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Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: Relaxation and structure
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We present a rheology study of associating polymers. The associating polymers are telechelic, composed of
a water-soluble backbone (polyethylene oxide) terminated by hydrophobic moieties (C;¢Hs33). In aqueous
solutions, these polymers self-assemble to form micellar structures. Above a critical concentration, approxi-
mately 1 wt % of polymer, bridging between the micelles forms a transient network. Traditionally, the vis-
coelastic response of these polymeric solutions has been described using the Maxwell model. In this work we

measure the viscoelastic properties over an extended frequency range (0.01-6000 Hz) using microrheology,
and show that at high frequencies the rheology behaves as the square root of the oscillation frequency. To fit
the data, we use a combination of the Maxwell model and the Rouse model. The Maxwell model accounts for
the hydrophobic associations between the polymeric micelles, and the Rouse model accounts for the micro-

scopic dynamics of the individual micelles.
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I. INTRODUCTION

Telechelic polymers are often used as a model system for
fundamental studies of associating polymers because they
are architecturally simple. Telechelic polyethylene oxide (T-
PEO) is composed of a long, water-soluble ethylene oxide
midblock (M, =10 000-100 000 g/mol) with each end ter-
minated by hydrophobic alkane chains. In dilute, aqueous
solutions, these polymers form micelles above a low critical
micelle concentration (< <0.1 wt %) [1-3]. The core of a
micelle is composed of the hydrophobic moieties and the
corona is composed of loops formed by the midblocks [4].
As the polymer concentration is increased, the difunctional
chains form bridges between the micelles, causing an effec-
tive attraction [3,5]. Increasing the concentration beyond the
onset of bridging creates aggregates of micelles that perco-
late the sample volume and form a transient network [6]. The
formation of a transient network is characterized by a strong
increase in both the zero-shear viscosity and the complex
shear modulus of the solution over a moderate increase in
polymer concentration [6,7]. With a few exceptions [8,9], the
frequency-dependent linear viscoelastic properties are de-
scribed by a model that contains a single relaxation time and
a plateau modulus, specifically, the Maxwell model [6,7,10].

Recently, fully end-capped telechelic polymers with a nar-
row molecular weight distribution have been shown to phase
separate into a dense phase at the bottom of the sample and a
dilute phase at the top of the sample [4,5]. This “gas-liquid”
phase separation stems from the repulsion of the micelles
due to the excluded volume and the attraction of the micelles
due to bridging [4,5], and can be described by the adhesive
sphere model [11]. The viscoelasticity, however, has tradi-
tionally been explained in terms of a transient network
theory that effectively ignores the micellar nature of the so-
lution, and predicts a Maxwellian behavior for the complex
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shear modulus [6,12]. When the micellar nature of the solu-
tion is taken into account, we expect that the complex shear
modulus will deviate from the Maxwell model at time scales
faster than the characteristic diffusion time of a single mi-
celle.

In this paper, we determine the complex shear modulus of
telechelic polymer solutions over a large dynamic range
(0.01-6000 Hz) and concentration range (0.0125-4 wt %)
using optical tweezers. Below a characteristic concentration
of 1 wt %, the solutions are primarily viscous over the entire
frequency range. Above 1 wt % we see the appearance of the
viscoelastic behavior with a long relaxation time (~0.01 s)
and an order of magnitude increase in the zero-shear viscos-
ity. We interpret the appearance of a “slow” relaxation time
and the increase in viscosity as a percolation transition.
Above the percolation threshold, the viscoelastic properties
are well described by the Maxwell model at low frequencies
(w<100 rad/s). At large oscillation frequencies (w
> 100 rad/s), the real and imaginary parts of the complex
shear modulus scale as the square root of the oscillation fre-
quency. This scaling behavior prompts us to use the Rouse
model to describe the relaxation mechanism at high frequen-
cies. From the Rouse model, we determine a “fast” relax-
ation time that compares well to the characteristic diffusion
time for an individual micelle [13,14]. The appearance of the
fast and slow relaxation times has been confirmed by light
scattering studies for a similar system [15]. Our study sug-
gests that the micellar nature effects the viscoelastic proper-
ties at high frequencies, and that the transient network theory
alone is not sufficient to account for the viscoelastic proper-
ties over a large dynamic range. In addition, the high-
frequency behavior agrees with adhesive hard sphere theory
in that the complex shear modulus scales as the square root
of the oscillation frequency at high frequencies.

II. THEORY

A. Viscoelasticity of a transient network

Traditionally, the rheological properties of telechelic poly-
mer solutions have been described in terms of the transient
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network theory [16]. This theory describes the real G’ and
imaginary G” parts of the complex viscoelastic shear modu-
lus in terms of the Maxwell model:

G(w)—Gx1+7%4w2, (1)
” _ Tyw
G'(@=G "5 B 2)

where w is the oscillation frequency. The plateau modulus is
given by G..=ukpT, where w is the number of elastically
active chains in the network per unit volume, kp the Boltz-
mann constant, and 7 the absolute temperature. The transient
network theory was first proposed by Green and Tobolsky
assuming rubber elasticity, but was extended by Tanaka and
Edwards to include physical associations between polymers
[12,16]. The characteristic time scale for the associations be-
tween the polymers is 7, the relaxation time of the system.
Indeed, the relaxation time 7;, has been shown to increase
exponentially with the size of the hydrophobic end cap, and
it follows 7, = 7ye®/*8T (where E is the energy associated with
the amount of attraction between the end cap and the micelle
core) [6]. This relaxation time has been interpreted as the
lifetime of a hydrophobe in a micelle, and the attempt time 7,
has been shown to be proportional to the diffusion time of a
single hydrophobe [7]. The transient network theory ad-
equately describes the relaxation mechanisms and the origin
of elasticity for telechelic polymer solutions. However, some
studies have reported a slight deviation of the experimental
data from Maxwellian behavior [8,9,17]; we believe this is
because the transient network theory neglects the micellar
nature of the material.

B. Viscoelasticity of adhesive spheres (i.e., sticky hard spheres)

Because Baxter’s model has been used to describe the
phase separation of telechelic polymer solutions, it is useful
to derive the expected viscoelasticity for adhesive hard
spheres to see if the model also describes the mechanical
behavior of such systems. We use the formalism put forth by
Cohen and co-workers who determined the viscoelasticity of
a hard sphere system by expressing the frequency-dependent
viscosity in terms of the equilibrium structure factor [13].
Here, we use the same concept to derive the viscoelasticity
of adhesive spheres [14] (see the Appendix for details). The
result for the complex shear modulus is

N 3kBT&¢2> [1+¢/2 ( o

G(¢’w)~< R ) e MiTe 120
2

—%)] VT,0(1 +i). (3)

Note, in Eq. (3), the contribution due to the viscosity of the
background fluid, 7, is excluded. Here, y is the value of the
pair correlation function at contact, and \ is related to the
depth of the attractive potential energy between the particles
(see the Appendix). Also, ¢ is the volume fraction of the
adhesive spheres, and R is the radius of the spheres. The
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characteristic diffusion time for a single sphere 7,
=6mnyR>/kyT is also referred to as the Péclet time [13]. In
the limit of no attraction between the spheres, i.e., A=0, this
expression reduces to the expression for hard spheres [with
Xus=(1/2+ @)/ (1-¢) [13]]. We would expect the real and
imaginary parts of the complex viscoelastic modulus to vary
as Vo at large oscillation frequencies for telechelic polymer
solutions because the adhesive sphere theory describes the
phase separation. Experimentally, this v behavior has been
found to be true in hard sphere colloidal systems, as well as
adhesive silica spheres [18,19].

C. Viscoelasticity of polymer chains composed of connected
spheres

Because the viscoelasticity of adhesive spheres behaves
like Vw at large frequencies, it may be interesting to examine
if it is possible to describe data obtained from associating
telechelic micelles in terms of the Rouse model. The Rouse
model is defined as

N
. P’
G (w) = Goopzl 1+ 7’2(1)2’ (4)
N TW
G"(w) = sz T3 20 (5)

where 7=7,/ p?. In traditional polymer theory the longest re-
laxation time in the Rouse model is given by 7y
=7]BN2113,'/7TkBT where [, is the persistence length, N is the
length of the polymer in units of persistence length, and 7 is
the background viscosity [20]. The Rouse time 7 is the time
it takes the smallest segment to diffuse the persistence
length. Rouse dynamics are derived from a microscopic
model that assumes that the smallest segments of polymer
are connected by springs. In other words, the Rouse model
describes the dynamics of spherical monomers connected by
springs. Therefore, it is reasonable to use this model to de-
scribe spherical micelles connected by associating bridges.
The main distinction between the Rouse theory and the
theory of adhesive spheres is the relaxation time 7. For ad-
hesive spheres, we expect the Rouse time to be replaced by
the Péclet time of the individual micelles. Therefore, in this
study, we use the Rouse model to find a fast relaxation time
and compare the relaxation time to the theoretically com-
puted Péclet time for an individual micelle. Our interpreta-
tion of the fast relaxation time is in contrast with previous
studies. Deviations from the Maxwell model have been mea-
sured previously in telechelic systems [21], and the two-step
relaxation has been explained in terms of a slow relaxation
due to the breakup of clusters, and a fast relaxation due to the
lifetime of the hydrophobes in the micelle.

D. Derivation of the Péclet time for spherical micelles

To theoretically determine the Péclet time, the Daoud-
Cotton model is used to determine the thermodynamic radius
of the micelles [4,22]. The model views a micelle as a series
of radially growing space-filling blobs and is related to the
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TABLE 1. Molecular weight and Péclet time.

M, (kg/mol) 2N, R (nm) Péclet time (us)
100.4 1042 29.3 120.0
84.3 875 25.6 79.0
67.6 709 23.1 57.0
51 531 19.5 35.0

number of arms in the micelle, 2p. Because the arms are
composed of loops, we ignore the midpoint connection, ef-
fectively cutting the chain in half. In a good solvent, the root
mean square end-to-end distance of a polymer chain depends
on the excluded volume v/ l;, the number of segments per
half chain, N, and the persistence length /,, and is given by
[4,20]

( v )1/5 s
s=\— | N"L,. (6)
21,

The micelle radius is then given by R=1.172p's [4]. The
persistence length is taken to be [,=0.44 nm for polyethyl-
ene oxide; v/ l;=0.3 because water is a good solvent [4]. The
aggregation number p has been measured for polymers simi-
lar to those used in this study by a variety of techniques.
Fluorescent studies have shown that the aggregation number
is 10+1 for polymer molecular weights between 34 and
50 kg/mol [23], whereas dynamic light scattering, viscom-
etry, and NMR studies have shown that the aggregation num-
ber is 23+1 for a polymer molecular weight of 34 kg/mol
[1,24,25]. The discrepancy in the aggregation number does
not drastically affect the theoretically determined radius, be-
cause of the weak dependence of the radius on aggregation
number. A value of either 10+1 or 23+ 1 for the aggregation
number results in ~10% discrepancy between the calculated
radii. In this study, we use an aggregation number of 23 and
we assume that the aggregation number is independent of
molecular weight. In addition, we have assumed that the mi-
celle size does not depend on concentration; this assumption
is reasonable as long as the concentration is lower than that
where the micelles start to overlap [3]. The theoretically de-
termined radii are used to estimate the Péclet time for a
spherical micelle. The number of subunits, N, is calculated
by assuming two monomers per persistence length. Table I
shows the calculated radii and the Péclet time for the various
molecular weight polymers used in this study [26]. The Pé-
clet time is calculated assuming 7,=0.01 P, the viscosity of
water.

III. EXPERIMENT
A. Materials

Samples of polyethylene oxide end capped by C;4Hss
with number average molecular weight of M,=51, 67.6,
84.3, 100.4 kg/mol were provided by Union Carbide. The
polydispersity of the telechelic samples M, /M, is 1.7 as
determined by gel permeation chromatography [27]. The
polymers have incomplete end capping, reported to be 1.4—
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Fdrag= 67"] (w)av trap= kOT(Aei(Dt'X)

FIG. 1. Diagram of the forces on a colloidal particle in an os-
cillating optical trap embedded in a viscoelastic medium.

1.7 hydrophobes per chain for polymers of molecular weight
M, =34 and 51 kg/mol, respectively [28]. Because of the
incomplete end capping, phase separation is not observed in
our samples [4,6]. Solutions were prepared by mixing the
M,=67.6 kg/mol polymer with filtered (0.2 wm Nalgene)
deionized water, to concentrations of 0.125, 0.25, 0.5, 0.75,
1.0, 1.5, 2.5, and 4.0 wt %. Samples were seeded with a
small amount of silica particles (volume fraction ¢p<<107)
of diameters 0.7, 1.6, and 2.9 um for use as probes in the
microrheology study. Samples of 1 wt % were used for all
the other molecular weights.

B. Bulk rheology techniques

Linear bulk viscoelasticity data were taken with a Rheo-
metrics RDAII rheometer with a cone and plate geometry.
The results were independent of the tool geometry. The vis-
coelasticity as a function of strain amplitude was also taken
to ensure that the viscoelastic data were obtained in the linear
regime. For solutions at concentrations ¢<<2.5 wt %, bulk
rheology measurements by the RDAII are not possible due to
the low viscosity of the sample. All measurements were per-
formed at room temperature ~23 °C.

C. Microrheology technique

The complex shear modulus was determined by using an
oscillating optical tweezers technique. The oscillating optical
tweezers apparatus has been described in detail elsewhere
[29,30]. Briefly, a colloidal probe particle is held by an op-
tical trap. The optical trap is oscillated by a piezoelectric
mirror at a set frequency w and amplitude A. The force im-
parted on the particle by the optical trap can be approximated
by Hooke’s law, with an effective spring constant k,,. The
force due to the trap is the effective spring constant multi-
plied by the distance between the center of the particle and
the center of the trap. The particle also experiences a drag
force as it is oscillated through the fluid (see Fig. 1). For a
simple viscous liquid, the drag force is taken to be 67 nav,
where 7 is the zero shear viscosity of the liquid, and v is the
velocity of the particle. For a viscoelastic fluid we make the
assumption that the viscosity is a frequency-dependent com-
plex function. The complex viscosity is then related to the
complex shear modulus by G(w)=7(w)w, and the equation
of motion for the particle becomes
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FIG. 2. The imaginary part of the complex shear modulus for a
0.125 wt % aqueous solution of M,=67.6 kg/mol telechelic PEO
probed by a 1.6 um diameter silica probe particle with the oscillat-
ing optical tweezers technique. The solid line indicates the viscous
contribution from the solvent, G”=n,w, where 7,=0.01 P, the vis-
cosity of water at room temperature.

mi = — 6man(w)i+k,(Ae' - x). (7)

The restoring force due to the optical trap is given by k,,(x
—A) because A —x is the colloidal particle’s distance from the
center of the optical trap. The motion of the particle, x, is
D(w)et =) where D(w) is the amplitude of particle’s dis-
placement, and &(w) is the phase of the particle’s motion. We
neglect the inertia of the particle and the fluid, so the vis-
coelastic storage and loss modulus are given by

o ko [Acos o w) ~
G'lw) = 67Ta< D(w) 1)’ ®

v« ko [Asin 5((1)))
G'w) = 67Ta( D(w) ' ©)

Experimentally, the oscillatory motion of the particles is
measured by detecting the light scattered from the optically
trapped particle using a split photodiode and feeding the sig-
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FIG. 3. The real and imaginary parts of the complex shear
modulus for a 0.75 wt % aqueous solution of M,=67.6 kg/mol
telechelic PEO probed by a 1.6 um diameter silica probe particle
with the oscillating optical tweezers technique. The solid line indi-
cates the viscous contribution from the solvent, G”=7,w, where
7,=0.01 P, the viscosity of water at room temperature.
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FIG. 4. The real part of the complex shear modulus for a 1.0
wt % aqueous solution of M,=67.6 kg/mol telechelic PEO probed
by a 1.6 um diameter silica probe particle.

nal into a lock-in amplifier (see Ref. [30]). We use a lock-in
amplifier because it allows us to measure both D and 6 of the
particle’s motion as a function of w. Because the lock-in
amplifier retains the phase information (unlike studies of the
thermal motions of tracer particles) the micromechanical
properties of soft materials can be directly determined, pro-
vided that the effective spring constant of the optical trap is
known. The effective spring constant is calibrated by mea-
suring the magnitude and the phase of a particle’s displace-
ment in a liquid of known viscosity (water). In all the experi-
ments done in this study, the oscillation frequency of the
piezoelectric mirror was varied discretely from 0.1 to 6000
Hz, and the oscillation amplitude was kept at A ~40 nm.

IV. RESULTS AND DISCUSSION

Measurements of the complex shear modulus for 0.125
wt % aqueous solutions of 67.6 kg/mol telechelic PEO
probed by a 1.6 um diameter silica probe particle with the
oscillating optical tweezers technique are shown in Fig. 2.
For this concentration, the viscoelastic storage modulus G’
was not measurable. These results indicate that the solutions
are more liquid than solid for the entire frequency range.
Because the loss modulus is nearly linear as a function of

4
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FIG. 5. The imaginary part of the complex shear modulus cor-
responding to Fig. 4. The solid line indicates the viscous contribu-
tion from the water.
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FIG. 6. The real (closed symbols) and imaginary (open sym-
bols) parts of the complex shear modulus for a 1.0 wt % aqueous
solution of M,=67.6 kg/mol telechelic PEO probed by a 1.6
(circles) or a 0.7 (squares) wm diameter silica probe particle with
the oscillating optical tweezers technique.

frequency, the zero-shear viscosity of these samples could be
determined by extrapolating the loss modulus to zero fre-
quency (specifically lim w— 0, 7,=G"/w). The solid line in-
dicates the viscous contribution from the solvent, 7,
=0.01 P, the viscosity of water at room temperature. The
results are similar for 0.25 and 0.5 wt % (data not shown),
but showed an increase in the measured viscosity.

A measurable G’ begins to appear at a concentration of
0.75 wt % for aqueous solutions of 67.6 kg/mol T-PEO,
shown in Fig. 3. Although we do not see the appearance of
an extended plateau modulus, we do see the intersection of
G’ and G” indicating that there is a fast relaxation time at
high frequencies. We attribute the fast relaxation time to the
dynamics of individual micelles. The absence of either a
slow relaxation time or a plateau modulus simply means that
this concentration is slightly below what is needed to form
bridges between the micelles.

Figures 4 and 5 show the real and imaginary components
of the viscoelastic shear modulus, for a 1 wt % solution
(M, =67.6 kg/mol). For this solution, we see the appearance
of a slow relaxation time at 0.022 s but the response is not
purely Maxwellian, as is expected for telechelic polymer so-
lutions [6,7]. Indeed, the low-frequency data can be de-
scribed with the Maxwell model, and the dashed line indi-
cates a fit to Eq. (1) at low frequencies using two fitting
parameters G., and 7. The zero-shear viscosity is given by
G.. 7). Although the Maxwell model fits these data well at
low frequencies, the deviation is significant at large frequen-
cies. To this end, we use the Rouse model to describe the
data at larger frequencies. Please note that the Rouse model
is a sum of Maxwell functions, and is identical to the Max-
well model at time scales larger than 7. At time scales
smaller than 7, the plateau disappears because it is smeared
out by many fast relaxation processes. The dotted lined indi-
cates a fit to Eq. (4), using a single fitting parameter 7. The
plateau modulus G, used in the Rouse model is identical to
the plateau modulus found from fitting the Maxwell model to
the low-frequency data. The solid line through the data is the
sum of the contributions from the Maxwell model and the
Rouse model. Similar behavior is seen for other molecular
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FIG. 7. The real part of the complex shear modulus for a 2.5
wt % aqueous solution of M, =67.6 kg/mol telechelic PEO probed
by a 1.6 um diameter silica probe particle. The dark gray symbols
represent the imaginary part of the complex shear modulus as mea-
sured by a bulk rheology technique.

weights, and although the frequency-dependent data are not
presented here, the results for each 7y are shown in Table II.

Because the Maxwell model combined with the Rouse
model is used to determine relaxation times that are related
to the microscopic structure, it is important to confirm that
the viscoelastic properties are independent of the probe par-
ticle size. Recently it has been shown that the microrheology
is sensitive to particle size for samples that are inhomoge-
neous on the length scale of the particle [31]. Therefore,
measurements of different particle sizes are taken to see if
the microrheological properties are affected by inhomogene-
ity in the sample. In Fig. 6 we show that the measured rheo-
logical properties determined by the oscillating optical twee-
zers technique are not sensitive to particle size.

At 2.5 wt % the viscoelasticity of the 67.6 kg/mol T-PEO
solutions is large enough to measure with a conventional
rheometer. Figures 7 and 8 show the real and imaginary com-
ponents of the viscoelastic shear modulus. As before, the line
through the data is a summation of the fits to the Maxwell
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FIG. 8. The real part of the complex shear modulus for a 2.5
wt % aqueous solution of M,=67.6 kg/mol telechelic PEO probed
by a 1.6 um diameter silica probe particle. The dark gray symbols
represent the imaginary part of the complex shear modulus as mea-
sured by a bulk rheology technique. The solid line indicates the
viscous contribution from the solvent, G"= 7w, where 7,=0.01 P,
the viscosity of water at room temperature.
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TABLE II. A comparison between the fast relaxation time ob-
tained by the Rouse model and the calculated Péclet time.

M, (kg/mol) c (wt %) 7 us) Teare(1S)
67.6 0.75 44.0 57.0
67.6 1.0 2.3x103 3.7%10°
67.6 1.5 1.8X10° 240.0
67.6 2.5 50.0 57.0
67.6 4.0 26.0 57.0
100.4 1.0 640.0 120.0
84.3 1.0 1.6 X 10 1.3x104
51.0 1.0 650.0 660.0

and Rouse models. The dark gray symbols represent the
components of the complex shear modulus as measured by
bulk rheology and compare well to the microrheology. The
bulk rheological behavior appears to be nearly Maxwellian at
the frequencies accessible to the rheometer. It is therefore not
surprising that a network of associating micelles was tradi-
tionally described in terms of the transient network theory
(Maxwell model). Only by assessing higher frequencies can
the deviations in the viscoelasticity from Maxwellian behav-
ior due to the micellar nature of the medium be observed. As
a confidence check, data were taken with 0.7 and 2.9 um
probe particles; every probe particle size tested gave the
same results within the error of the measurements (data not
shown).

As shown in Fig. 9 the fast relaxation times found from
the Rouse model compare well to the Péclet time for an
individual micelle (~60.0 ws for M,=67.6 kg/mol). Inter-
estingly, however, the fast relaxation times are dependent on
polymer concentration. This dependence can be attributed to
the behavior of the micellar network, as indicated by the
plateau modulus. Figure 10 shows the plateau modulus, as a
function of concentration, found by fitting the Maxwell
model to the low-frequency data. At 1 wt % the plateau
modulus is 28 dyn/cm?. If every micelle constituted a link in
the elastically active network, the plateau modulus would be
given by G.,=FnkyT=108 dyn/cm? from the theory of rub-

10-25 ML L N L L L e E
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103k 4

2k 3

z [ ]

S

(34 [ .

104 .
10-* PRSP S S S T S N W T SR T R S ST N } PR S S

0 1 2 3 4 5
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FIG. 9. The behavior of the fast relaxation time as determined
from the Rouse model, for various concentrations of T-PEO (M,
=67.6 kg/mol).
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FIG. 10. The concentration dependence of the plateau modulus
obtained by the Maxwell model for T-PEO (M,=67.6 kg/mol).

ber elasticity. Here n is the number of micelles per unit vol-
ume and F' is the faction of fully end-capped polymers, ap-
proximately 0.7 for this system. The discrepancy between the
measured plateau modulus and the expected plateau modulus
implies that approximately four micelles are connected to-
gether to form an elastically active chain or “superbridge”
[6]. These micelles would move as a unit, effectively increas-
ing the radius used to theoretically determine the Péclet time.
Table II shows the comparison between the Péclet time de-
termined by rescaling the micellar radius and the fast relax-
ation time determined from fitting the Rouse model to the
data for various polymer concentrations (M,=67.6 kg/mol),
as well as various polymer molecular weights. Although this
explanation for the variation of 7, with concentration is plau-
sible, we should point out that the micellar radius could
change with concentration, thus changing 7. Further studies
are needed to fully justify this assumption.

Figure 11 shows the zero-shear viscosity as a function of
concentration. The viscosity increases by more than an order
of magnitude between 0.75 and 1 wt %. According to the
adhesive hard sphere theory, the increase is most likely due
to a percolation transition between these two concentrations.
Here percolation refers to an infinite cluster (network) of
micelles at very long time scales [32]. Percolation is typical
for polymeric media and is characterized experimentally by a
large increase in viscosity [33]. In addition, the solution must
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FIG. 11. The dependence of the zero-shear viscosity on the con-
centration for M,=67.6 kg/mol TPEO.
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exhibit a measurable transition from a simple liquid medium
to an elastic medium [20]. Indeed, at 1 wt % there is an
appearance of a long relaxation time and a plateau modulus.
For similar polymer solutions, the percolation concentrations
have been found to be 4.5, 2.7, 2.3, 2.1, 1.9, and 1.6 wt % for
polymers that have a fraction of end capping equal to 0.2,
0.4, 0.5, 0.6, 0.75, and 1.0 [5]. The appearance of the in-
creased viscoelasticity is independent of a glass transition
[34]; at no point did we see a divergence in the viscosity or
a kinetic arrest of the solution despite the fact that the mi-
celles were sightly compressed. At micellar volume fractions
much greater than 1 (¢>>2.5 wt %), we would expect that
the micelles would lose their individual identity, and the ad-
hesive sphere model would no longer be applicable.

V. SUMMARY

The microrheology of concentrated telechelic polymer so-
lutions is described by contributions from the Maxwell
model and the Rouse model. The longer relaxation time is
interpreted as the disengagement time of a hydrophobe from
a micelle; the shorter relaxation time is on the order of the
characteristic diffusion time for a single micelle. When we
rescale the groups of micelles that behave like an elastically
active chain as if they were a single micelle, we find that the
measured fast relation times correspond well to the rescaled
characteristic diffusion times. The high-frequency behavior
of the shear modulus in the Rouse model is identical to the
bgllavior predicted by adhesive hard sphere theory, namely,
Vw at frequencies greater than the inverse of the fast relax-
ation time.
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APPENDIX

The interparticle potential for the adhesive hard sphere
theory consists of a repulsive hard core potential, and an
attractive square well potential

o0 for 0 <r<2R’,

V R-R'
ﬁ: 1n<12§—) for 2R’ < r < 2R, (A1)
ksT R

0 for r > 2R.

Here R is the radius of the adhesive sphere, and 2R—-2R’ is
the width of the attractive square well. In the limit of the
“stickiness” parameter 1/ going to zero, this reduces to a
hard sphere interaction potential.

The derivation of the complex shear modulus for adhesive
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hard spheres starts with the structure factor which has been
derived elsewhere [11,14]. For simplicity, we only consider
the limit where the width of square well vanishes [11],

1 o
s 24¢(af2(x) + B0 + S ¢f s(x)>

+2¢°\2f1(x) - 29N fy (A2)
where
\ = 6(A - VAZ-T)
= —¢> ,
A=E&+ @i,
I=1-¢,

_ 9+ ¢12)

F 9
32

_(1+2¢-)\gD)°

* ’

=342+ @)’ +20hl(1 +7¢+ ¢) - (NP2 + P)

A 20

(A3)

The functions f,(x) are given by

1 —-cosx
filx) = 2
X
sin x — x cos x
) =—"7"",
X
2x sin x — (x> = 2)cos x = 2
f3(x) = 4 ’
X
sin x
falx)=—,
X
(4x* = 24x)sin x — (x* = 12x% + 24)cos x + 24
f5(x)= x° ’

(A4)

Here x=2Rk. The structure factor for adhesive spheres is a
function of the volume fraction ¢ and the stickiness param-
eter 1/&. Following the work of Cohen and co-workers for
hard spheres, the high-frequency behavior of the viscosity
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for adhesive spheres in the limit of large wave vector is
given by [13,14]

' 2
(¢, ) = ks dk k4<S (k)> ! (AS)

6077, S(k) ) 2oyk)—iw

where @y (k)=Dyk*/ xS(k)d(k) is the linewidth of the dy-
namic structure factor S(k,w), and d(k)=1-j,(2Rk)
+2j,(2Rk) where j,(x) is the spherical Bessel function of the
nth order. Here Dy=kgT/67myR and x is the value of the
pair correlation function at contact [ 14]. Taking the necessary
integrals, in the limit of large k, the frequency-dependent
viscosity is

PHYSICAL REVIEW E 73, 031802 (2006)

_ .9 L% (2R
(¢ 0) = Mo+~ {¢{a(1+2)+ﬁ}— TR }
X \/T—Xw(l+i). (A6)

p

If we assume that G(w)= 7w and rearrange the constants, the
complex shear modulus is given as

—
3k TNy | 1+ &2 1
G w) = mow + B”“i’{ ¢ (

107 | (-4 “A\1-¢ " 124

MNP — .
B Vr,0(1 +1). (A7)
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