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Fluctuations of a single step on a vicinal surface are investigated using a discrete model designed to go
further in capturing atomistic effects than usually achieved with continuum models. Variants of the model to
incorporate the following three types of adatom dynamics are studied: attachment-detachment; periphery
�step-edge� diffusion; and terrace diffusion. The dynamic exponent z is determined for each type as well as
crossover functions joining three distinct scaling regimes.
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Technologists continue to fabricate devices on ever de-
creasing scales in the nanometer range. This has stimulated
much interest amongst surface scientists on the role played
by �thermally agitated� nanoscale fluctuations on the surfaces
of metals and semiconductors; such fluctuations are expected
to pose important physical limitations on the functionality of
nanostructures.

Particular interest concerns vicinal surfaces. Such a sur-
face is cut at an angle very close to, but not exactly at, a
plane of high crystallographic symmetry so that it consists of
a series of atomic-monolayer terraces rather than a single
facet. The terraces are separated by steps that themally fluc-
tuate on a time scale of seconds, an effect thus readily and
directly observable. For excellent reviews in this field, see,
for example, Refs. �1–3�.

The purpose here is to report some theoretical work on the
roughening dynamics of a single isolated step; the vicinal
angle is assumed to be small enough that the average dis-
tance between successive steps is sufficiently large to justify
ignoring multistep effects. Previous theories have mostly
been confined to models which treat the step edge as a con-
tinous function of position �4–9� although simulations
�4,6,10–13� and related theory �14,15� have been carried out
on discrete models. The lack of a detailed and systematic
theoretical treatment of lattice models is of some concern in
view of the small length scales involved �nanometers� where
atomistic effects are likely to show up. Moreover, simulators
working with lattice models would benefit from input gained
from discrete theories especially since continuum ones some-
times give a poor fit to their data. The model presented here
is, indeed, discrete but before presenting it we first describe
the differing physical mechanisms by which a step evolves.

A schematic depiction of a step of monoatomic height is
shown in Fig. 1 together with indications of the different
ways adatoms can attach-detach from the step edge, thus
conforming its shape. In addition to the usual periodic poten-
tial energy, incorporating energy barriers for adatom hopping
between interstitial substrate sites, adatoms are also subject
to a deep attractive well at the step edge with repulsive bar-

riers on either side of it. This is the Ehrlich-Schwoebel po-
tential �16–18� and has the effect of confining adatoms to the
lower terrace once they get detached from the step edge; the
probability of jumping from terrace to terrace being rela-
tively low at moderate temperatures. Figure 1�a� shows at-
oms evaporating from and depositing to the step edge from
the vapor while �b�, occurring at high temperatures, shows
atoms joining �respectively, leaving� the step edge via a dif-
fusion process from �respectively, to� distant neighboring
steps. Both �a� and �b� conform the step in a nonconserving
and �to a very good approximation� uncorrelated way; the
process is often termed attachment-detachment and for the
purpose of this paper, the resulting dynamics will be referred
to as type I. Figure 1�c� shows atoms hopping between
neighboring sites along the step edge without making further
excursions. This process, often termed periphery diffusion,
locally conserves the number of atoms in the upper terrace
and the resulting dynamics will be referred to as type II.
Finally, Fig. 1�d� shows an atom detaching from the step and
rejoining it further away via a diffusion process on the lower
terrace. This process, termed terrace diffusion in the litera-
ture, is also conserving but in a nonlocal way and the result-
ing dynamics will be referred to as type III.

The quantity of interest, amenable to the experimental
measurement, is the equilibrium autocorrelation function
G�t� for step-edge fluctuations, defined as follows. If yi�t� is
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FIG. 1. Different types of step dynamics with �a� and �b� being
type I �nonconserving and uncorrelated�; �c� being type II �local
conserving�; and �d� being type III �nonlocal conserving�. The
shaded circles depict adatoms.
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the displacement of the step edge at location i and time t,
then

G�t� ª lim
s→�

��yi�s + t� − yi�s��2� , �1�

for t�0. For a step of infinite length, it is found that G�t�
� t1/z, for large t, where z is the dynamic exponent whose
value depends on the type of dynamics dominating step-edge
fluctuations. Previous work �see Refs. �1–3� and references
therein� has concluded that for type I, z=2; type II, z=4; and
for type III, z=3. Alternatively, and often of interest to simu-
lators, is the growth through kinetic roughening of the mean-
squared width, w2�t�= �yi

2�t��, of an initially flat �nonequilib-
rium� interface, yi�0�=0 for all i. Theoretically, it’s been
found that G�t� and w�t� are simply related through
w2�t�=G�2t� �4,7�, a relationship also confirmed below for
the following lattice model.

We coarse-grain the step on a scale � and then model the
location of the step edge by an N-component column vector,
y= �y1 , . . . ,yN�T�RN, as shown in Fig. 2. Periodic boundary
conditions yi+N=yi are imposed. Each coarse-grained step-
edge configuration has an effective energy given by the
Hamiltonian

H�y� = ��
i=1

N

���i�sec �i, tan �i =
�yi − yi−1�

�
, �2�

where ����, the step tension at angle �, is expressible in
terms of microscopic parameters. In what follows it will be
sufficient to replace H�y� by its expansion to quadratic order
in y, the “discrete Gaussian model”:

�H�y� − N���0��/kBT 	 �̃yTAy/2� , �3�

with �̃ª �̃�0� /kBT and �̃�0� is the step stiffness,

�̃�0�=��0�+���0�. The N�N matrix A has elements,
�A�ij =Aij, with: Aii=2; Aij =−1 for i= j±1 mod N; and Aij

=0 otherwise. In other words, A=−	per, where 	per is the
one-dimensional periodic lattice Laplacian.

The dynamics is modeled by the following Master equa-
tion, describing the evolution of the conditional joint prob-
ability density, P�y , t�, for this process:

�P�y,t�
�t

= 

RN


G�dr��W�y�y − r�P�y − r,t�

− W�y + r�y�P�y,t�
 , �4�

where the probability rate for the transition from y to y� is
given by

W�y��y� = N�exp��H�y� − H�y���/2kBT
 , �5�

which allows detailed balance to be satisfied, with the Gibbs
distribution, proportional to exp�−H�y� /kBT�, as the equilib-
rium distribution, and N� is some factor which can be ab-
sorbed into the time scale.

The jumps r�RN are distributed according to the multi-
variate Gauss measure, 
G�dr�, defined through the charac-
teristic function



RN


G�dr�exp�i�Tr� = exp�− �TB�/2� , �6�

with B being the covariance matrix �which may be singular�;
the element Bij describing how the jumps at locations i and j
are correlated. Clearly, B is always symmetric. It is important
to note that if �i=1

N Bij =0 for all j then the dynamics is con-
serving, i.e., �i=1

N yi is kept constant. If the matrix B does not
satisfy this property then the dynamics is nonconserving.

Results are often expressed in terms of the spectra of the
matrices A and B: Au�q�=��q�u�q�, Bu�q�=
�q�u�q�, where
��q� and 
�q� are the eigenvalues corresponding to the ei-
genvector u�q� with components uj�q�=N−1/2exp�iqj�,
j=1,2 , . . . ,N, and q�SN with SNª �0�q�2� :eiqN=1
.
The eigenvalues of A are ��q�=2�1−cos q�.

The following choices are taken for B.
Type I. For nonconserving and uncorrelated jumps we

take the diagonal matrix B=�21, where �2 is some constant
which sets the time scale. For this case, the eigenvalue

�q�=�2 for all q.

Type II. For local-conserving jumps, the simplest choice
for B is B=�4A, with A given as above. This corresponds to
nearest-neighbor adatom hopping along the step edge. Here,
we have 
�q�=�4��q�.

Type III. For non-local-conserving dynamics, by far the
most complicated case to model, we take an approach moti-
vated by ideas contained in Refs. �7,9�. The jumps in the
interface at positions i and j get correlated as a result of
diffusing adatoms making excursions in the lower terrace
between these positions. The Ehrlich-Schwoebel potential is
accounted for by preventing adatoms from jumping onto the
upper terrace. On the lower terrace the adatoms are posited
on sites, �j ,k�, of a square lattice—the interstitial sites on the
substrate—with j �respectively k�0� being the lattice coor-
dinate running parallel �respectively perpendicular� to the
step edge located at k=0, which is assumed to be an absorb-
ing barrier. The atoms jump between nearest-neighbor sites
with the following jump-probability rate: w� for sites parallel
to the step edge with k�1; w�� for parallel sites with k=1
�i.e., adjacent to the step edge�; w� for sites perpendicular to
the step edge with the final site having k�1; and w�� for
jumping into site k=0, where the atom is absorbed into the

FIG. 2. Plan view of a vicinal step illustrating the discrete
model.
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step edge �20�. The off-diagonal elements Bij of the covari-
ance matrix are related to the probability, wji��0�, that an
atom initially at position i adjacent to the step edge passes
through position j next to the step edge at least once over a
sufficiently large time interval, �0, i.e., the coarse-grained
time scale. If f�j ,k � j0 ,k0 ; t� is the probability that an atom
starting at an initial position �j0 ,k0� on the terrace touches
the position �j ,k� for the first time after time t, then we have

wji��0� = 

0

�0

dt f�j,1�i,1;t� . �7�

If p�j ,k � j0 ,k0 ; t� is the probability of finding an atom at �j ,k�
after time t given that it is initially at �j0 ,k0�, then

p�j,k�j0,k0;t� = 

0

t

d� f�j,k�j0,k0;��p�j,k�j,k;t − �� . �8�

Using the shorthand p= p�j ,k � j0 ,k0 ; t�, p solves the follow-
ing:

��t − w�	� − w�	��p�k�1 = 0, �9�

��t + w� + w�� − w��	��p�k=1 = w�p�k=2, �10�

with an initial condition p�t=0=� j0,j�k0,k. Here, 	� is the peri-
odic lattice Laplacian �=	per� acting on j and 	� is the lattice
Laplacian acting on k �21�. The typical time scale of the
step-edge motion �seconds� is much larger than that of the
diffusive motion of individual atoms on the terrace �nanosec-
onds�. Thus, we can set the coarse-grain scale �0 to be arbi-
trarily large, and propose that the off-diagonal elements of B
are given by Bij =−wij���−wji��� for i� j. The diagonal el-
ements follow by imposing the condition for conservation,
�i=1

N Bij =0, for all j. Equations �9� and �10� can be treated
using spectral methods from which, by Laplace transforming
�8��, wji��� and the matrix B can be obtained. Results are
more simply expressed in spectral form


�q� =
KN����q��

w�� + ����q��
, �11�

where

���� ª �w���1/2�w� + 1
4w���1/2 + �w�� − 1

2w��� , �12�

and �22�

KN
−1 =

1

2N
�

q�SN

w��

w�� + ����q��
. �13�

This form for 
�q� implies that the off-diagonal elements of
the Toeplitz matrix, B, have the following properties: Writing
Bi,i+n=−b�n�, we have �i� limN→�bn�n−2 as n→� �provided
w�� �0�; �ii� bn→2 as w�� ↓0 for all 1�n�N �since
wji���=1 when w�� =0 due to recurrence of random walkers
off a reflecting barrier�.

We now apply the van Kampen expansion for large �
�19�. This starts by writing

y�t� = ���t� + �1/2ỹ�t� , �14�

where ỹ�t��RN is the fluctuation about the mean location,
��t��RN, of the step edge. With the initial condition ��0�
=�0 and ỹ�0�=0 we obtain the following �deterministic�
macroscopic law for ��t�:

d�/dt 	 − 1
2 �̃BA� , �15�

to leading order in �. The linearization leading to �15� is
consistent with the quadratic approximation of H�y� in Eq.
�3�. However, one can easily construct the full nonlinear
macroscopic law, without making these approximations,
which is useful, for example, in the study of thermal smooth-
ing dynamics of some initial shape �0. The fluctuating vector
ỹ�t� is distributed according to the conditional joint probabil-

ity density P̃= P̃�ỹ , t�, that satisfies the following Fokker-
Planck equation:

� P̃

�t
=

1

2
�̃

�

� ỹi

��BAỹ�iP̃� +
1

2
Bij

�2P̃

� ỹi � ỹ j

, �16�

using the summation convention for repeated indices and,
again, the terms of higher order in � are neglected.

The main result, obtained from solving Eq. �16�, is the
mean-squared width of an initally flat interface ��0=0�,

w2�t;N� = �ycm
2 �t�� + � �

q�SN\�0


1 − exp�− �̃��q�
�q�t�
N�̃��q�

,

�17�

where ycm�t�=N−1�i=1
N yi�t�, the “center of mass” of the inter-

face, has �ycm
2 �t��=�
�0�t /N, which is nonzero only for type

I �since 
�0��0 only for type I�. From a different starting
point and physical context, a result similar to Eq. �17�, for
type I only, was reported in Ref. �14� but with fixed-end
boundary conditions, y1=yN=0 �as opposed to periodic�, giv-
ing �ycm

2 �t��=0.
The value of the dynamic exponent, z, was found to de-

pend on the type of dynamics as before. Thus, in the follow-
ing formulas, dynamics of types I, II and III corresponds to
having z=2, 4, and 3, respectively. For all types of dynamics,
and for a given N, w2�t ;N� grows through three distinct re-
gimes in the following order.

a. Initial diffusive growth. For early time, one finds that
w2� t as t→0, and the step-edge displacements yi fluctuate
like independent random walkers.

b. Subdiffusive late-stage roughening. This is for t→�
and t /Nz→0 where one finds w2� t1/z. Here, the interface is
still far from equilibrium but time has progressed long
enough for correlations to develop between distant step-edge
displacements with the interfacial correlation length �� � t1/z

in this regime.
c. Equilibration. This occurs as t /Nz→� and N→� so

that at these very late times the interface achieves its equi-
librium roughness, w2− �ycm

2 ��N.
The transition from regimes a to b is best understood by

considering an interface of infinite extent. With the defini-
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tion, w�t�ª limN→�w�t ;N�, the N→� limit of Eq. �17� gives
the integral

w2�t� =
�

2�



0

2�

dq
1 − exp�− �̃��q�
�q�t�

�̃��q�
, �18�

as the crossover function between regimes a and b; the re-
gimes themselves being identified from the following limits
�with ��·� denoting the gamma function�:

w2�t�/� 	 ��z
0t as t → 0,

1

��̃
��1 − 1/z���̃�zt�1/z as t → � .

�19�

For type III, 
�q� in Eq. �18� is given by Eq. �11� but
with KN replaced by K�ª limN→�KN. The time scales are
set by �z and �z

0, where �2
0=�2, �4

0=2�4, �3
0=K�−2, and

�3=K�
�w�w� /w�� . Note, in particular, that w�� �adatom

hopping rate into the step edge� has a strong influence on
time scales. This is because the lower w�� is, the further
adatoms can hop in the lower terrace before being adsorbed
into the step edge, an effect which enhances correlations
between interfacial jumps and is quantified in the following
limiting behavior: K��1/ �w�� ln�1/w�� �� as w�� ↓0 and
K�=2+O�1/w�� � as w�� →�. We stress that lattice affects are
crucial in getting the correct functional form of the crossover
function in Eq. �18�; a continuum description �with an ad hoc
“momentum” cutoff� will not suffice. For type I, it is possible

to express w2�t� explicitly in terms of the modified Bessel
functions I0�·� and I1�·� �14�.

To understand the crossover from regimes b to c, the scal-
ing limit, t→�, N→� with t /Nz finite, is taken, giving

w2�t;N� − �ycm
2 �t�� 	

N�

2�̃
�z��̃�zt/N

z� , �20�

where the crossover scaling function is

�z�x� =
1

6
− �

n=1

�
exp�− �2�n�zx�

��n�2 . �21�

Since both length and times are large throughout this cross-
over, similar scaling functions can be derived from con-
tinuum theories although care has to be taken to ensure the
correct prefactors and metric factors in Eq. �20�, a somewhat
haphazard task when working directly from continuum theo-
ries. Note that

�z�x� = − 2x�z,2 +
2

�
��1 − 1/z�x1/z + ¯ , �22�

as x→0 �i.e., regime b�, implying that the t /Nz→0 limit of
Eq. �20� coincides exactly with the t→� limit of Eq. �19�, as
required.

To summarize, we have developed a lattice theory of step
dynamics on vicinal surfaces which should go some way in
capturing microscopic and atomistic effects. The methods
used will also prove valuable in many other applications con-
cerning interfacial dynamics.
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