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Tessellation of a stripe
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This paper describes enumeration of a class of topologically distinct periodic divisions of a stripe. Optimi-
zation of the geometry of these periodic tilings—optimization that yields minimum total perimeter of the
tiles—gives a set of physically plausible periodic structures of monodisperse, two-dimensional foams bounded
by two parallel walls. Evaluation of the minimum total perimeters of the lattices that we enumerated suggests
two possible lower bounds for the mean perimeter of tiles forming periodic coverings of a stripe.
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I. INTRODUCTION

We have described an experimental system that generates
a family of periodic lattices of bubbles packed in microflu-
idic channels [1]. We wish to understand the mechanisms
that form these lattices. A part of our study has investigated
the possible topologies that can be achieved by tessellations
of a stripe (a section of a plane bounded by two parallel
lines). We also evaluate the “energies”—total perimeters of
the edges of the tiles—of these tilings for a fixed topology
and fixed ratio of the size of equal-area tiles to the width of
the stripe. The results of this evaluation provide clues to the
selection rules that guide the experimental system, and sug-
gest two possible lower bounds for the mean perimeter of
equal-area tiles forming periodic coverings of a stripe. These
suggestions of lower limits of the perimeter of tiles covering
a bounded plane provide a loose analogy of the “honeycomb
conjecture,” which suggests that hexagons tile the plane with
the smallest perimeter. While the honeycomb conjecture has
recently been proved formally [2], the questions about the
topology and geometry of confined networks remain open
for further numeric and analytical treatment.

Many important properties—i.e., mechanical, electronic,
magnetic, or photonic—of materials depend both on chemi-
cal composition and on geometrical structure. These struc-
tures can sometimes be explained with the use of simple
topological and geometrical principles. An example of a re-
lation between simple optimization criterion and a structure
that determines the physical properties is the honeycomb
problem [and its three-dimensional (3D) equivalent], which
can be stated as follows: “What is the division of a plane (3D
space) into equal-area (equal volume) tiles that yields the
lowest total length (surface area) of the boundaries between
the tiles?” These problems are typically difficult. While the
conjecture about tessellation of a plane has been proven [2],
the three-dimensional problem is open: the solution conjec-
tured by Lord Kelvin [3] has been improved by Weaire and
Phelan in 1994 [4,5], but no analytical treatment is available
to date.
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Presence of boundaries and additional constraints compli-
cate the solutions to the geometric and topological problems
of division of space even further. For example, the simple
problem of minimization of interfacial energy in a system
composed of two immiscible phases has a global minimum
corresponding to a macroscopic separation. Adding the re-
quirement of a preferred (spontaneous) Gaussian curvature
of the interface between the phases generates a variety of
beautiful bi- and multi-continuous periodic structures [6—8].
In the world of foams, confinement of monodisperse bubbles
to a capillary induces appearance of a range of intricate geo-
metrical structures [9].

Topology of the network (or interconnectivities of the
nodes forming the unit cell) can be a boundary condition for
the optimization of its geometry. It is possible to enumerate
whole classes of topologically distinct networks. Such enu-
merations provide important clues into the questions of pos-
sible arrangements of matter. For example, generation of a
class of three dimensional networks [10] and geometrical
optimization of the enumerated topologies lead to prediction
of physically plausible structures of zeolites [11,12]. In prin-
ciple, each of the topologically distinct tilings or networks
can lead (when subject to the optimization of the geometry
according to an appropriate energy functional) to a stable or
metastable structure with distinct characteristics.

A convenient way to introduce boundary conditions and
to guide self-organization is to introduce confinement. This
approach often leads to novel structures that are either im-
possible, or difficult to observe in unbounded samples. For
example, two-dimensional (2D) rhombic lattices of colloids
can be obtained by the use of confinement of a microchannel
[13]; small clusters of particles that minimize the second
moment of the mass distribution were obtained by confining
colloids to a shrinking droplet [14]; the use of the confine-
ment of a microchannel has also been demonstrated to be an
effective way to order the pattern of defects in a liquid crys-
talline sample [15]. Topological characteristics of both or-
dered [16-18] and disordered [19] patterns in microphase
separation in amphiphilic mixtures also display a sensitive
dependence to the size of the confined space.

The work described in this paper is motivated by an ex-
perimental observation of quasi two-dimensional periodic
lattices of monodisperse bubbles in microchannels [1]. In
this experiment the bubbles are ejected individually into a
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FIG. 1. (a) The honeycomb structure and its translational unit
cell. (b) to (f) Experimentally observed structures of quasi-two-
dimensional foam. The numbers indicate the number of neighbors
(or of the sides) of each bubble in the translational unit cell. The
unit cells are depicted on the right of each inset. The structures
shown in insets (b) to (d) belong to the hex-n family: hex-one,
hex-two, and hex-three, respectively. We called the structure shown
in (f) snake-skin and the one shown in inset (e) hybrid. The details
of the experiment are described in Ref. [1]. Here, we see the lattices
in the “top” view (the line of view is orthogonal to the plane of the
channel in which the lattices form.). The lateral size of the bubbles
is much larger than their height; the bubbles do not wet the walls of
the channel and are squeezed between bottom and top walls, sepa-
rated from them by thin, wetting, film of the liquid. The bubbles
form quasi-two-dimensional lattices; the two-dimensional geometry
is only an approximation since the interfaces between bubbles are
curved both in and out of the plane of the channel.
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microfluidic channel characterized by a very large aspect ra-
tio of its width to its height. The bubbles divide the space (or
area of the floor of the channel) into patches of equal volume
(or surface area). Although these lattices of bubbles mini-
mize their interfacial energy locally, the system was often
trapped in multiple local minima, and formed a variety of
periodic structures [Figs. 1(b)-1(f)]. This behavior is in a
vivid contrast to that of two-dimensional monodisperse
foams in unbounded space, in which case the only structure
observed, the honeycomb lattice, yields the global minimum
of interfacial energy [Fig. 1(a)]. The observation of multiple
stable structures of foams prompted us to pose three ques-
tions. (i) What periodic tessellations of a stripe (that is, a
region of a plane bounded by two parallel lines) are pos-
sible? (ii) What are the relative interfacial energies (or
equivalently, what are the total perimeters) of these lattices?
(iii) Does the probability of formation of a lattice correlate
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FIG. 2. (a) A schematic illustration of the terms that we use to
describe the periodic tilings. The tiles forming the translational unit
cell are highlighted with the gray color. In the text we refer to the
top and bottom walls that confine the tiling to a stripe. (b) The
hex-three lattice with one of possible choices of columns marked
with thick gray lines. (c) An example of a periodic tiling that cannot
be represented within the columnar model.

with its energy? The first question is interesting both funda-
mentally and for its possible applications in generating mi-
crostructures. The second and third questions address the se-
lection rules for the appearance of these intriguing patterns.
We answer the first question partially by enumerating a
set of topologically distinct periodic tessellations of a stripe.
We explain the combinatorial model that we employed, and
the bounding conditions that we used for the enumeration,
together with its results, in Sec. II. In order to find the ge-
ometry of each lattice that yields the locally minimum pe-
rimeter of the patches, we used a numerical simulation; we
outline this procedure in Sec. III. Section IV contains the
results of simulations, and a comparison of those simulations
with analytical calculations performed for the family of hex-
n lattices. We supplement this section with results of a simu-
lation in which we applied a pressure gradient along the
stripe in order to verify whether it influenced the ranking of
the total perimeters of the structures observed in experiment.
We conclude the paper with a discussion of our results and
with a postulate of possible lower bounds for the mean pe-
rimeter of tiles forming periodic coverings of stripes.

II. ENUMERATION OF A CLASS OF TOPOLOGICALLY
DISTINCT TESSELLATIONS OF A STRIPE

Terminology. We start by defining the terms (Fig. 2) that
we will use in the discussion that follows. The structures that
we describe are two dimensional, and they are bounded by
two parallel lines; we call these lines “walls.” We refer to the
area between the walls as a “stripe” but sometimes we also
use the term “channel” to correspond to the microchannels
used in our experiments. The terms “tile,” “patch,” and
“bubble” all correspond to a surface bounded by a number of
sides or edges. A side can either mark a boundary between
two adjacent (neighboring) tiles, or it can coincide with a
line segment belonging to one of the two walls. The sides (or
edges) come together at nodes (or vertices). The tiles cover
the area of the stripe completely, and the covering is peri-
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odic: for each lattice, we can identify a translational unit cell
that is composed of N individual tiles.

The fundamental characteristics of each of the lattices ob-
served in our experiment [1] is its topology, the set of num-
ber of neighbors of each bubble in the unit cell. In order to
find at least a partial answer to the question “what are the
possible tilings of a stripe?” we need to enumerate topologi-
cally distinct periodic divisions. There is a number of meth-
ods for generating random [20,21] and periodic tilings of a
plane [22-24]. Here, we employ a variation—one that takes
into account the boundaries and periodicity of the tilings—of
a method introduced by Fortes [21] for generation of “co-
lumnar” networks.

Columnar model. The translational unit cells of all of the
structures that we observe in experiment can be represented
as a union of “columns” [see example in Figs. 2(a) and 2(b)].
We use this model to enumerate a set of topologically dis-
tinct periodic tilings of a stripe. Importantly, not all periodic
tilings can be represented in this way [Fig. 2(c)] and by using
the columnar model we are restricting our results to only a
class of periodic tilings. It is also important to note, that
although it has been proven [25] that equilibrium structure of
a 2D foam on an unbounded plane, formed by congruent
bubbles must be periodic, it is not known if the energy mini-
mizing structure of foam in confinement must be periodic or
regular. Thus, limiting our results to periodic tilings that can
be described within the columnar model, we cannot assess
definitely the ground state of a confined two-dimensional
foam.

Formally, we define a “column” as a union of tiles that
stretches from one wall to the other with the following con-
straints: (i) if a tile within a column touches a wall, it can
neighbor with at most one other bubble from the same col-
umn, (ii) all other bubbles within a column neighbor with
exactly two other bubbles belonging to the same column.
Finally, each tile belongs to only one column. We will only
enumerate lattices which unit cells can be represented as a
union of columns.

Enumeration. We enumerate the possible lattices by con-
structing the unit cells of a number C of columns, each (ith)
column containing n; bubbles. The topology of the lattice is
determined by the positioning of the edges of the tiles. This
positioning can, in turn, be enumerated within the construc-
tion that we describe below.

Each column is bounded from top and bottom by the
walls, and from left and right by a union of a set of edges.
This union of edges (or “side of the column™) can in turn be
represented as a line segment, spanning from the bottom to
the top wall, with a number of nodes on it. Some of the
nodes are formed by edges that lie to the left of the side of
the column (and we refer to this nodes as “left nodes” and
denoted them with the symbol “L”) and some are made by
the edges that lie to the right of the side of the column
(“right” nodes, “R”). The structure of the side of a column
can be represented by a sequence of left and right nodes. It is
enough to consider only one side of the column: the right
side of a given column is the same as the left side of the
column that is adjacent to it from the right. The right side of
the right-most column of the unit cell is the same as the left
side of the leftmost column in the unit cell, following from
the periodicity of the lattice.

PHYSICAL REVIEW E 73, 031603 (2006)

All possible topologies of the periodic lattices that can be
represented within the columnar model are determined by
the sequences S; of the left and right nodes on the sides of the
columns. Figure 3 shows an example of an enumeration of
possible sequences S; for a unit cell comprising two columns
(C=2) with three and two bubbles (n,=3, n,=2) in them.
The right side of the first column [denoted with “S;” in Fig.
3(a)] has three bubbles to the left (two left nodes) and two
bubbles to the right (one right node) and there are three pos-
sible sequences of these nodes (RLL, LRL, and LLR). The
right side of the second column [denoted with “S,” in Fig.
3(a)] has two bubbles to the left (one left node) and, by the
periodic boundary condition, three bubbles to the right (two
right nodes); there are three possible sequences of these
nodes (LRR, RLR, and RRL).

General expression for the number N; of possible
sequences S; of nodes in ith column is N;.¢
=[ni+n =21/ [n;=1[n;,— 11!, and Ne=[ne+n,-2]1/
[nc—1]'[n;—1]!. In the example shown in Fig. 3, N;=3 and
N,=3. The total number of combinations (possible arrange-
ments of the edges within the unit cell) is P=I1<,N;. In our
example, P=9, and all the combinations are shown in panels
3(b)-3(k).

For each combination of sequences of nodes, we calculate
the number of neighbors (connectivities) m;; of each (jth)
bubble in each (ith) column, and encode these numbers in
the form of C n; vectors V;=[m;;,--,m;, ]. The set of vec-
tors V; encodes the topology of the unit cell.

Elimination of redundant lattices. Some of the combina-
tions of sequences S, lead to the sets of connectivities V; of
the bubbles that are related to each other by some symmetry
operation, and thus do not introduce distinct topologies of
the tiling. In order to eliminate these redundancies, we take
into account the following symmetries (and all their combi-
nations): (i) identity: I(m;;)=m;;, (ii) horizontal mirror sym-
metry M (m;;)=my, with k=n;+1-j, (iii) vertical mirror
symmetry M, (m;;)=my;, with k=C+1-i, and, (iv) transla-
tions [Ty, ke (1,C—1)] of the order of columns: T)(m;;)
=m,;, where r=i+k if i+k<C and r=i+k—C otherwise.
Since we are taking into account unit cells comprising at
most three columns the last symmetry operation can be de-
noted simply as all possible swapping of the first (column)
indices in all the pairs of columns that contain the same
number of bubbles: p(m;;)=my;, for all i and k for which
n;=n;. In practice we enumerate all possible sets of connec-
tivities V;; for every new V; we compare it (and all its images
created by applying the symmetry operations M, M, and T})
with the listed set of topologically distinct lattices and if we
do not find any match, we add the set to the list of enumer-
ated lattices.

In the example illustrated in Fig. 3, the first set—called
“t12”—][Fig. 3(b)] is new (and is enlisted as a distinct topol-
ogy, we marked this fact on the figure by encircling the la-
bels of the new, topologically distinct unit cells). The second
unit cell—“¢13”—[Fig. 3(c)] is also new and distinct, and so
is the third [Fig. 3(d)]. The fourth set [Fig. 3(e)] is related to
t13 by horizontal mirror symmetry (M) to the set shown in
Fig. 3(c) and we eliminate it from the list.

Results of the enumeration. We have enumerated all pos-
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FIG. 3. A scheme exemplifying the enumeration procedure
used. (a) The unit cell comprises two columns, with 2 and 3 tiles in
them. Insets (b) through (k) show the nine possible combinations of
the sequences S; and S, of the left (L) and right (R) nodes. The
resulting arrangements of tiles, with the tiles comprising the unit
cell highlighted with gray color, and with the number of neighbors
of each tile, are shown in the center of each inset. On the right of
each panel we show the corresponding vectors V; and V,. The first
three combinations [insets (b) through (d)] and the fifth one (f) are
new and are put on the list of the topologically distinct tessellations
of a stripe as lattices labeled 712, #13, ¢14, and 15, respectively. All
the other combinations are redundant: they can be mapped onto the
listed lattices by one of (or a combination of) the symmetry opera-
tions: identity (I), horizontal or vertical mirror symmetry (M), or
M, respectively), and translations of the columns (7}).
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FIG. 4. A two-dimensional tessellation of a stripe (a) is equiva-
lent to a planar cross section of an idealized model of a quasi-two-
dimensional foam confined to a channel of uniform width and
height (b). We calculate the planar curvature of a bubble-bubble
interface (an exemplary interface is highlighted with thick solid line
in all insets) by assigning pressures p,, to all the bubbles and calcu-
lating their difference (p,,—p,,)=y/r, where vy is the value of inter-
facial tension and r is the radius of curvature [highlighted with
dashed line in inset (c)]. The assumption of a two-dimensional ge-
ometry of the bubble-bubble interfaces is only an approximation; in
reality the interfaces between bubbles do not look as we pictured
them in inset b or d, but are also curved in the planes that are
orthogonal to the plane of the channel [illustrated in inset €]. In our
calculations we neglect this curvature (k~2/h) because it remains
approximately constant regardless of the geometry of the bubbles in
the plane of the channels, provided that r,,,>h/2.

sible tilings within the following constraints: (i) the number
of columns is less than or equal to three, and (ii) the number
of bubbles in the column is less than or equal to three, with
the condition that n;=n; if i <j. With these constraints, we
obtained 371 combinations of sequences S;, which yielded 69
topologically distinct periodic lattices.

III. OPTIMIZATION OF THE GEOMETRY—FINDING
MINIMUM PERIMETERS

We are interested in the “energies” of each of the topo-
logically distinct arrangements of tiles. The energies of the
two-dimensional tilings are proportional to the total perim-
eters of the tiles. The geometry of the lattices is subject to
two boundary conditions. One is the fixed topology of the
lattice, and second is the ratio of the size of (surface area) of
the tile to the width of the stripe. Respecting these boundary
conditions, we found the geometries that minimize the total
perimeter using a computer simulation that borrows from the
dynamics of two-dimensional foams [26-28].

In this analogy, each tile corresponds to a quasi-two-
dimensional bubble [Figs. 4(a) and 4(b)] which has a uni-
form height  and a cross section in the plane of the channel
which coincides with the shape of its corresponding tile. We
parametrize the size of the tiles by their surface areas A;. In
each simulation we constrain this areas to a value Ay; Ay is
related to the length of the side a of a perfect hexagon of the
same area a0=3‘3/42A(1)/2.

Evolution of curvatures and pressures. In two dimensions
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the equivalent of the interfacial energy of a lattice is the sum
of the perimeters / of the tiles—that is the total length of the
sidewalls of all the patches into which the surface area of the
stripe is divided. In order to asses the shape (curvature) of
the interfaces between the tiles, we associate with each tile a
pressure p, and we calculate the radius of the planar curva-
ture of these interfaces as r,,,=y/Ap, where Ap=p,—p,, is
the difference of “thermodynamic” pressures inside the nth
and mth tile. Fixing the surface areas of the tiles (A,=A) is
equivalent to an approximation that the pressure p; =7/r as-
sociated with the planar curvature of the interfaces between
the tiles is negligibly small in comparison to the thermody-
namic pressures p,. This approximation corresponds well to
our experiments [1]: if we take volume of the bubble V,
:hAO:cp", where ¢ is a constant (c=nRT for an ideal gas),
then the change in the surface area of the bubble introduced
by the Laplace pressure p; is Ag—A=cp;/p(p+p;), and
(Ag—A)/Ay=p,/(p+p). In our experiments, the thermody-
namic pressure is on the order of p~ 10> Pa, while the typi-
cal Laplace pressure is p;, = 10? Pa (for y=3X 107> N/m,
and r~300 um), yielding (Ag—A)/Ay=~1073.

Limitation of the two-dimensional model in description of
the quasi-two-dimensional foams. The two-dimensional
model that we employ establishes the total perimeters of
strictly two-dimensional tilings. We do relate these total pe-
rimeters to the interfacial energies of the quasi-two-
dimensional lattices observed in our experiments [1] but we
note, that the perimeters of the two-dimensional lattices pro-
vide only an approximation of the component of the interfa-
cial energies of the real lattices. The two-dimensional model
cannot assess the stability of the real, quasi-two-dimensional
lattices in which at least one of the edges of any of the
bubbles has a length (in the plane of the channel) which is
shorter than, or similar to, the height of the channel. The
reason for this limited relevance is that (by definition) the
two-dimensional model does not take into account the cur-
vature of the bubble interfaces that is not confined to the
plane of the channel. In reality the interfaces between the
bubbles and the liquid are curved in the plane of the cross
section of the channel [Fig. 4(d)]. This curvature can be ap-
proximated to be on the order of «,,,,,=~2/h and to be con-
stant regardless of the shape of the bubble in the plane of the
channel, provided that the curvature ,,, in the plane of the
channel of any given interface between the nth and mth
bubble given by k..~ 1/r,, is comparable to, or smaller
than K.y We expect that when  Kpjpe™ Kerogs  OF
Kplane = Keross the real (three dimensional) geometry of the
interfaces can affect the stability of the shapes that we evalu-
ate numerically within the two-dimensional model, and this
model no longer will provide a reasonable approximation of
the structure of the quasi-two-dimensional foam.

Minimization of the total perimeter within the two-
dimensional model. The evolution of the structure of the lat-
tice in the simulation proceeds in the following steps. We
first calculate the line-tension forces acting on each vertex:
each edge pulls the vertex with a force of absolute value
|F|=yh=0, where o corresponds to the effective line tension
of an edge in the 2D model, and a direction coinciding with
the tangential direction of the edge and pointed away from
the vertex [Fig. 5(a)]. In our model, we assume that the sur-
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face tension is constant: that is, we assume that the interfaces
are well saturated with surfactant and there are no dynamic
surface tension effects. Practically, in our numerical proce-
dure, we kept |F|=1. We then calculate a dimensionless net
force F*=(2F)/yh acting on any given vertex, and we move
this vertex by a displacement d=F"éw, where & is a dimen-
sionless constant that determines the rate of motion of the
vertex (we typically used é=1072 in the beginning of the
optimization procedure and smaller values (down to
£=107) at the end of minimization of the perimeter). We
employ the additional condition that the vertices lying on the
walls of the channel stay on these walls: that is, for these
vertices we take the component of F* in the direction of the
walls and move the vertex along the wall. After moving the
vertices we iteratively adjust the pressures in all the bubbles
and the curvatures of the bubble-bubble interfaces until the
surface areas of all the bubbles are equal to the target surface
area. Relocation of the vertices and the adjustment of pres-
sures are both subject to the periodic boundary conditions:
the rightmost vertices of the unit cell are moved in syn-
chrony with the leftmost ones, and the curvature of the
bubble-bubble interfaces at the boundaries of the unit cell are
calculated using periodic boundary conditions for the pres-
sures inside the bubbles. Once vertices are moved and pres-
sures adjusted, we repeat the steps outlined above until the
structure reaches a stationary state in which all of the forces
acting on the edges inside the channel are exactly balanced,
and the net force acting on the vertices located on the walls
of the channel is perpendicular to the direction of the wall. If
the given topology of the lattice, combined with the pre-
scribed surface area A of the tiles leads to a physically plau-
sible structure, the geometry of the bubble-bubble interfaces
automatically satisfies the Plateau rule: edges meeting at ver-
tices inside the channel make angles of 120° [Fig. 5(a)].
Some topologies, however, do not have a physically plau-
sible ground state. In such a case, in the course of the opti-
mization of the geometry at least two of three-coordinated
vertices come together. In an experiment this fusion would
lead to a topological transformation (7'1) of switching the
neighbors [29] and the topology of the lattice would change.
Since we are interested in the ground states of a list of enu-
merated (and fixed) topologies of the periodic lattices, we do
not allow topological transformations and the two vertices
stay together [Fig. 5(c)]. We deem such structures not physi-
cally plausible, and we remove them from the list of possible
structures of foam for a given A,,.

During the evolution, we monitor the total length of the
perimeter / of all N bubbles comprising the translational unit
cell of the lattice. We normalize this total perimeter by the
perimeter of the perfect tiling of a plane, that is, by the pe-
rimeter of N regular hexagons: [“=1/N(6a,). This normaliza-
tion allows us to determine how much the tessellations of a
stripe deviate from the optimal solution for an infinite plane,
the honeycomb lattice. Figure 5(d) shows that [* decays
monotonically during the optimization procedure until it
reaches a minimum value for the given a, and topology of
the lattice. We note that due to the construction of the nu-
merical procedure we used to optimize the geometry (con-
stant force exerted on the edges by each vertex, and varied
time step), we do not expect to recover the dynamics of an
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FIG. 5. (a) A schematic illustration of the simulation scheme for
optimization of the total perimeter of the tiles. We calculate the
forces F (thin, long arrows) exerted by the edges of the tiles on the
vertices. We use the net, nondimensional forces F* (the thick, short
arrow exemplifies the direction of F*) to move the vertex by a
distance d=F"éw, where & is a constant that determines the rate of
evolution. We employ the condition that vertices located on the side
walls can move only along the walls. The evolution stops when the
angles between the films (edges) connected to all the vertices lo-
cated inside the stripe are 120°, and the films connected to the
vertices located on the walls make right angles with them. (b) and
(c) An example of an evolution of two structures from the geometry
of the columnar model to the states of lowest energy (total perim-
eter) allowed by their topology. Structure in inset (b) leads to a
physically plausible ground state, while the structure shown in (c)
leads to a structure with two paired vertices and has to be excluded
from the list of plausible topologies of two-dimensional foam. We
indicate the number of simulation steps corresponding to each im-
age in the insets (é=1072). Inset (d) shows the change of the total
perimeter of the structures shown in (b) and (c) with the number of
simulation steps.
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actual quasi-two-dimensional foam, and the time scale
shown in Fig. 5(d) is not linearly related to the physical time.
It is only the final, equilibrium, geometry of the structure that
we expect to correspond to the geometry of two-dimensional
foam that minimizes the total perimeter of the tiles.

A question also arises whether the perimeter-minimizing
geometry that we find numerically for given topology of the
lattice and surface area of the tiles represents a unique solu-
tion of the problem. In other words: is it possible that, for
any given topology and surface area of the tiles, that there is
more than one geometry of the lattice that represents a local
minimum of the total perimeter? To the best of our knowl-
edge there is no formal proof that the 2D equal-area foams
have a unique perimeter-minimizing solution. A proof of
uniqueness of the energy-minimizing state for a similar sys-
tem of string networks can, however, be found in recent
work by Delaney ef al. [30]. Our intuition tells us that the
geometries output by our routines do represent unique solu-
tions to the problem of minimizing the perimeter. We can
support this postulate only indirectly: we varied the initial
conditions for several topologies and sizes of the tiles in our
simulations, and we observed that the final, perimeter-
minimizing, geometry does not depend on the starting con-
figuration.

IV. RESULTS

Family of hex-n tilings. Before we review of the results of
our numerical procedures, we first consider the family of
hex-n lattices [Figs. 1(b)-1(d)] that can be treated analyti-
cally. Figure 6 shows a schematic illustration of the geometry
of a hex-n lattice, where n signifies the number of rows (of
tiles) parallel to the walls of the channel. We call these lat-
tices hex-n because all the tiles that are not adjacent to the
walls retain the topology of the honeycomb lattice, and each
bubble has six neighbors. As outlined in Fig. 6, we can cal-
culate the characteristic dimensions of the hex-n tiling taking
advantage of the following constraints: (i) the surface area of
the translational unit cell is equal to nA, and hence
z=nAy/w, (ii) the width of the channel is w=n(y+x), and
(iii) the angle between the edges inside the channel is
120° (so £=2\J’§x). The two last conditions lead to
x=nAy/(2v3w) and y=(w/n)—nAy/(2v3w). The sum of the
lengths of all the edges in all bubbles (tiles) comprising the
unit cell is [=2(x+ny+z)+4(n—1)(x>*+2z2/4)"? Dividing by
n6a, and simplifying we obtain Eq. (1), where a“=ay/w

F(na’)=a'[(34)(n-1)+\32]+a ' [Bn]™. (1)
Figure 6(b) shows a family of curves [*,, (n,a") for n=1 to
7. Each curve ["(n,a”) has a minimum [, (n)=[(n—1)/n
+2/(\3m)]"2 at d",, (n)=[9n(n—1)/4+3\3n/2]""2. Inter-

estingly, the whole family of curves is bounded from below
by a linear function

g =1+a"(2\3 = 3)/4. )

We calculated the linear coefficient (2 \6—3)/ 4 by observing
that for every n there is a value of a“=b(n) for which Eq. (3)
holds
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FIG. 6. (a) An illustration of the geometry of the hex-n family
lattices (hex-three shown). We use the symbols defined in the figure
for the derivation of the perimeter of these lattices. (b) A plot of the
non-dimensional (normalized by the perimeter of n hexagonal cells)
mean perimeter of the tiles in the hex-n family lattices (hex-one
through hex-seven): I"=1/6nay, plotted as a function of the nondi-
mensional ratio of the size of the tile to the width of the stripe:
a"=ay/w. The minimum mean perimeter of the hex-n family lat-
tices is bounded from below by a function I, ,,, shown with the
dashed line in the figure. (c) Comparison of the analytically and
numerically evaluated perimeters of the hex-one through hex-three
lattices.

I'(n,b)=1+dl'/ da"|,b (3)
with b(n)=2/(3n), and dl*/da’|,=(2v3-3)/4 independent
of n.

Verification of the accuracy of the simulation. The above
calculations offer a convenient check of the accuracy of the
perimeters established with our numerical simulations. We
compared [Fig. 6(c)] the numerical results for hex-one, hex-
two, and hex-three lattices for a” € (0.1,0.3); the largest ab-
solute value of a difference (I * ) was

analytical”* numeric
3.4X 107, In view of this comparison, we present all the
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0.03
0.02
0.01
0
b 129,1*=1.0816  snake-skin ¢ 19,1*=1.0288 hex-three
| J
165,1*=1.0862 164,1*=1.0398
167,1*=1.0919 128, 1*=1.0413
d 19,1*=1.0359 hex-three e 12,1*=1.0404 hex-two
153,1*=1.0458 17,1*=1.0588
124,1*=1.0520 15,1*=1.0608

K AT

FIG. 7. (a) The numerically evaluated normalized perimeters /"
(less the lower bound of the perimeter I voung) fOT @ set of enumer-
ated lattices. The criterion for a given unit cell to be entered into the
set was that the lattice has to be among the three lattices that yield
three lowest values of I* for any value of a" that we examined
a” €(0.15,0.3). The numbers indicate the numbers of the topolo-
gies that yield the lowest values of I* for a"=0.15, 0.2, 0.25, and
0.3. The dashed line gives analytically calculated values of I* for the
hex-four lattice. Insets (b) through (e) show the geometries of the
triplets of lattices that yield the lowest values of perimeters within
the enumerated set. Above each picture we give the number of the
lattice in the enumerated set (£29, 165, etc) and the lowest value of
I" for given topology and value of a”.
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1:1*=1.0288 (hex three) 2:1*=1.0398 (t64)
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3:1*=1.0413 (128) 4:1*=1.0442 (snake skin)

/

\

5:1*=1.0444 (t65) 6:1*=1.0475 (t67)

7:1*=1.0526 (t68) 8:*=1.0549 (t66)

I

9:1*=1.0578 (hybrid) 10:1*=1.0607 (t48)

11:1*=1.0627 (t30) 12:1*=1.0681 (t41)

13:1*=1.0681 (t15) 14:1*=1.0747 (t44)

15:1*=1.0811 (t46) 16:1*=1.0853 (t40)

17:1*=1.0857 (t13) 18:1*=1.0918 (t23)

19:1*=1.1066 (t22) 20:1*=1.1072 (t19)

[

21:1*=1.1149 (114) 22:1*=1.1263 (t21)

23:1*=1.1482 (t5) 24:1*=1.1524 (t7)

I

)

25:1*=1.1565 (hex-two) 26:1*=1.2242 (t10)

27:1*=1.2721 (t6) 28:1*=1.3473 (t11)

i

29:1*=1.3516 (t3) 30:1*=1.4737 (t4)

31:1*=1.8399 (hex-one)

I

FIG. 8. The 31 (out of 69 enumerated) lattices that yield physically plausible minima of their perimeters for a"=0.2. The structures are
displayed in order of increasing perimeter [” from left to right and top to bottom. The inscription by each structure gives the ranking (with
1 corresponding to the lowest perimeter), the perimeter, and the name (number) of the topology. The lattices marked with rounded rectangles
correspond to the structures observed in our experiment (see also Fig. 1).

perimeters (/) that we obtained numerically with four deci-
mal digits.

“Optimal tilings.” We have evaluated the ground states of
each of the 69 enumerated tessellations for a” e (0.15,0.3)
with a resolution of Aa"=0.01. For each value of a” that we
examined, a different number of topologies yield physically
plausible structures. For example, for " =0.15 we found 28
plausible geometries; for a*=0.2,31 tessellations yielded

physically plausible structures of two dimensional foam; for
a"=0.25 and 0.3, the number of physically plausible struc-
tures was 39 and 42, respectively.

For each value of a*, we can rank the plausible structures
in order of increasing mean perimeter of the tiles that make
them. The type of the structure that yields the lowest perim-
eter depends on the value of . Figure 7(a) shows the evo-
lution of the perimeter [*(a”) (plotted as I*-I,,,,), for 11
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FIG. 9. The influence of the pressure gradient along the channel
on the perimeter /* and the geometry of the periodic lattices. Within
the values of the pressure gradient that we tested in our simulations,
the pressure gradient does not change the ranking of the lattices in
terms of the length of their perimeters. The geometries of the lat-
tices subject to a pressure gradient are similar to those observed in
experiment (see Fig. 1).

lattices. The criterion for choosing these lattices was that
each one of them was one of the three lattices yielding three
lowest values of perimeter for at least one of the values of a*
that we examined. For example, for a"=0.15, the snake-skin
lattices yields the lowest perimeter; the second and third low-
est values correspond to the lattices that we called 65 and
167 [Fig. 7(b)]. In Figs. 7(c)-7(e) we show analogous triplets
for a“=0.2, 0.25, and 0.3 in Fig. 7.

We emphasize that these are not necessarily the lowest
possible energies for given value of a”, as we have enumer-
ated only a finite set of periodic tilings of a stripe. For ex-
ample, for a"=0.15, the lattice hex-four, for which we know
the perimeter /* analytically, provides a better solution than
any of the structures that we enumerated numerically. For
this value of a”, it is plausible that other arrangements with
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four bubbles in a column might yield lower values of the
total perimeters than the ones we considered here. For small
values of a” (for example a"=0.15) the lattices with only
three tiles in a column have bubbles (tiles) elongated in the
direction perpendicular to the direction of the walls of the
channel, and thus diverging significantly from the ideal hex-
agonal shape. Similarly, we can expect that for a“=0.2, the
higher order lattices might change the ranking of lowest pe-
rimeters that we recorded in our simulations. For higher val-
ues of a”, as for example for a”=0.3, it is likely that our set
of lattices includes the ones that yield the lowest perimeters.

Comparison with the experiment. In Fig. 8 we show all of
the 31 optimized lattices that yield physically plausible
minima of energy for a“=0.2, which is approximately the
value for which we recorded the experimental images pre-
sented in Fig. 1. Although, as we discussed above, this rank-
ing of lattices in terms of their perimeter is most likely not
complete (because we considered only lattices with a maxi-
mum of three bubbles in a column) we can establish that
there are possible arrangements of bubbles that yield lower
values of the total perimeter than the lattices observed ex-
perimentally. Only the hex-three lattice, which we observe in
experiment, coincides with the lowest possible energy. The
snake-skin lattice ranked fourth, with two other lattices (164
and 28) having lower energy; we have not observed them
experimentally. The hybrid lattice ranked Oth, the hex-two
15th, and hex-one ranked 31st with the highest interfacial
energy within the enumerated set. We emphasize that some
of the lattices shown in Fig. 8 contain edges that are rela-
tively short. For these lattices, the approximation of a two-
dimensional geometry of the interfaces, is legitimate only if
Ln>h/2, where [, is the length of the interface between
nth and mth bubble, and 4 is the height of the channel. Thus,
in order to observe these lattices experimentally one should
use a channel with a very large aspect ratio of the width to
the height. In our experiments this aspect ratio was approxi-
mately w/h~30, and the lattices containing edges with
Lyn<w/30, would be unstable do to the truly three-
dimensional character of these edges.

Pressure gradient along the channel. We also tested the
influence of a pressure gradient Vp along the channel on the
ranking of energies (perimeters) of the lattices that we ob-
served in our experiments. Technically, we first optimized
the geometry of the interesting lattices in the absence of the
gradient of pressure (Vp=0), and once we had obtained the
state that minimized the perimeter, we fixed (immobilized)
the vertices that lied on the walls of the channel and slowly
increased the pressure gradient, allowing the structure to
equilibrate to it. Technically, the only difference introduced
into the numerical procedures, in order to account for the
pressure gradient, is that when calculating the curvature of
the bubble-bubble interfaces that coincide with the left and
right boundaries of the unit cell, we supplemented the differ-
ence of pressures p,-p,,, with an additional term Ap=Vp
(nAy/w), where (nAy/w) is the length of the unit cell com-
prising n bubbles. We parametrized the gradient of pressure
by its nondimensional value Vp“=(Vp/y)w? and performed
simulations for Vp* € (0,3.5) as within this range the lattices
deform to structures similar to those observed in experiment.
Figure 9 illustrates both the evolution of the perimeter
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I"(Vp®) of four of the observed lattices and the simulated
structures for Vp* ~2.5. We found that the pressure gradient
does not change the ranking of energies of the observed lat-
tices and therefore cannot account for the change of prob-
abilities of formation of them with the change of the rates of
flow of the fluids through the system [1].

V. DISCUSSION

Minimum mean perimeter in equal-area tessellations of a
stripe. Having evaluated the minimum perimeters of all the
enumerated lattices we found no instance of the best (most
energetically favorable) solution not belonging to the family
of hex-n lattices. On the basis of this observation we put
forward (although cannot prove) the following two
postulates. The Qrst, weaker, statement is that the function
l*bmmd: 1+a"(23-3)/4 [Eq. (2)] forms the lower bound for
the minimum mean perimeter of equal area tiles in a periodic
tessellation of a stripe. The second, stronger, postulate is that
there is no periodic, equal area, tessellation of a stripe that
would yield a smaller perimeter than the perimeter of one of
the hex-n lattices [Eq. (1)].

It would be interesting if either of these two postulates
could be proven analytically; as the honeycomb conjecture
[2] for an equal-area tessellation of an infinite plane.
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VI. CONCLUSIONS

We have enumerated the topologies and optimized the
geometry of a set of periodic tilings of a stripe. We find that
the introduction of confinement generates a large number of
periodic structures that correspond to local minima in inter-
facial energy. Some of these structures can be observed ex-
perimentally. Our numerical results suggest potential bounds
for the lowest value of the perimeter of two-dimensional til-
ings of stripes.

Enumeration of topologies of two- and three-dimensional
networks subject to confinement might lead to insights in
areas remote from the physics of foams. For example, nano-
tubes offer strong confinement, and it has already been
shown that it is possible to dope the space inside the tubes
with atoms. It might be therefore interesting to ask what
chemical networks are possible in strongly confined geom-
etries.

Finally, we believe that the aesthetic appeal of the tiling
patterns established through our numerical procedures
prompts for the use of these tilings in the decoration of side-
walks, tracks and corridors.
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