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Hydrodynamics of polar liquid crystals
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Starting from a microscopic definition of an alignment vector proportional to the polarization, we discuss the
hydrodynamics of polar liquid crystals with local C., symmetry. The free energy for polar liquid crystals
differs from that of nematic liquid crystals (D.,) in that it contains terms violating the n— —n symmetry. First
we show that these Z,-odd terms induce a general splay instability of a uniform polarized state in a range of
parameters. Next we use the general Poisson-bracket formalism to derive the hydrodynamic equations of the
system in the polarized state. The structure of the linear hydrodynamic modes confirms the existence of the

splay instability.
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I. INTRODUCTION

In the past few decades, our understanding of complex
materials has greatly benefited from the increasing sophisti-
cation of technology and experimental designs. Depending
upon the various properties of the constituent molecules,
such as geometric shape, electric and magnetic moments, as
well as chemical affinity, we are able to observe a variety of
phases beyond the traditional crystalline and liquid phases.
Examples range from the traditional nematic and smectic
liquid crystal phases [1] to the recently discovered smectic
blue phase [2] or the banana phases [3]. The possibility of
ferroelectric order in liquid crystals has attracted much atten-
tion both from a fundamental and practical viewpoint.
Among the commonly observed liquid crystalline phases,
only the chiral smectic-C* phase is known to be polar. Fer-
roelectricity in this phase was discovered in 1975 [4] and the
related phenomenon of antiferroelectricity in liquid crystals
was discovered in 1989 [5]. In these chiral liquid crystals,
polarity is realized via the introduction of chiral carbon at-
oms into achiral molecules. Ferroelectric switching was also
recently confirmed in the banana smectic phases [3] consist-
ing of achiral bent-core molecules. The packing structure in
these banana phases induces a polar order in the layers of
these liquid-crystal systems.

The possibility of ferroelectric and antiferroelectric order
in achiral polar liquid crystals composed of molecules carry-
ing strong permanent electrical dipole moments has been a
long-standing theoretical and experimental question. Experi-
mentally, ferroelectric order due to dipole-dipole interactions
between rod-like aromatic copolyesters molecules has been
reported [6-10] by the Tokyo Tech group. In this case the
nematic liquid crystal is biaxial and polarity was observed
along both symmetry axes via second-harmonic generation.
Analytical (generally mean-field) and numerical calculations
[11-16], as well as simulations [17-20], have argued that
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there is no fundamental reason forbidding the establishment
of ferroelectric order in polar liquid crystals, assuming ap-
propriate surface stabilization.

The simplest ferroelectric liquid crystal of this type would
be a uniaxial liquid of molecules carrying a permanent elec-
tric dipole moment which lies parallel to the molecular axis
[21]. In this case ferroelectricity would result from strong
coupling among the dipoles (possibly aided by surface ef-
fects), yielding an ordered state with all dipoles pointing in
the same direction. In their classic textbook de Gennes and
Prost argue that such dipolar molecules would always be
asymmetric in shape, with head and tails of different size.
This would naturally yield a splay deformation, making the
liquid ferroelectric state unstable [22]. Theoretical work has
indeed shown that any type of molecular asymmetry will
suppress ferroelectric order in nematic liquid crystals, possi-
bly replacing it with modulated polar phases [16]. In this
paper we show that the instability of an ordered ferroelectric
phase of uniaxial polar liquid crystals is more general than
originally suggested by De Gennes and Prost. We demon-
strate that in uniaxial polar liquid crystals a ferroelectric
phase is theoretically possible but only for a limited range of
parameters. Outside this range the uniformly polarized state
is unstable to splay distortions, regardless of molecular
shape. This may explain the difficulties encountered in estab-
lishing experimentally the existence of a ferroelectric polar
state. We employ a standard Poisson bracket formalism [30]
to derive the hydrodynamic equations for a liquid of uniaxial
rodlike molecules carrying permanent dipole moments. From
these equations we obtain the hydrodynamic modes in the
uniformly polarized state and show that in a range of param-
eters the ordered state becomes unstable against the growth
of long-wavelength splay fluctuations. This is consistent with
an analysis of the free energy which indicates the presence of
a mechanical instability for the same parameter range. Our
derivation is based solely on symmetry arguments and makes
no assumption on the shape of the molecules.

The familiar nematic liquid crystal phase is characterized
by a broken rotational symmetry due to macroscopic order of
the rodlike molecules along a fixed direction in space. The
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broken symmetry direction is identified by a unit vector n,
known as the director. The states of director n and —n are
indistinguishable. If the molecules carry a permanent electric
dipole moment, in the ordered state there are as many “up”
dipoles as “down” dipoles and the system is not ferroelectric
on large scales. The main difference between a polar liquid
crystal and the familiar nematic phase is the breaking of such
a Z, symmetry (n—-n). If the molecules carry a dipole
moment, on average the dipoles are pointing in the same
direction in the ordered state and the system can be ferro-
electric on macroscopic scales. The order parameter charac-
terizing the transition from the isotropic liquid phase to the
polarized phase is the alignment vector P, proportional to the
mean polarization of the system. This should be contrasted to
the nematic order parameter Oijs which is a rank-two tensor,
also known as the alignment tensor. In uniaxial systems the
mean values of both the alignment vector and the alignment
tensor in an ordered phase can be expressed in terms of a unit
vector pointing along the broken symmetry direction

P=P0n, (1)

! ! 1
Qz:/‘:S(”i”_/ - g%)- )

The unit vectors n and n’ are the directors in the polarized
and nematic states, respectively. A macroscopic polarized
state is characterized by P,# 0. From this it follows that S
#0 as well in the polarized state, and n’=n. The nematic
phase has Py=0, but S#0. In the following we derive hy-
drodynamic equations for a polar liquid crystal. The hydro-
dynamic fields in the isotropic phase are simply the five con-
served densities (number density, momentum density, and
energy density). In the polarized phase we must add the two
broken symmetry variables corresponding to the two inde-
pendent components of the director n. In addition, we obtain
the dynamical equation for the full alignment vector P,
which determines the order parameter for the polarized-
isotropic phase transition. Its magnitude is not a hydrody-
namic variable, but it plays an important role in describing
the dynamics near the transition, where its relaxation rate
may become very slow.

Our derivation starts in Sec. II with the microscopic defi-
nitions of the relevant hydrodynamic fields. Using standard
definitions from classical mechanics, in Sec. III we obtain
the coarse-grained Poisson brackets for these macroscopic
fields. Careful consideration is given to the derivation of the
Poisson bracket between the alignment vector P and the mo-
mentum density g and that between the director n and g. A
similar approach was taken in recent work on deriving the
low-frequency hydrodynamics of nematic liquid crystals and
nematic polymers [23,24]. In Secs. IV and V, we obtain the
dynamical equation for the director n and the alignment vec-
tor P, as well as for the conserved densities. These equations
contain new terms violating the Z, symmetry of the nematic
phase. Finally, in Sec. VI we examine the hydrodynamic
modes and demonstrate the splay instability induced by the
new Z,-odd terms.
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II. DEFINITION OF MICROSCOPIC FIELD VARIABLES

We start by defining the microscopic quantities of interest.
The system is composed of N identical liquid crystal mol-
ecules, indexed by «. Each molecule consists of s atoms
treated as point particles, with m* and g the mass and the
charge of the uth atom, respectively. We denote by r** the
position of the uth atom in the ath molecule. The position of
the center of mass of the ath molecule is given by

E s
I
ré=—, (3)
s,

and X Mml‘:mo is the molecular mass. We assume that the
molecules are neutral,

2 q"=0, 4)
o
but possess a nonvanishing dipole moment d¢, given by
de=2) gl = d*ve, (5)
y

where 7* is a unit vector along the molecular axis,

s M (6)
X, ar|
and
d“=7v%-d". (7)

The microscopic mass density p(r), momentum density g(r),

and dipole moment density d(r) are defined in the usual way
as

pr) = 2 mPS(r —rh), (8)
a,

8(r) = > pa(r — r#), 9

d(r)= > d*8(r-r9), (10)

where p“* is the momentum of the uth atom on the ath
molecule. The macroscopic mean variables describing the
dynamics of equilibrium fluctuations in the system are ob-
tained from the microscopic ones after coarse graining,
p(r)=[p(r)]., g(r)=[&(r)]., d(r)=[d(r)].. as described, for
instance, in Refs. [1,24].

The macroscopic coarse-grained fields, denoted by
®,(r,r), are hydrodynamic or quasihydrodynamical vari-
ables whose characteristic decay times are much longer than
the underlying microscopic time scales and diverge in the
limit of long wavelength. They are either conserved variables
or variables associated with broken symmetries of the sys-
tem. They evolve in time according to [1,24]

031708-2



HYDRODYNAMICS OF POLAR LIQUID CRYSTALS

oD, (r,t
w = Va(r) _ Fab

ot oD, (r)’ (1)

where I';, is the dissipative tensor, H is the systems Hamil-
tonian, and V* is the reactive term or nondissipative velocity
given by

V,(r)=- J d*r' P, (r,r") (12)

5q’b(1").

The Einstein summation convention on repeated indices is
understood and

Pab(r’r’) = {q)a(r)’q)b(r)} == Pba(r”r) (13)

denotes the Poisson bracket of the coarse-grained variables.
This is defined as

{®,(r),D,(r")} = [{D,(r), D, (r")}],, (14)
with
L dA(r) dB(r") B dA(r) dB(r")
{A(l‘),B(I’ )}_ %EI ( &plgm &riaf,u arf‘” api“:“' >

(15)

The kinetic tensor I',,, must be symmetric and o® ,(r,t)/dt
and SH /6P, must have opposite signs under time reversal.
The coarse-grained dynamical equations (11) can be rigor-
ously derived from microscopic principles [25-27].

Polar order is described by the alignment vector P(r),
defined as

P(r)= > 8r-r,). (16)

The alignment vector P(r) embodies the fluctuations in the
dipoles’ orientation. We also write

P(r) = p(r)S(r)n(r). (17)

The scalar field S(r) encodes information on the degree of
local alignment of the dipoles, i.e., S(r) is the order param-
eter for the isotropic-ferroelectric nematic phase transition.
The unit vector n(r) is the macroscopic director. As previ-
ously mentioned, the vectorial nature of P(r) is in sharp con-
trast to the tensorial character of the usual nematic order
parameter Qij(r). This mathematical distinction leads to new
terms in the free energy of a polar fluid that are not allowed
for a nematic liquid crystal.

III. FREE ENERGY AND STABILITY OF THE POLARIZED
PHASE

Before proceeding with the derivation of the hydrody-
namic equations for the polarized state, it is instructive to
discuss the coarse-grained free energy of a polar fluid. This is
given by

F=F,+F,, (18)
5
Fp=fd3rB&V-n(r)+ (19)
Po
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1 o\
Fn:—fcﬂr{cl(—p) +Cy(Vp)2+ -+
2 Po

+K1(V . n)2+K2(n -V X n)z

+K3(n><V><n)2+---}, (20)

where 8p(r)=p(r)—p, is the deviation of the local density
from its equilibrium value p,. The contribution F), is the free
energy of a nematic liquid crystal which contains only terms
symmetric with respect to n— —n, with K;, K,, and K5 the
usual Frank constants for splay, twist and bend deformations,
respectively. The contribution F), contains additional terms
that break that symmetry and are only allowed in a fluid that
is macroscopically polar. In general a term ~V-n(r) is also
allowed in the free energy. This will give rise to a surface
term that will favor a splay distortion of the molecules [cor-
responding to a nonzero V-n(r)]. In the absence of surface
stabilization, this would always destroy the polar order. In
this work we assume that there is sufficient surface stabili-
zation to suppress the surface term and to prevent the asso-
ciated splay.

In addition to a possible surface instability, it is apparent
from the form of the free energy that a polarized liquid crys-
tal can also exhibit a bulk instability to splay deformations.
The latter is associated with the term ~8p(r)V-n(r) that
cannot be eliminated by surface stabilization. The existence
of this instability can be understood by rewriting the terms in
the free energy involving density fluctuations and splay de-
formations of the director as

& dp\? 5
f—r{cl(—p) +K1(Vl-6n)2+23—p~5n}

2 Po PoL
&r| c B 2
=f—r{—2l[5p+ﬂvi-5ni|
2 1P C
B2
+| K, ——|(V, - én)*y, (21)
C

where V=(V | ,4.). It is then clear that the effect of the cou-
pling of density fluctuations to splay yield a downward
renormalization of the splay elastic constant K. For |B]
> \K,C, splay fluctuations becomes energetically favorable
and will clearly destabilize the ordered state. The instability
is suppressed if the fluid is incompressible since the renor-
malization of the Frank constant K; vanishes when C;— .
The stable ground state for |B| >\K,C, is expected to be
characterized by director configurations that are spatially in-
homogeneous in the x direction, perpendicular to the broken
symmetry direction, with associated spatial structures in the
density. The precise director configurations will depend on
boundary effects, as well as on applied external fields (elec-
tric field in the case of ferroelectric order). The dynamics of
the polarized state discussed below will of course reflect the
existence of this instability, which will lead to the growth of
the hydrodmnic mode associated with splay fluctuations
for |[B| > K,C,.
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In order to examine the possible relevance of the splay
instability to experimental systems we need to estimate the
various elastic constants. We consider a fluid of rods of linear
size [ interacting via a short-range repulsive interaction of
strength U. The rods carry a permanent electric dipole mo-
ment of magnitude d, which yields a dipolar coupling of
strength U~ k.d*/r* between two molecules at distance r,
where k. is the Coulomb’s law constant. The bulk compres-
sional modulus C; has dimensions of energy density and its
size is controlled by the repulsive part of the interaction, with
C,~U/P. The splay Frank coefficient has dimensions of
energy/length and can be estimated as K, ~ U/I. This yields
an estimate for the critical value By=vC;K,, where the splay
instability occurs: By~ U/[*>. The elastic constant B that
couples density and splay fluctuations has dimensions of
energy/(length)?. Assuming that it is controlled by interac-
tions that favor alignment of the dipoles carried by the liquid
crystal molecules, we estimate B~ Up/ 2, where U p is the

strength of such interaction. The splay instability will then
—1/3

occur for Up~ U. For dipoles at a distance r~p, ", a di-
mensional estimate yields Up~k.d’p,. Taking p,
~102"m™3 and d~2 Debye [29] we estimate U,

~2.5 meV. This is smaller than U~ 0.1 eV, suggesting that
a stable polarized phase may, in principle, be possible. Of
course, if the interaction is purely dipolar, appropriate sur-
face stabilization will also be required, as discussed above.

IV. POISSON BRACKETS FOR A POLAR LIQUID
CRYSTAL

We now return to the derivation of hydrodynamics via the
Poisson-bracket method. Using Eq. (15), it is straightforward
to evaluate the Poisson-bracket relations between the various
hydrodynamic fields. Our goal is to obtain equations describ-
ing the dynamics at long wavelengths. We will therefore only
keep terms of lower order in the gradients of the hydrody-
namic fields and expand the & function as

Sr—r*) =8r-r*—Ar**) = 8(r - r*) — Arg*V, 8(r - r)
+0(V?), (22)

where Ar®#=r* —r® The required nonvanishing Poisson-
brackets are

{p(r).gi(x")}=V,;8r —r')p(r'), (23)

{81‘(1'),8]'(1',)} = gi(l‘,)vjﬁ(l' -r')- Vi,[5(l' - r')gj(l‘,)],
(24)
{Pir),g;(r")}=V,[P(r)dr-r")] - §;P(r)V;S(r-r’')
Nij(r)V,8(r = 1), (25)
where

Nije= 2 B —1,) (26)

is a symmetric third-order tensor that depends on the degree
of molecular alignment. We assume that its coarse-grained
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counterpart \;; depends only on the alignment vector P(r).
Quite generally, A;j, can then be written as

P.P.P
Nijk = N1 (8P + 8P+ 0y P)) + )\Z—PZL](’ (27)

where P(r)=n-P=pS. The two coefficients \; and \, are not

independent. By contracting both sides of Eq. (27) with suit-
able combinations of &;; and n; we obtain

nNiik = pS = (4N +N\y)pS, (28)
l’lln]}’lk)\”k = 2 (ﬁa . n)35(r - ra,) = (3)\] + )\2)pS (29)

The two coefficients can then be expressed in terms of single
microscopic quantity, A, given by

— V 3
A= (r)S(r) E( n)’8(r-r,) C (30)
as
1=\
)\IZT, (31)
x2:¥. (32)

Equation (27) can then be rewritten in terms of A as

-\
Nyjx = 5 (8P + 03P+ 8Pl + \nm P, (33)
where 55 is an operator that projects transverse to the direc-
tor

5;(1-) = &;—n,(r)n(r). (34)

The director field itself has no microscopic definition in
terms of the canonical coordinates and momenta of the indi-
vidual atoms. Its Poisson brackets must therefore be obtained
indirectly from those of the alignment vector P. Using the
definition of the director given in Eq. (17) and the chain rule
of derivatives we can write

{Pi(r),g,(r")}=p(r)S(r)}{n(r),g,(r")}
+n,(r){p(r)S(r),g;(r')}. (35)
Since n,.(r){n,.(r),q%(r')}:o, for any field ®,, we obtain

{n(r), g,(r")} = ———{Py(r).g,(r)}.  (36)

()S()

V. HYDRODYNAMIC EQUATIONS FOR THE POLARIZED
PHASE

In this section we derive the hydrodynamic equations in
the polarized phase. The order parameter S(r) is assumed to
be finite and constant in the following discussion. To calcu-
late the reactive part of the hydrodynamic equations defined
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in Eq. (12) in terms of the Poisson brackets, we need the
coarse-grained Hamiltonian for the system

g()

Hlp.g.n]= f d*r =+ Flp.n]. (37)
It consists of a kinetic part and a free energy F[p,n] that
depends on the specific system in question and will be speci-
fied below.

The nondissipative velocity for the mass-density equation
is immediately found to be

V== Vgr). (38)

The determination of the nondissipative term for the
momentum-density equation is straightforward albeit more
tedious. Using Egs. (23) and (36), we obtain

S6F O6F

Y 1L R ] P

p 3p(r) i)

SF SNy, OF
+ V| mdf—— |-V —M—} 39
"[”" : 5n,»<r>} ’“{ oo o]
Similarly for the director, we obtain using Eq. (36),
Vi=—v,Vn+wn;+ )\5kuk, s (40)

where v;=8H/dg; is the Ve10c1ty and u; '_2(V v;i+Vu,) is
the strain-rate tensor, while w; ~—2(V v;~V,v,) is the vortic-
ity. Only the part of the tensor A;j that is transverse to the

director enters in the hydrodynamic equations. This is given
by

(0 (r)].

(41)

SN = OISO ) +

We now turn our attention to the dissipative part of Eq.
(11). Since the mass conservation is exact, there is no dissi-
pative term allowed in the dynamical equation for the mass
density. In the case of unbroken Galilean invariance, the time
derivative of g can only couple to the gradients of velocity.
As in the nematic case [24], we introduce the tensor of vis-
cosities 7, and the viscous stress tensor (le, with the fol-
lowing properties:

ViV, =V; ‘Tl,’ (42)

where

6
(TV— QR + e+ —(n[ujk + gy

)

+ Py Oyt + o Sty + uggnin,). (43)

To the lowest order in gradients, there is no difference in the
expression of (r between the polar and nematic cases. Like-
wise, as in a nernatlc liquid crystal, the time derivative dn/dt

can only couple to a term of the form
5F
T
RS (44)

where y! is a rotational friction.
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Thus, collecting the reactive and dissipative terms, we
arrive at the following hydrodynamic equations for a liquid
crystal with polar orientational order

——=-V-g(r), (45)

g ang®) o OF (V,-n)( f)

ot o pr "op(r) on;
1+)\Vk[nk5 5F] ﬂvk{n aTﬁ] +V.o!
2 s 2 o | T
(46)
an; o OF
E:—v Vini— wn; + NSyun; — 51]5_ (47)

We note that the hydrodynamic equations for the polarized
phase have the same form as those for a conventional nem-
atic, as given, for instance, in Ref. [24], although of course
with a different microscopic expression for N. The only dif-
ferences between the two sets of equations come from dif-
ferences in the free energy.

Using the form for the free energy given in Egs. (20) and
(19), the hydrodynamic equations of a polar liquid crystal are
given by the continuity equation (45) and
1% j(r)

(7,1’11-(1') == ,(l') a)l] J

+)\5kukjnj+'y§ o Vjp(r) v U (48)

5

9,gi(r) =— Vj%@ - B@Vivjnj(r) - E(Vinj)(vjp)

1
200 ;P] + TBVk[ ik V;P]
OF, OF,,
p(r)V +(Vin; )( )
op(r) n;
1+ +OF, | 1- , OF,
+Tvk 6, 115_ _Tvk ”zé}kﬁ )
+Vo), (49)
where
oF 1)
—”=cl( g ) C:Vp. (50)
o Po
5F
- K, Vi(V-n)+ K[V X (VXn)];
J
= (Ky = K3)ny(V,n,) (Vmy)
+(Ky = K3)Vy[nyny(Vin))]. (51)

The terms in the hydrodynamic equations that are unique to
a fluid with macroscopic polar order are those proportional to
the elastic constant B. These are forbidden by symmetry in
the hydrodynamic equations of a nematic.
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VI. DYNAMICS OF THE ALIGNMENT VECTOR

In the more general case where S(r) is not a constant in
Eq. (17), we need to consider the full order parameter of the
alignment vector P. The hydrodynamic equations for the
alignment vector P are

d
Ep(r) =-V.g, (52)

2 1) == 0,V 2,1 + P00V 1)

POV ) - AV 1) - Y o, (53)

5Pl,
d 8i(r)g;(r) _OF
a—tg,-(r) =-V=——=-p(r)V, Sp(r)
et |7l v )
VY Pl | TP "6P ()
SF
—Vk[Aijk% —VjO';;. (54)

The equation for the director can be obtained from Eq. (53)
by assuming S=constant and using the relation

an(r) Si(r)d,P(x). (55)

~ p(r)S(r)

VII. HYDRODYNAMIC MODES IN THE POLARIZED
PHASE

In the isotropic phase the only hydrodynamic fields are
the four conserved densities: number density and three com-
ponents of the momentum (energy fluctuations are not con-
sidered here). The corresponding four hydrodynamic modes
are those of a conventional isotropic liquid: two propagating
sound wave describing the decay of density and longitudinal
momentum fluctuations, and two diffusive shear modes, de-
scribing the decay of the two tranverse components of the
momentum density. We now consider the long wavelength,
low frequency dynamics in a uniformly polarized phase,
characterized by uniform equilibrium values p, of the density
vy=0 of the flow velocity and ny=% of the director field. In
order to evaluate the hydrodynamic modes of the polarized
state, we expand the hydrodynamic equations to linear order
in the fluctuations of density dp=p—p;, momentum 5g
=p,V, and director Sn=n-Z about their equilibrium values
(to lowest order Z-Sn=0). We will ignore any variation in
temperature in our consideration. We consider wavelike fluc-
tuations whose space and time dependence is of the form
expliq-r—iwt] and choose the coordinate system so that the
wave vector q lies in the (xz) plane, i.e., q=(g,,q.) and g,
=0. We then project velocity and director fluctuations along
the axes of an orthogonal coordinate system defined by the
unit vectors (z,q,,Z X q,), with q,=¢,/q. The equations for
velocity and director fluctuations transverse to both the di-
rection of polarization Z and q, defined as
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vaz(i X ﬁx)'vq9 (56)
ong=(2 X q,) - on,, (57)
decouple from the others and are given by
o1 = — YKA@)q on, — i g0 58
at nq ==Y T(q)q nqy -1 2 quqs ( )

g = vi(@)q*v g F i

N
5 Ki@q’q.0n, (59)
Po

where q=(q,/¢,q./q) and

K@) = [K2q: + K32 Vg%, (60)
«, a5+ « q2
(@)= — + 2%, (61)

2pp  4py g

The transverse eigenvalues are identical to those of nematic
liquid crystals and are given by

I A .
i, =" [vr(@) + ¥Kr(§)]

2
LN k@, (62)

2
q ~ ~ o
+ - \/[VT(Q) - YKT(Q)]2 + CI?
2 Po
These modes are always diffusive and describe the coupled
decay of vorticity and twist fluctuations. For ¢,=0 the trans-
verse modes decouple and are simply given by

iw,{: szqf, (63)
. Q4 o

=P 64
iw]= g} (64)

where ! describes the diffusion of fluctuations in the
local twist and a)f controls the decay of fluctuations in the
vorticity.

The remaining four hydrodynamic fluctuations, describing
the dynamics of density dpg, velocity and director compo-
nents longitudinal to q,, v,=q, v, and dn,;=q,- on,, and ve-
locity component along the direction of polarization, vfl are
coupled. The linearized equations are given by

96pg = = iPoq. Vg — iPoqd-Vg> (65)

R . B
d,6ny = — YK (Q)q” oy + w;qxﬁpq
0

1-N . 1+
2 C]Zl}q+l >

-

qVgs (66)

N .G
Gy == v(Q)q vy - V19905 - a5 Spq
0

1+X\

+ 2_p(2)quqx5pq
1+
2po

+i——K(§)q.47 ony, (67)
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Ao G
atvfl == Vz(CI)CIZUa - Vliqx‘hvi; - lqz?apq

0
1- )\B 25
2p§ qx pq
—i——K(@)q.q° ony, (68)
2py
where
K@) =[Kq; + K32V q* (69)
A Q4T P q)zc 2a4+055+a6‘1§
v (q) = >t 5>
Po g 4pg q
(70)
~ a]+a4+a5+a6+pl+2p2q§
v,(q) = =
Po q
Doy + as + ag g
M R (71)
4po q

, PPy 2oyt as+ag
v, = + .
Po 4po

The corresponding hydrodynamic equations for a nematic
liquid crystal are obtained from Egs. (65)—(68) by simply
setting B=0. For comparison we recall that there are four
longitudinal hydrodynamic modes in a compressible nematic
liquid crystal: two propagating sound waves and two diffu-
sive modes describing the coupled decay of splay and veloc-
ity fluctuations [28]. The same four modes are present in a
polarized liquid crystal, but their decay rates are modified in
important ways by the new symmetry term breaking term
proportional to B.

We calculate the hydrodynamic frequencies up to o(g?) by
solving the eigenvalue problem perturbatively. As expected,
we find two propagating and two purely diffusive modes.
The two propagating eigenmodes are the sound waves of the
fluid and are given by

(72)

C q A2 A2 A2 A2 '}’Bz )
—q+ —{VLqX + g+ 204G, + 45 |-
Po 2 G

o), ~ i

(73)

To lowest order in the wave vector the propagation speed is
proportional to \/%. As in isotropic liquids, it is determined
entirely by the compressional modulus C; of the fluid and
receive corrections proportional to B. The coupling to polar
order described by the elastic constant B increases the relax-
ation rate, but has no qualitative effect on the structure of the
sound waves. In the incompressible limit, C; tends to infinity
and all contributions to the dynamics of the system from
terms proportional to B vanish. This is evident in Eq. (50) as
the Z,-odd term becomes a surface term.
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The eigenfrequencies of the two diffusive modes are
given by

K(q) + u(q
iwi]“=q2|:y (q) + u(q)

2
: ,
o o - s X - .
Po
(74)
where
A A B2 A2
K(‘l) = KL(q) - qua (75)
1

w(@) = v.(@3; + vi(@3; - 2v1474>

= [2a4 + a5+ ag+ 4a1é§cj§]/4p0
(76)

When K(q) =0, the diffusive modes become unstable. This is
precisely the splay instability discussed in Sec. III by exam-
ining the free energy of the system.

In conclusion, we have derived the dynamical equations
for the director n and the alignment vector P, starting from
the microscopic expressions of the conserved quantities and
carrying out rigorous coarse graining via the Poisson-bracket
approach. Our results are consistent with the equations for
nematic liquid crystals derived earlier using similar ap-
proaches [23,24]. Furthermore, we have investigated the hy-
drodynamic modes of an ordered phase with macroscopic
polarization. We have found that the polarity of the director
field introduces a frustration in the system. As a result, a state
of uniform local density and director orientation can become
unstable to the growth of long wavelength splay fluctuations
in a region of parameters. The splay instability arises solely
from the addition of Z,-odd terms in the free energy, which
are generically allowed on the basis of symmetry consider-
ations in any polar liquid. We therefore believe that the ex-
istence of the instability is a general feature of any polar
fluid, regardless of the origin of the polarity.

It is our hope that the results reported in this paper will be
useful in providing a rigorous justification of the various
equations used previously in studying the ferroelectric phase
of polar liquid crystals. It is our further hope that our results,
presented here in the context of equilibrium physics, will
also serve as a starting point in understanding the behavior of
analogous systems in the realm of nonequilibrium physics
where the polarity of these nematic phases is driven by active
mechanisms.
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