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Conditions for surface nucleation and growth of a film are determined in a diffuse interface model. A method
is given, derived from a Fokker-Planck equation for the nonequilibrium particle distribution, which links
atomic and mesoscopic events in a rheological description similar to the classical continuum theory of fluid
flow. Film nucleation and growth are modeled by the spatially inhomogeneous continuous evolution of the
instantaneous density profile which measures the average number of particles or molecules at given time and
position. It is shown how an alteration in the distribution of particles in the vicinity of the boundary between
parent and product phases induces transient film growth and damped vibrations at the surface. The method is
general but as an illustration, the condensation of a simple classical fluid on cooling is considered in detail.
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I. INTRODUCTION

The dynamic processes of nucleation and growth are im-
portant to thin film technology �1�. The structure that devel-
ops is strongly influenced by what happens during film for-
mation and process variables have a profound effect on the
magnetic, optical, and mechanical properties of the resulting
product. To achieve a better understanding and a measure of
control, a variety of experimental and theoretical methods
are used �2,3�.

During macroscopic film growth a transition takes place
in the microscopic interfacial region between two phases of
the same substance �for example, on condensation of a va-
por� or between different distinct substances �for example, in
a mixture of phase separating fluids�. An effective approach
is based on multiscale modeling or mixed atomistic-
continuum modeling �4�. A combined first-principles–
rheological theory incorporates atomistic parameters as input
for the mesoscopic model.

A phase transition can be characterized by one or more
order parameters that distinguish parent and product phases.
In the diffuse interface description �5� simple film nucleation
and growth are modeled by the spatially inhomogeneous
continuous evolution of the instantaneous density profile
n�R , t� which measures the average number of particles or
molecules at time t and position R. The growing film is
represented by a propagating interface in a continuum ap-
proach with analogy to pattern forming systems �6�. The par-
ticle flux j�R , t�=n�R , t�v�R , t� measures the average instan-
taneous velocity v�R , t� of the particles of the system. The
calculation of system averages in kinetic theory requires the
probability P�R ,v , t ,R0 ,v0� of particles passing through R
with a velocity v at a time t starting from initial position R0
and velocity v0. In a phase space description the
Fokker-Planck �FP� equation, describing the evolution of
P�R ,v,t ,R0 ,v0�, was derived from considerations on the
most probable atomistic paths in an atomistic model for the
probability distribution of a particle path R�t� with velocity

v�t� �7�. The theory introduces two empirical constants: a
relaxation time related to frictional collisions and a diffusion
coefficient related to the coupling of the velocity and the
position. Appropriate averaging results in a rheological de-
scription similar to classical continuum theory of fluid flow
�8�.

The method was applied to investigate nanoscale surface
modes at coexistence �9� and is also of interest in the study
of the dynamics of phase transitions, for example, film
growth. In that case film growth is described by propagation
of a density front; on this level, details of the microstructure
of the film are lost. On the other hand, the method is not
limited to a system with few particles for the short time scale
of molecular dynamics simulations. The method is general
but as an illustration, the dynamics of a planar interface be-
tween two phases of a simple classical fluid at a first-order
phase transition, induced in particular by a temperature
quench, is considered. Much of the discussion is valid in
cases for which one or more of these qualifications are re-
laxed.

II. NANOSCALE TRANSPORT THEORY

As described in �8�, the FP equation is derived and trans-
formed into a set of differential equations for the velocity
moments of the distribution function. In a linear adiabatic
approximation, local equilibrium is rapidly established for
higher moments such as the kinetic tensor and the heat flow.
Two equations remain: the equation of continuity for the
density n�R , t�

�n�R,t�
�t

= −
�

�R
j�R,t� �1�

and the damped dynamic equation with internal friction co-
efficient �

�j

�t
= − �j −

1

m
n�R,t�

�

�R
��R,t� . �2�

The driving force is the gradient of the local chemical poten-
tial ��R , t� which dominates over flow by diffusion. In the*Electronic mail: tenbosch@unice.fr
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usual effective interaction model valid for small density gra-
dients �10� the chemical potential is

��R,t� = ��n� − ��n�R,t� . �3�

The functional ��n� is the bulk chemical potential, and the
second term measures local deviation from uniform distribu-
tion of the density. The constant � is related to the range of
the interaction between particles and to the surface energy.

The two kinetic equations are combined by taking the
time derivative of Eq. �1�. Inserting Eq. �2� and using Eq.
�3�, the resulting equation of motion is

�2n

�t2 = − �
�n

�t
+

1

m

�

�R
n�R,t�

�

�R
��n�

−
�

m

�

�R
n�R,t�

�

�R
�n�R,t� . �4�

With Eq. �4� a nonlinear partial differential equation for the
density n�R , t� has been derived from a microscopic model.
Special cases have been studied in a variety of problems
�6,9�. In particular, the phase field equation, ubiquitous in the
study of phase transitions and surface physics, is recovered if
the dynamics of the system are dominated by friction effects.
Equations �1�–�4� form the basis for a general theory of
propagation of density fronts which includes inertia effects
important for wave excitation as was shown in �9�.

Film growth can be described by the time dependence of
the surface density profile through the change in the form
n�R , t� of the interface with time and the translation of the
boundary L�t�. To locate the instantaneous position L�t� of
the boundary between phases, due to conservation of particle
number the velocity of the boundary dL /dt must be equal to
the average flux of the particles normal to the interface �11�,
yielding, for density jump �n2−n1�:

dL/dt = − jx�L�t�,t�/�n2 − n1� . �5�

The growth law is found from Eqs. �2� and �5� for a solution
n�R , t� of Eq. �4�. In general, the propagation of the bound-
ary need not be a linear function of time or the velocity a
constant.

III. APPLICATION TO FILM GROWTH

A. The model

Suppose that at t=0, a nonequilibrium planar interface
between two fluid phases of unequal bulk densities n1�n2
exists at x=L0 with the x axis chosen perpendicular to the
surface. The liquid interface consists of the �high density�
parent phase n�x , t�=n2 for x�L�t�, and a �low density�
product phase n�x , t�=n1+��x , t� for x�L�t� �Fig. 1�. In this
solution close to the critical temperature, the final equilib-
rium state of the system, after decay of the perturbation, is
described by the infinitely sharp profile between the two
phases. The evolution of the transient ��x , t� is calculated by
linearization of Eq. �4�:

�2�

�t2 = − �
��

�t
+ c2� �2

�x2��x,t� − �2 �4

�x4��x,t�� �6�

The parameters of the model are the velocity of sound
c2= �n1 /m����n1� /�n1 and the density correlation length
�−2= �1/�����n1� /�n1 in the product phase, and m is the
mass of the particles. A propagating interface is the requisite
solution of Eq. �6� for film growth. When caused by modifi-
cation of the average number of particles in the interfacial
region the density varies within a range q−1 at the boundary
with the high density phase. The solution which incorporates
the initial and boundary conditions relevant to the phenom-
ena of interest �6� is then an exponential interface of finite
width q−1 for x�L�t�:

��x,t� = A exp�− qx + �	t�� . �7�

When Eq. �7� is inserted in Eq. �6� the eigenvalue equation
for 	�q� is obtained,

	±�q� =
1

2
�− � ± ��2 + F�q�� ,

F�q� = 4q2c2�1 − �2q2� . �8�

As in the classic damped harmonic oscillator, a continuous
family of solutions 	�q� is found for real q�0 �Fig. 2�.
Three dynamic scenarios will be described for different val-
ues of the extent q−1 of the initial interfacial profile. The
dynamics of film growth are found to change at q=1/� with
	�1/��=0, and at a critical q=qc with Im 	�qc�=0. The
critical initial profile width depends on the system parameter

=�� /c and can be calculated from Eq. �8� as qc�
= �1+
2�1/2 cos�1/2 arctan 
�. For a simple liquid, 
=0.1 if
�=1011 s−1, �=10−7 cm, c=105 cm s−1; in air 
=10 with
�=1012 s−1, �=10−7 cm, c=104 cm s−1.

FIG. 1. The transient interfacial profile ��t� /�n along the x axis
perpendicular to the surface for �t=0 ���, and �t�0���. The high
density film grows from L0 to L�t�, marked by an arrow. The fric-
tion constant is �, and �n the difference in density between coex-
isting liquid and vapor.
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B. Vibrating film growth

For q�qc, then Re 	�q=� /2� and Im 	�q=�q�0�. The
excess of particles at the surface near the parent phase, in a
narrow region relative to the critical length, causes rapid
growth of the high density phase accompanied by transient
vibrations with contraction and expansion of the entire inter-
face along the direction of front propagation �“breathing”�.
For initial stationary density ��n /�t=0 at t=0�, the transient
solution is

��x,t� = A exp�− qx − �t/2��cos��qt� −
�

2�q
sin��qt�� .

The particles of the interfacial region all oscillate on
an average along x with the dispersion relation
�q= 1

2
�−�2−F�q�. For a very narrow interfacial region

q�qc, the frequency lies close to the frequency of the elastic
bending modes �q

2=�q4 /n1m. The vibrations disappear rap-
idly as e−�t/2 and, for q close to the critical vector, persist
only for a fraction of the oscillation period.

The surface boundary L�t� also oscillates back and forth
along the x axis like an elastic membrane with the same
frequency �q and the motion decays as �−1. For �t�1, the
transient displacement disappears and the accompanying
flow of particles from the interfacial zone into the high den-
sity liquid stops. From Eq. �5� the surface boundary rapidly
reaches the asymptotic value L
:

q�L
 − L0� = ln�1 +
Ae−qL0

n2 − n1
� . �9�

The extent of the high density parent phase has then in-
creased by a layer of the order of the width of the initial
interface.

C. Smooth film growth

For 1/��q�qc, q is smaller than the critical value, the
range of the initial interfacial region is smaller but close to
the density correlation length. A smoothly propagating inter-
face occurs with no oscillations. Two eigenvalues 	+ and 	−
are obtained from Eq. �8�, both real, Im 	�q�=0, and nega-
tive, Re 	�q��0. The initial condition of the system deter-
mines the amplitudes of the two corresponding eigenfunc-
tions. To illustrate with an example of interest, assume the
particles arrive at the surface with a constant velocity v0. In
a dynamic interpretation, q−1 is a measure of the mean free
path of particles in the interfacial region; v0 is an initial
velocity created by the conditions of the experiment or im-
posed in numerical simulation. The transient is then a com-
bination of two propagating fronts:

��x,t� =
A

	+ − 	−
exp�− qx���v0q − 	−�exp�	+t�

− �v0q − 	+�exp�	−t�� . �10�

Inserted in Eq. �5�, the boundary velocity is found:

�n2 − n1�
dL

dt
=

− A

	+ − 	−

exp�− qL�
q

��v0q − 	−�	+ exp�	+t�

− �v0q − 	+�	− exp�	−t�� . �11�

On integration, the nonlinear evolution of L�t� is obtained,
dependent on the initial thickness L0 �size effect� and on the
extent q−1 of the interfacial region:

q�L�t� − L0� = ln�1 −
A

	+ − 	−

exp�− qL0�
n2 − n1

��v0q − 	−�

��exp�	+t� − 1� − �v0q − 	+��exp�	−t� − 1�	� .

�12�

The extent of the parent phase L�t� increases with time, at
first linearly with constant initial growth rate near v0. After a
time �
	+
�−1, growth of the liquid phase ceases at the finite
asymptotic thickness L
 given by Eq. �9�. Growth is deter-
mined by the smaller eigenvalue 
	+
 /��1 with long equili-
bration times when smooth film growth is induced by an
initial increased density within a range close to the density
correlation length of the product phase ��q−1. On the other
hand, if the initial increase occurs close to the critical range
qc

−1, growth is rapid and completed within a time �−1.
For q=1/�, the special case of the stationary profile of

coexistence 	�q�=0 occurs; the well-known linear approxi-
mation to the profile of coexistence is recovered.

D. Instability

For q�1/�, the initial interfacial width is larger than the
density correlation length, and the eigenvalues are real,
Im 	�q�=0. One of the eigenvalues is positive; the corre-
sponding perturbation for Re 	+�q��0 is an increasing func-
tion of time, invading the low density product phase as par-
ticles flow out of the liquid into the interface. The transient

FIG. 2. The eigenvalues 2	 /�, �—� Re 	 and �—··� Im 	, as a
function of inverse interfacial width q� for the transient profile
��t�=exp�−qx+	t�. The arrow marks the critical profile width qc

−1

between damped front propagation for q�qc and damped oscilla-
tions within the interface for q�qc. The parameter c /��=1, where
c is the velocity of sound in the low density phase.
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cannot be the unstable exponential of Eq. �7�; the present
simple description of film growth must be modified.

These general results are now adapted to nucleation of the
liquid phase by cooling of the vapor. The method is demon-
strated for the quench to a low temperature from initial co-
existence between parent and product phases. The calcula-
tions are easily extended to other initial and final states.

IV. FILM GROWTH BY COOLING

The system is initially in stationary coexistence between
vapor and liquid at temperature T0. The boundary with the
high density liquid phase is located at x=L0 for t=0; the
width of the planar interfacial zone between the two phases
is ��T0�=�0 �Fig. 1�. The temperature is then lowered to T
�T0. The density profile is to be calculated for t�0. At t
=0, for x�L0, the interface is ��x , t=0�= �n2−n1�exp�−�x
−L0� /�0�. The density correlation length of the vapor phase
is greater at lower temperature. Once the transient state has
disappeared the final state is the equilibrium interface neq�x�
of width ��T�=���0. The density n2 �n1� of the liquid �va-
por� is greater �smaller� at T, but the relative change in �n
=n2−n1 is small and, for T0−T�T0, not significant. The
solution is then found from Eq. �6� as

n�t� = �n2�T� , x � L�t� ,

n1�T� + ��x,t� , x � L�t� ,
�

��x,t� = �1 − e−�t�neq�x) + �n exp�−
x − L0

�0
�

�
 �	+e	−t − 	−e	+t�
	+ − 	−

� . �13�

For small values of cooling T0−T, the eigenvalues 	± corre-
sponding to q=�0

−1 are real �see Fig. 2�. The system evolves
in two distinct stages. Rapid appearance of the new equilib-
rium profile coincides with the slow disappearance of the
initial profile of smaller interfacial width until the form of
the profile remains stationary. The parent phase grows; the
nonlinear time dependence of the boundary L�t� is given in
Fig. 3. For �t�1, early film growth occurs with a constant
velocity v=��. For �t�1 the boundary L�t� can be approxi-
mated by

L�t� − L0

�
= ln
1/2�1 + e−�t��1 +

�0

�
� − � �0

�
�

��	+e	−t − 	−e	+t

	+ − 	−
�� .

After a characteristic time �= �
	+
�−1, the new surface will
be located at L
:

�L
 − L0�
�

= ln
1/2�1 +
�

�
�� .

The time to reach the new equilibrium state is a function of
the cooling temperature essentially through �. As shown in
Fig. 4 for a linear expansion in the cooling temperature,

�2 /�0
2=1+2�T0−T� /T0, the initial velocity increases and the

time for completion of the growth process decreases with
increasing cooling.

For deep quenches, it may be possible that the initial pro-
file width becomes smaller than the critical width at T and
��T0�=�0�qc

−1. Then the initial thin liquid layer of coexist-
ence, which must grow once the temperature is lowered, is
accompanied by periodic contraction and expansion in the
interfacial region as described previously in Sec. III. The
particles in the interface need to rearrange continuously,
forming transient layers, empty sites, even clusters in a kind
of nonequilibrium roughening with frequency �1/�0

. The os-
cillations are overdamped and are localized close to the in-
terface between phases.

These results can be extended also to the spherical geom-
etry of a condensing liquid cluster �12�. A calculation of the
radial density Rn�R , t� follows the planar case from the lin-
ear equation �6� in spherical coordinates with the transient
��R , t�= �A /R�exp�−qR−	t� present near the surface of the
cluster at R�a�t�. The dynamics of the cluster radius a�t�
are derived as in Eq. �5� for stationary particle number and
are determined from the radial flux jR through the cluster

FIG. 3. The thickness ��� of the high density phase L�t� /� as a
function of time �t on cooling. Initial growth occurs with constant
growth rate v=�� �¯� for �t�0.2.

FIG. 4. The early stage growth rate v /��0 ��� and the time to
completion �� /2 ��� on cooling from T0 to T as in Fig. 1.
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surface. A variety of growth laws is possible which depend
on the local environment near the cluster surface.

V. CONCLUSIONS

It was shown that nucleation and growth can be induced
by the density distribution in the vicinity of the surface be-
tween two phases or materials. Nonlinear growth of the par-
ent phase is found and, depending on the initial conditions of
the growth procedure, a constant growth rate in the early
stages of the growth process. Strongly damped collective os-
cillations, often observed in molecular dynamics, may ac-
company or even nucleate �13� film growth. What is new in
the present model is the inertia term in the dynamic equation,
which cannot be neglected for events on a short time scale,
smaller than the time for loss of memory by internal friction,
and which are essential to describe nanoscale oscillations or
waves �9�.

A continuum method was developed to link atomic and
mesoscopic events through a kinetic theory for the nonequi-
librium probability distribution P�R ,v , t ,R0 ,v0�. In the same
method it is possible to follow probable trajectories of a
single particle during growth �14�. After averaging in the
distribution of initial and final velocities of particles, the sys-
tem is described by a local density and flux and the interac-
tions by a local chemical potential. Information on the
single-particle dynamics is lost as well as on the microstruc-

ture. A given profile may correspond to a set of clusters as
well as to a uniform film. Crystallization is especially com-
plex; films can be polycrystalline, amorphous, with defects
and voids, or aggregates �1�. In a more detailed model
supplementary order parameters can be introduced �15�, for
example, to describe the crystalline structure �16,17�; in the
simplest case, the evolution of crystalline order is enslaved
by the local density. In thin films, an active substrate results
in strong repulsive or attractive external fields in the local
chemical potential which especially affect early stage growth
�18�.

The theory is general and can be adapted to many differ-
ent experimental situations as was illustrated for film growth
by cooling from an equilibrium state. Many of the phenom-
ena described have been observed: nonlinear growth laws
�19,20�, slow dynamics �21�, surface modes and dynamic
roughening �22�, and strong temperature dependence �23�.
But the intent here was to introduce a generic method rather
than to explain a specific experiment. The ideas presented
may prove useful in the interpretation of experimental and
simulation results and help to fix efficient initial and bound-
ary conditions to initiate growth in real and numerical stud-
ies.
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