, the transition lines
first shift downward below the spinodal line, which indicates

0

10
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10 . ' :
10° 107 10° 10" 10"

f

FIG. 3. Glass transition vs ODT in symmetric copolymer melts.
Dashed and dash-dotted lines have the same meanings as in Fig. 2;
the solid line represents the ODT into the lam phase.
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a possible crossover; then, for even larger IV, the transitions
gradually approach the spinodal and eventually collapse to

the spinodal as N— . In this latter limit, we find, using the
scaling analysis outlined in Appendix C, that (YN)g

—(xN)ox~N""*. We attribute the nonmonotonic depen-

dence on N to the crossover from the quartic-coupling domi-
nant to cubic-coupling dominant regime as the chain length
increases. Generally for asymmetric copolymers, quartic
coupling dominates for short chains and the glass-transition
lines are located above the spinodal (or below the spinodal
temperature); for long chains, the opposite holds.

We close this subsection with a brief discussion of the
dynamics of the system. For the Coulomb-frustrated-magnet
model, by invoking the entropy-droplet picture, Wolynes and
co-workers predicted [36,70] that the system should exhibit
relaxations similar to fragile liquids [71], characterized by
the Vogel-Fulcher behavior, with a relaxation time 7
cexp[A/(T-Tg)] between T, and T, and diverging at the
Kauzmann temperature 7. This prediction was disputed by
Geissler and Reichman [65], who performed dynamic Monte
Carlo simulations of the Brazovskii model without the cubic
interaction. They found that as the system approaches the
glass-transition temperature predicted by the mode-coupling
theory, the relaxation time indeed increases dramatically, but
does not show characteristics of fragile liquids. Schmalian,
Wu, and Wolynes subsequently argued [72] that the failure to
find the expected dynamic behavior could be a result of the
mode-coupling approximation which overestimates the tran-
sition temperature. Here we note that the simulations by Gei-
ssler et al. were performed at temperatures above the ODT
temperature, but our calculations show that in the absence of
the cubic interaction, the onset of glassiness always occurs
below the ODT temperature, at least in the weak-coupling
regime. Therefore simulations at lower temperatures (below
the ODT temperature) are necessary in order to elucidate the
dynamic behavior of this model.

For block-copolymer melts, the situation is even more
complicated. The Hamiltonian given by Eq. (1) is a coarse-
grained description of the system that focuses on the physics
at length scales comparable to or larger than the size of the
polymer. Therefore we expect the validity of our analysis to
be limited to this range of length scales. The configurational
entropy S, defined above only measures the number of con-
figurations of chain aggregrates in the locally phase-
separated structures, but does not account for different chain
conformations within each aggregrate. Indeed, above the
glass-transition temperature of the monomer, polymer chains
remain liquidlike even though the system acquires solidlike
behavior at the microstructural scale (at high frequencies).
Chain diffusion also provides an additional mechanism for
relaxations. Therefore, to accurately describe the dynamic
relaxations in block-copolymer melts, one has to consider
relaxations both at the microstructural scale and of individual
chains.

B. Glass-transition vs order-disorder transition

Our analysis in the previous subsection shows that the
glass transition is possible in diblock-copolymer melts and is
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related to the underlying mean-field spinodal of the disor-
dered phase, which is responsible for the proliferation of
inhomogeneous metastable states. However, the ODT also
occurs in the neighborhood of the spinodal. Thus a full un-
derstanding of the glass transition in this system must ad-
dress the relationship between these two transitions.

In molecular liquids the glass transition always takes
place in the supercooled state—i.e., below the melting
(freezing) temperature. However, in diblock-copolymer
melts, the structural entities forming the random structures
are themselves molecular aggregates formed through self-
assembly, the number and size of which depend on the tem-
perature of the system. Therefore the relationship between
the glass transition and the ODT is not obvious.

Microphase transitions in block-copolymer systems have
been extensively studied, both theoretically and experimen-
tally [1,3]. In previous theories only the Hartree term arising
from the quartic interaction was retained; fluctuations due to
the cubic interaction were ignored. However, our analysis in
the previous subsection shows that fluctuations due to the
cubic interaction play an essential role in the glass transitions
in asymmetric diblock copolymers, at least for long chains.”
Moreover, as discussed in Sec. II B, the leading cubic dia-

gram is of the same order in N as the Hartree term and their
numerical magnitudes are comparable. Therefore we need to
include fluctuations due to the cubic term in our studies to
have a consistent comparison between the ODT and the glass
transition.

In this subsection, we compare the transitions into the
ordered phase and into the glassy state. We have chosen to
study symmetric (f=0.5) and highly asymmetric f~0.1 co-
polymers, as our perturbative methods are better controlled
in these two limits (dominated by the quartic and cubic non-
linear interactions, respectively).

Figure 3 shows the chain-length dependence of the tran-
sitions for symmetric copolymers; it can be considered as a
generalized phase diagram. The solid line delineates the
equilibrium phase boundary between the disordered phase

and the ordered lam phase. For a given N, as temperature
decreases [A(xN) increases], the equilibrium state of the sys-
tem will change from the disordered phase through a weakly
first-order transition to the lam phase. However, since the
nucleation kinetics is generally slow and complicated
[46,68], if the system is supercooled to avoid the nucleation
of lam phase, the system will remain in a metastable disor-
dered state below the ODT temperature. Upon further cool-
ing to the temperature 7, shown as the dash-dotted line, the
system enters the glassy regime. The region bounded by this
line and the Kauzmann line (the dashed line) defines the
dynamic range within which glass transition can take place
[31,35]. Although the lam phase has the lowest free energy at
low temperatures, once a system is supercooled below Tk, it
becomes essentially frozen and incapable of reaching the
more stable lam state. The narrow gap between the onset of
glassiness and the Kauzmann temperature implies that the

’In the system of short chains the situation is ambiguous as the
higher-order diagrammatic terms neglected in our analysis could
become important.
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glass transition in block copolymer melts will be fairly sharp.
In symmetric copolymer melts we observe the scaling of

(XN)opr— (XN)s~ N~ as predicted in Ref. [18]. For the on-

set of glassiness, (YN)4—(xN)g scales as N93, which agrees
well with our approximate scaling analysis given in Appen-
dix C. Our results show that for symmetric copolymers, the
ODT always occurs before the glass transitions (i.e., at tem-
peratures above the glass transitions). While one might argue
that this conclusion could be due to the particular choice of
diagrams in our perturbative calculation, we find that this
scaling with N remains unchanged when a different approxi-
mation scheme, the self-consistent-screening approximation,
is used [73]. In addition, our results are also consistent with
the local-field calculations by Wu et al. [37], as will be dis-
cussed later in this subsection. Since (YN)pr—(xN)s decays

more rapidly with N than both (yN),—(xN)s and (yN)g

—(xN)s, for sufficiently large N, we always have (xN)opr
<(xXN) 4k Therefore, at least in the long-chain limit, our
conclusion that the glass transition occurs below the ODT
temperature should be valid, regardless of the approxima-
tions in the calculation.

Figure 4 shows various transitions for highly asymmetric
copolymers around f=0.1. Here again T, is not shown as it
is very close to T on the scale of the figures. In the case of

N=107, the glass-transition lines are located below the ODT;
in other words, glass transitions can precede the ordering
transition into the bcc phase. This unusual behavior is quite
different from what happens in molecular fluids, where the
glass transition always occurs below the freezing (ordering)

temperature. In the case of longer chains with N=10%, the
ODT occurs before the glass transitions; this is the expected

behavior in the asymptotic limit N— o, since in this limit the
glass-transition lines approach the mean-field spinodal
whereas the ODT into the bcc phase takes place at a finite
distance below the spinodal [12].

The chain-length dependence of the glass transitions rela-
tive to the ODT for asymmetric diblock copolymers is quali-
tatively similar to the critical micelle temperature in the same
system. It is shown [30] that disordered micelles can appear
in large numbers before the ordering transition only for not-
too-long chains; for very long chains, the ODT will set in
before the disordered micelles reach a considerable concen-
tration, essentially precluding the disordered micelles from
being a distinct intervening phase between the featureless
disordered state and the ordered (fcc or bec) phases. Since
micelles are likely to be the structural entities in the glassy
asymmetric copolymer melts, the connection between the
micelle formation and the glass transition is worth further
investigation.

As discussed in Sec. IIT A, the cubic interaction stabilizes
the glassy state. We attribute this stabilizing effect to the
additional complexities in the configurational space caused
by the cubic term. This effect is closely related to the effect
of the cubic interaction on the ODT. Theoretical analysis
shows that the presence of the cubic term can considerably
reduce the free energy of ordered microstructures with three-
fold symmetries. This is consistent with the fact that there
are more stable ordered phases in asymmetric diblock co-
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FIG. 4. Glass transition vs ODT in very asymmetric copolymer.
(a) N=107, from above: mean-field spinodal (dotted line), ODT
(solid line), and Kauzmann temperature (dashed line). (b) N=108,

from above: mean-field spinodal (dotted line), Kauzmann tempera-
ture (dashed line), and ODT (solid line).

polymers. If we visualize the random structures as polycrys-
tals with local but no long-range order, then the increased
variety of mesophase structures will increase the complexity
in the configuration space,3 which can explain the stabiliza-
tion of the glassy state in asymmetric copolymers.

As a final technical point, we compare our treatment of
the cubic term with that in Ref. [37]. There the authors used
a local-field approximation, in which a momentum-
independent self-energy is solved variationally by mapping
the Brazovskii Hamiltonian [as given by Eq. (2)] to a refer-
ence nonlinear but local Hamiltonian. Within this approxi-
mation, it was found that the cubic interaction considerably
stabilizes the glassy state and the glass transition can occur at
temperatures above the mean-field spinodal temperature;
these results coincide with ours. However, for certain choices
of parameters in the weak-coupling regime, this local-field

3For a discussion on the possible differences between polycrystal-
line phases and structural glasses in this context, see Ref. [37].
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treatment could result in a nonmonotonic relation between
the correlation length and the temperature. We believe this
unphysical behavior is probably due to overestimating the
fluctuation effects due to the cubic term in their treatment.

IV. CONCLUSIONS

To conclude, using the thermodynamic replica formalism
we have shown that at low temperatures, diblock-copolymer
melts can exist as randomly microphase-separated structures,
in addition to the thermodynamically stable periodic struc-
tures. This transition is essentially a glass transition in which
the supercooled liquid gradually gets vitrified. We have iden-
tified the temperature range over which this glass transition
can occur, which is bordered by the onset of the glassiness
(or the dynamic glass transition) temperature from above and
the Kauzmann (thermodynamic glass transition) temperature
from below. For symmetric diblock copolymers, the glass
transition takes place below the temperature of the ODT into
the lam phase. However, for asymmetric diblock copoly-
mers, the glass transition can precede the ordering transition,
which is an unusual feature that probably reflects the self-
assembly nature of the system. This study leads us to natu-
rally identify the quenched samples of block copolymers in
some previous experimental works as the glassy state of the
system. Given the slow phase transition kinetics in copoly-
mer systems, we expect such glassy structures to be quite
common in these systems without externally imposed align-
ing fields.

As in any theories on polymer mixtures [18,51], the

scaled degree of polymerization, N, serves as a Ginzburg
parameter which allows us to systematically examine the ap-

proach to mean-field behavior as N— . An important con-
clusion is that in the limit of infinitely long chains, the glass
transitions collapse to the mean-field spinodal, suggesting
that the mean-field spinodal is ultimately responsible for the
proliferation of inhomogeneous free-energy minima and can
be used as the mean-field signature for the glass transition.
That a glass transition occurs at the mean-field spinodal in

the limit of N— o can also be understood using the follow-
ing dynamical argument. Since the Hamiltonian has an over-

all factor of N'2, in the mean-field approximation, we expect
the free-energy barriers between the metastable states to be
proportional to this factor. For very long chains, these barri-
ers can be very large. Since proliferation of the metastable
minima appears at the spinodal [66], upon a quench below
the spinodal, the system will first go to these metastable
states with overwhelming probability because of their large
number, and transitions from these metastable states should
be very slow. Note that it is the barriers from these meta-
stable states to the (more stable) ordered phases and between
the metastable states themselves, rather than the nucleation
barrier from the uniform disordered phase to the ordered
phases, that are relevant to the glass transition. Hence, for
example, in symmetric diblock copolymers, even though the
transition from the disordered to lamellar phase approaches

second order in the limit N— o (where the nucleation barrier
vanishes [46]), our theory predicts a glass transition that co-
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incides with the ODT, which is the spinodal in this limit.

Studying diblock-copolymer melt as a specific example of
the Brazovskii model, we find that the cubic interaction sig-
nificantly increases the stability of the glassy state as well as
the bce phase and causes qualitative changes in the scaling
relations with the chain length. We conjecture that this stabi-
lizing effect is due to increased configurational complexity as
a result of more free-energy minima due to the presence of
the cubic term.
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APPENDIX A: PERTURBATIVE EXPANSION OF THE
EFFECTIVE POTENTIAL WITH BROKEN SYMMETRIES

In this Appendix we present the details of our perturbative
calculation of the free energy defined in Eq. (17). The gen-
eral expansion of the effective potential for a system with
broken symmetry was derived in Ref. [52]. Here we omit the
details of that derivation but give the result

1 1
IMe,Gl=1¢]+ ETr InG'+ ETr(D‘lG) -T,[G;AH].

(A1)

Here ¢ is the order parameter in the ordered phase, I[ ¢] is
the mean-field free energy (in our case the Leibler free en-
ergy), AH[ i; ¢] is the shifted Hamiltonian [see Eq. (8)], D is
the shifted bare propagator defined as

& AH[ ¢]
5¢,(q) Spp(—q)’

and G is the renormalized propagator. As noted before, we
reserve boldface uppercase letters for matrices of correlation
functions and use the corresponding plain ones when refer-
ring to the matrix element. The second term (TrIn) in Eq.
(A1) is the one-loop correction, and the last term I", contains
higher-order corrections, including all 2PI diagrams gener-
ated by the vertices in the shifted Hamiltonian AH with the
renormalized propagator G. The third term ensures the con-
sistency of the expansion in terms of the renormalized propa-
gator.

It has been shown in Ref. [52] that I'[¢,G] as defined in
Eq. (Al) is stationary with respect to both ¢ and G. There-
fore one can derive the self-energy equations through a
variation of Eq. (A1), which gives

oI 200"
ﬂZ():)E:G_I—D_Iz—ﬂ.
oG oG

Dy(q) = (A2)

(A3)

In the field-theory description of diblock-copolymer melts
[Eq. (2)], N2 serves as a smallness parameter, which en-
ables a straightforward loop expansion for I',)[G]. To the
leading two-loop order (one-loop order in the self-energy),
one has three terms
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FIG. 5. Feynman diagrams: (a)—(d) Loop diagrams in I',. (e)—(g)
Self-energy diagrams. In the diagrams thick solid lines represent the
renormalized propagator G and wiggly lines represent the external
leg of the order parameter ¢(q). We use a slightly different pertur-
bative expansion for the diagonal renormalization, as explained in
Appendix B.

N dq,d%q
1-‘(21) == __E #Gaa(QI)Gaa(QZ)’

(Ada)
8N a (277)6
7 d’q,d’q
TP=—"=2 | —22Gu(0))Gu(@)Gup(~ 01— 42>
12N ab (277)
(A4b)
d’q d’q,d’q
re= E — B0 (41)Gap(= 42)Gap(= q3)
12Na b 2 )

XGap(q1 + g2+ q3) (= q1), (Adc)

corresponding to the diagrams shown in Figs. 5(a)-5(c), re-
spectively. In the glassy state, translational symmetry break-
ing does not occur; therefore, ¢=0, D ,;(q)=g(q) 8., and I'; )
vanishes. Note that F(l) is the Hartree term which only gen-
erates a momentum- 1ndependent self-energy in the diagonal
part of G; I‘(zz) generates an off-diagonal self-energy which
enables a nontrivial solution with broken replica symmetry.
For symmetric copolymer, the cubic coupling is zero; there-
fore, to find possible solutions with broken replica symmetry
we need to include the off-diagonal term of second order,

=

A2 dq,dq,d’q
f 6 0(01)Gap(@2) Gan(43)

48N 0 2m)’°

XGup(=q1= 2= q3), (A4d)

corresponding to the three-loop diagram as shown in Fig.
5(d). To study the crossover from very asymmetric to sym-
metric copolymer, we keep F2 in the off-diagonal renormal-
ization for asymmetric copolymer as well.

From Egs. (A3) and (A4) we obtain the self-energy
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A d’q
N2 ) @n)?

Eah(k) aa(Q) 5ab

d3
o f 2y Cal@)Galk=a)

_)x_zf dqd’p
6N (277)6

The three terms on the right-hand side corresponding to Figs.
5(e)-5(g), respectively.

Under the one-step-replica-symmetry-breaking (1-RSB)
ansatz, G,,(q)=[G(q)-F(q)]15,,+F(q), and I'; has three
terms from Eqgs. (Ada), (A4b), and (A4d):

i _ m)x(

Gab(‘])Gab(p)Gab(k iy 2 4) .

(A5)

g(q)> (A6a)

(2m)?

2

&

F;2)= 77_[’” ch 6 g(Ch)g((]z)g( q1=q2)
12N (2m)

+m(m—1)j 2 )6 f(41)f(42)f( q1— Clz)],
(A6b)

=

2 3 3 3
*—{m f L0d9:893 0 G(a2)0(g5)

43N (2m)’

XG(=q1=- g2~ q3)

d3
+m(m=1) f "‘(2 - L 1) g

XF(-q —612—93)} (A6c)
Using the polarization functions I1,,(k) defined as
d3
I,(0) = j G @Gk +)
=[Mg(k) - T1Ak)]16,, + Fk),
3
= [ S hg@akra. (a7
(k) = f 2 )3f(q)f(k+ q). (A7b)

we can rewrite the self-energy functions (after taking m=1)
as

= (Eg -20)0u+2r,
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2

A 7
Eg( )_ 1/2f (277_)3g( ) 1/2Hg(k)

2 3
| G, (s
PN [ 4
%0 ==L -2 [ S .
(A8Db)

The configurational entropy is obtained from Egs. (32) and
(A6) to be

s.=1 Hnl g0, g,
T am m=1 '
Go___L [ & [n( _@) ﬂ‘”]
g ) @m) Gq)) G
(A9a)
(1)= 12N (2 )3H]-'(CI)}—(_ 4)
A2 d’q

We have set kzT=1 in above derivations; the configurational
entropy is given in unit of kz per unit volume.

APPENDIX B: ORDER-DISORDER TRANSITION

In this appendix, we present our calculation of the ODT in
diblock-copolymer melts. Our approach is different from the
Brazovskii approximation [18,41].

Following the derivation in Appendix A, we expand the
effective potential to two-loop order and keep only the diag-
onal terms in Egs. (A4):

Md=¢l=Fe)+ — TrinG '+ — Tr(D"'G)
2N'2
N d3 j
o 1
’ SN{ (277)3 ] il @ )39(4) a(—q)
N[ dPqid’q

_EV (2—)6¢(q1)g( a)lg(q, + g) (= q1),

(B1)

where F;(¢) is the Leibler free energy for the ordered phase
and D(q) is the shifted bare propagator as given in Eq. (9).
The Hartree approximation (similar to the Brazovskii ap-
proximation) amounts to keeping only the first four terms of
Eq. (B1), which can be justified by a renormalization-group
argument [74]. The central idea is the following: since near
the critical temperature the dominant fluctuations are those
with wave numbers close to g,, at which the propagator is
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maximized, one can decompose the spherical shell into small
“patches” and rewrite the order parameter into n compo-
nents, each corresponding to one patch. In this way one can
rewrite the original Hamiltonian [Eq. (2)] as an n-vector
model. At the critical point, n goes to infinity and the Hartree
approximation becomes exact. Therefore we may replace G
by the Hartree approximation Gy as defined in Eq. (12):

d3
iz ) (2m)

Gu(k)~" = D(k)™" + S 39u(4).

This gives the first three terms in Eq. (10).

However, here we want to study the correction due to the
cubic coupling; thus, we want to include the leading-order
diagram from the cubic interaction in the effective potential,
as shown in Fig. 5(b). It can be shown that in the correspond-
ing n-vector model as mentioned above, the Hartree term
[Fig. 5(a)] is of order O(n) and this correction term [Fig.
5(b)] is of order O(n'?). In our numerical calculations we
find these two terms to be comparable for the temperature
range we are interested in. By a similar argument the last
term in Eq. (B1) is of order O(1) and ignored in our calcu-
lation (the numerical value is indeed small compared with
the other one-loop diagrams because of the weak first-order
nature of the transition). To summarize, the free energy is
given by Eq. (B1) with the last term dropped, as is Eq. (11).

To find the ODT temperature, the free energy is mini-
mized numerically with respect to the magnitude of density
wave a as given in Eq. (7) and the ODT occurs when the free
energy of the ordered phase equals the free energy of the
disordered phase.

The physical correlation function is given by Eq. (13),
and the corresponding self-energy is

A f d’q
) am 9

6N1/2f(2 )3gH(q)gH(q+k) (BZ)

Sg(k) =

This renormalization scheme includes two parts, the first
corresponding to a simple Hartree approximation and the
second incorporating fluctuations from the cubic interaction
using the Hartree-renormalized propagator, which is sche-
matically shown in the following diagrammatic equations:

Q0

2

(B3)

2
S
= +2©—’

where thin lines represent the bare propagator g(g), double
lines represent the Hartree-renormalized propagator Gp(q),
and thick lines represent the physical propagator G(¢g). Equa-
tion (B2) modifies the self-energy equation (A8a) we derived
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using a straighforward loop expansion in Appendix A. One
can verify that this self-energy equation does not have the
unphysical nonmonotonic relation between temperature
(manifested through N in 7,) and correlation length [ mani-
fested in r in G(g)] which occurs in a naive loop expansion,
and this renormalization scheme indeed gives consistent re-
sult in the known limits; e.g., when (yN)¢—xN>1 it reduces
to the loop expansion and when (yN)g—xN~0 it gives the
leading-order terms in the 1/n expansion.

APPENDIX C: APPROXIMATE SOLUTION
OF THE GLASS TRANSITION

In this last appendix we provide an approximate solution
of the self-consistent equations obtained in Appendix A. The
diagonal and off-diagonal self-energy equations are shown in
the following diagrammatic equations:

0 o
- O
(C1)
L 172 LudN A2 LS
@

(C2)

where dashed lines represent the renormalized off-diagonal
propagator F; thick lines and double lines represent the
renormalized diagonal propagator G and the Hartree-
renormalized propagator, respectively, the same as before.

From Egs. (28) and (31) the renormalized propagators G
and F are given by

46]_2
=—n 28’
0= 8)
4([2 4q_2
f — m _ m . 31 !
@) (qZ/qlzn —1)2+4r (qzlq,zn —1)%+4s (B17)

When r,s are small, the polarization functions can be ap-
proximated as

[l (k) = T (C3a)
1/1 1)\?

Mik)=—|—=-—]1, C3b

_7:( ) 4k< \/; \"S) ( )

for 0 < |k| <2 and zero elsewhere. These are verified numeri-
cally and work well for r, s not too large (<0.1). The dia-
grammatic terms in our calculations are found to be

f(z i@ =

d3
f ﬁg(k—q)ng(q)

(C4a)

1
=~ =, (C4b)
k=q,, 8mrir
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~L(L L)3
k=q,, 87\ \r \,G ’

d3
f (Z:)y’f(k - Aq)

(C4c)
&g (1 Y
Pl = 877( - \G) . ()

11\
16772( E) . (Cde)

From Egs. (B3) and (28') we have the following equations
for r:

f(z )3Hf( U AHq) =

A
=TT S
47N g NT
r=T—_L. (C5)
SN2

And from Egs. (C2) and (31’) we have

A2 1)\ 7 11
o\ ) Teme s\ )
487Ng, \Nr - Ns/ 8NV \Nr o Ns

(Co)

Let us look at Eq. (C6) first. Defining 1= \rls, Eq. (C6)
becomes

s—r=

2 3 2
NP al +’72(1_t). (C7)

4871']tir5/2 SNI/Zq?an

This equation always has a replica-symmetric solution =1
(F=0). Here we are seeking a replica-symmetry-broken so-
Iution with #<<1. Defining the dimensionless parameters

)\2
A=—"—
487Ng> r 5i2”
p=—T
8N1/2q§nr2

Eq. (C7) becomes
A(l =0)* . B(1-1)¢

1+1¢ 1+1¢

=1. (C7")

Numerical calculations show that when both A and B are
non-negative and either A>23.66 or B> 11.09, there is al-
ways a solution 0<t"<<1. For symmetric copolymer and
very asymmetric copolymer, respectively, these inequalities
result in the criteria

A2\
r= <_—> ~ N7, (C8)
Ng,,
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7\
r=|= ~N (C9)
N'"2g}
And the resulted scaling relations for 7y[o(yN)g—xN] for
symmetric and asymmetric copolymers are, respectively,

7o~ — N3, (C10)

T~ N7V4, (C11)

These have been verified by our numerical calculations.
Finally we look at the configurational entropy and the
Kauzmann temperature. The configurational entropy is given
in Egs. (A9) and found to be
3./
SO = M(l — 12,

- (C12a)
47Ny

7 s _ Mg,

St = ———(1-1) -
96N 7687 N*2r?

(1-0*
(C12b)

Thus for symmetric copolymer (7=0), the Kauzmann tran-
sition is located at

r~N723, (C13)
T~ —-N3. (C14)
And for very asymmetric copolymer (7/ q,3n/2> NG,
r~N1", (C15)
T~ N (C16)

APPENDIX D: RELATIONSHIP BETWEEN THE PINNED
FREE ENERGY F[{] AND THE FREE-ENERGY
LANDSCAPE OF THE ORIGINAL HAMILTONIAN H[ ¢]

Here we explicitly show that the free energy F[{] defined
in Eq. (14) captures the metastable free-energy minima of the
Hamiltonian H[ ¢] as defined in Eq. (2). First we rewrite Eq.
(14) as
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FZl=~1n fwexp(—H'[cbh ol = Cx 5),
where * is a shorthand notation for integration and
H'[¢]=H[$]+ ¢ % ¢. (D1)

We then define the generating functional of the perturbed
Hamiltonian H'[ ¢],

WlJ=al]l=-1In fD¢eXp(—H'[¢]+J*¢)- (D2)

The effective potential I''[¢] of the Hamiltonian H'[ ] is
obtained as the Legendre transform of W[J]. Thus we have

wul
SJ Jzag_ - ¢, (D3)
I'e]=WLI]+J * ¢, (D4)
Alel) _, (D3)
op |,
Now W[J] is related to F[] by
W= al= L - S0 & (D6)
so that for any " that minimizes F[ (], we have
5F_m = M ag* =0, (D7)
o e o Nz
that is,
%
(==~ e ®. (D8)

Equation (D8) holds for any positive «, including in particu-
lar the limit a— 0. In the limit of @«— 0%, H'[ ¢] approaches
H[¢] and I''[¢] approaches I'[¢], the effective potential of
the original Hamiltonian H[¢]. Also J=a{—0, from Eq.
(D5), ¢ becomes a minimum of I'[¢]. This, together with
Eq. (D8), shows that the minima of F[{] coincide with the
minima of the effective potential I'[¢] of the orginal Hamil-
tonian in the limit «— 0*.
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