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We report a systematic finite-difference time-domain study on the dielectric properties of two-dimensional
lossless heterostructures with inclusion of deterministic fractal geometry �Koch’s snowflake, Sierpinski’s
square and triangle� constrained to sit in a circumscribed circle, for a wide range of surface fractions. In all the
configurations investigated, we observed �i� a strong deviation of the surface fraction dependence of the
effective permittivity based on Maxwell Garnett analysis, and �ii� a permittivity change with reduced perimeter
according to a similarity transformation, at least for the first three iterations of the fractal pattern. We show that
the results of our numerical analysis disagree with expectations from the duality �phase interchange� relation,
and explain this as being due to the intrinsic complexity of the morphology which requires a multipolar
approach to correctly describe the microstructure features of these heterostructures.
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I. INTRODUCTION

Understanding the dielectric properties of heterostructures
has challenged both theory and experiment �1,2�. Significant
progress has been made over the past two decades in under-
standing how to analyze the effective permittivity of com-
posite materials with inclusion of regular and ideal geometric
shapes. The archetypal examples are spherical and spheroidal
inclusions in an otherwise uniform matrix �3,4�. Advanced
computer hardware and computational methods have al-
lowed some of this progress to be treated from first prin-
ciples �2�. By contrast, our understanding of the fundamental
properties of composite structures with the inclusion of arbi-
trarily complex geometry remains very limited. The chal-
lenge arises because the surface and interface between dif-
ferent materials involve such complexities as charge transfer,
electrode polarization, polarization due to adsorbed chemical
species �surface oxides and other contaminating surface lay-
ers�, and Maxwell-Wagner-Sillars polarization, which will
eventually affect the effective permittivity. This central issue
was first posed over two decades ago �5� and a great deal of
effort is now devoted to studies of the properties of complex
materials, in particular, ways of forming and controlling ma-
terials of desired permittivity. In many cases of interest, the
complicated irregular morphology of the inhomogeneities
may be well approximated by a fractal geometry �3,6,7�.
Thus, the investigation of composite materials with inclu-
sions of fractal geometry offers an excellent platform for
studying realistic models of complex materials. In addition,
some insight into the dielectric behavior can be gained from
symmetry considerations of the permittivity that can provide
a classification scheme for complex systems. This is the fo-
cus of this work.

With the current emphasis on understanding the electro-
magnetic properties of three-dimensional �3D� composites, it
is also of interest to consider the two-dimensional �2D� case
since it has been established theoretically by Keller �8� and
Dykhne �9� more than three decades ago that continuum
composites with a 2D microgeometry can be characterized
by a special symmetry called duality �also termed reciprocity
or phase interchange relation�. The generalization of this du-
ality relation, e.g., to the case of general anisotropic permit-
tivity tensors to any 2D two-phase composite material, dis-
ordered or not, has been given by a number of theoretical
authors including Mendelson �10�, Balagurov �11�, Milton
�12�, Durand �13�, and Schulgasser �14�. It is worth noting
that the duality �or phase exchange� relation was first derived
in terms of conductivity but for reasons of consistency we
treat it, in the present work, in terms of permittivity �3,4�. It
can be applied to any 2D two-phase composite as long as the
x and y axes are the principal axes of the effective permit-
tivity tensor, i.e., regardless of the phase geometry. It has
been established that the effective permittivity determined in
the x direction for a medium in which the inclusions �respec-
tively, the matrix� have permittivity �1 �respectively, �2�,
�x��1 ,�2�, is related to the effective permittivity of the phase-
interchanged composite in the y direction, �y��2 ,�1�, inde-
pendently of the specific structure by the following equation:

�x��1,�2��y��2,�1� = �1�2. �1�

If the material is macroscopically isotropic, i.e., the effective
permittivity tensor is rotationally invariant, then Eq. �1� re-
duces to ���1 ,�2����2 ,�1�=�1�2. It is widely believed that
this result is independent of the details of the morphology of
the material.
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In many instances the effective permittivity of a two-
phase composite can be written in the generic form �

�1

= f� �2

�1
,�2 ,A�, where �2 is the surface fraction of inclusion,

and A �0�A�1� is the depolarization factor that depends on
the shape of the inclusion. Many earlier studies have sug-

gested interesting form for f . Two of the most prominent
among all proposed forms developed for a 2D two-phase
heterostructure are those of Maxwell Garnett �MG� and
Bruggeman �SBG�

f��2

�1
,�2,A� = 1 +

�2��2

�1
− 1�

1 + A�1 − �2���2

�1
− 1� , �2a�

and

f��2

�1
,�2,A� =

1 − A�1 +
�2

�1
� + �2��2

�1
− 1� ±��1 − A�1 +

�2

�1
� + �2��2

�1
− 1�	2

+ 4A�1 − A�
�2

�1

2�1 − A�
, �2b�

respectively. It is important to recognize that the roles of host
and inclusion in the explicit form of Eq. �2a� being not re-
ciprocal, the MG formula provides a simple example of a
permittivity behavior that does not satisfy Eq. �1�, except for
isotropic inclusion, e.g., disk �A= 1

2
�. In addition it can be

readily verified that, for a specific choice of the values of the
permittivity of phases 1 and 2, no phase-inversion symmetry
can be detected at �2= 1

2 �Fig. 1�. In this case, duality is
satisfied only if A= 1

2 . But, in contrast with the MG analysis,
the dashed lines shown in Fig. 1 illustrate a symmetric be-
havior with respect to �2= 1

2 when the SBG form is assumed.
There is a large body of work showing that Eqs. �2a� and
�2b� do not accurately predict the value of � of heterostruc-
tures outside a specific domain of system parameters �1–3�.
This is mainly due to the fact that these equations do not take
into account the effects of the material’s microstructure on �.

In the numerical study presented here we report on a qua-
sistatic finite-difference time-domain �FDTD� study of two-
dimensional planar composites containing a deterministic
fractal inclusion. In this work, we present two major results.
First, we show how the inclusion shape influences the effec-
tive permittivity of the composite material. Specifically our

purpose is to illustrate that an explicit descriptor, related to a
similarity transformation, can be useful to probe the depen-
dence of the permittivity on morphology. Second, we have
investigated how strongly the duality relation, Eq. �1�, can be
violated by composites containing fractal patterns. To the
best of our knowledge, prior work has not addressed the
important issue of the symmetry properties of the effective
permittivity in the context of 2D heterostructures containing
inclusion with fractal geometry.

The remainder of the paper is organized as follows. Our
computational approach is briefly described in Sec. II. The
results and discussion are presented in Sec. III. Section IV
concludes our study.

II. METHODOLOGY

Three of the most thoroughly studied deterministic fractal
structures are the Koch’s snowflake �KS� and the Sierpinski’s
square �SQ� and triangle �ST� �15–17�. We have, therefore,
chosen to carry out our numerical calculations on these sys-
tems. See Fig. 2 for schematic diagrams of these morpholo-
gies. For each geometry, the perimeter becomes infinitely

FIG. 1. �Color online� Dependence of �̃=
��1,10���10,1�

10 as a func-
tion of �2 with the expected value from MG formula �solid line�,
Eq. �2a�, and SBG formula �dashed line�, Eq. �2b�. The number
denotes the value of the depolarization factor A.

FIG. 2. �Color online� Two-dimensional structural motifs: �a�
Koch’s snowflake �fourth stage of iteration�, �b� Sierpinski triangle
�third stage of iteration�, and �c� Sierpinski square �third stage of
iteration�. The dashed line represents the circumscribed disk con-
taining each inclusion.
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large as the iteration number of the fractal pattern→�, but
for one case �KS�, the surface area is bounded while for
another one �SQ� the pattern is 90°-rotation invariant. Fur-
thermore, we assume that these structures are constrained to
sit in a circumscribed circle. This discoidal shape is of inter-
est because it allows one to consider the effect of surface
fraction and perimeter on the permittivity of a 2D system
which has a well defined depolarization factor, in contrast to
inclusion of arbitrarily complex geometry, for which A can-
not be expressed in general in a closed-form expression �18�.

One of the first, and still one of the most commonly used,
numerical methods to simulate the electromagnetic phenom-
ena in structures and materials is the FDTD �19�. For the
computer code used to generate the results in this work, see
Ref. �18�. We note at the outset that while there are several
schemes to determine �, our approach is based on the analy-
sis of the reflection characteristics of a transmission line.
Typically, the lossless two-phase composite material in the

form of a slab is inserted in the cross section of a parallel-
plate transmission electron microscopy �TEM� waveguide
that is assumed to be infinitely long in the propagation direc-
tion of the wave �Oz�. The open sides of the waveguide are
modeled using a uniaxial perfectly matched layer �UPML�
ABC �18,19� because it leads to only very small backreflec-
tions. The effective �relative� permittivity of the composite
material is deduced from the knowledge of the reflection
behavior at the surface of the material that is embedded in
the waveguide. By using the transmission-line theory, it has
been established previously the important fact that � is re-
lated to the absolute value of the reflection coefficient R at
the left side of the slab surface by


R
 =

�1 − ��tan���

c
���


�4� + �1 + ��2tan2���
c
���

�18,20�. In the above � denotes the length of the slab and c is
the speed of light. For the problem at hand, we illuminate the

FIG. 3. �Color online� �a� A comparison of the simulated results for the effective �relative� permittivity �=�y of a composite containing
a single inclusion with the effective medium equation of MG as a function of the surface fraction of inclusion �2. The inclusion is the KS
with �1=1 and �2=10. Symbols denote the different iteration numbers n as indicated in the inset. The solid lines correspond to the
permittivity evaluated by using HS upper ��U� and lower ��L� bounds, respectively. The dashed line corresponds to the MG prediction for
a discoidal inclusion and cannot be distinguished from the HS lower bound. �b� Same as in �a� for the effective �relative� permittivity as a
function of p̃��2. The inset shows that the similarity relations obtained by using Eq. �3� agree well with our data. The shift factors are: 0.86,

0.68, and 0.53, and 0.40 for n=1, 2, 3, and 4, respectively. �c� A comparison of �̃=
�y�10,1��x�1,10�

10 as a function of �2 with the expected value,
i.e., 1, from the duality, Eq. �1� relation if the material is macroscopically isotropic. For comparison we have also indicated the data
corresponding to a discoidal inclusion ���. �d� Maps of the FDTD-calculated electric field vector norm �Ex

2+Ey
2. The inclusion is the third

iteration of the KS with �1=1 and �2=10. The local field vector norm is normalized to the source electric field norm and is indicated by color
as defined in the color bars. �2=0.18.
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slab by a simple Gaussian pulse wave. We use excitation f
= �

2� =10.23 MHz well below the cutoff frequency to higher
order TM �to x� modes of the parallel plate waveguide, i.e.,
fc= c

2d , where d is the width of the waveguide. The FDTD
calculations make use of the quasistatic approximation, and
relevant aspects of the computational details are discussed in
detail elsewhere �18�. This long-wavelength limit corre-
sponds to the case that the wavelength is much larger than
the system size, i.e., ��

c
���1. The radius of circumscribed

circle, R, containing each inclusion is under the dependence
of the surface fraction of inclusion, e.g., for the third itera-
tion of Koch’s snowflake, R=75 mm at �2=0.18. The length
and width of the slab are set to �=d=0.37 m. The surface
fraction of inclusion is denoted �2, and the reduced perim-
eter is p̃= P

K , where P and K are the perimeter and the surface
area, respectively. For completeness, we indicate that, given
the orientation of the field vector components in the wave-
guide, it is �=�y which is determined in our calculations. In

practice, the calculation of �x requires the 90° rotation of the
inclusion.

III. RESULTS AND DISCUSSION

In the following we present the results of our simulations
and investigate the importance of symmetries on permittivity.
We start by considering the �2 and p̃��2 dependencies of �
of composite materials with inclusion morphology illustrated
in Figs. 3–5. In each figure, panel �a� compares the FDTD
results and the MG prediction for a discoidal inclusion, panel
�b� shows an analysis of � in terms of a similarity transfor-
mation, panel �c� analyzes the FDTD data to see if they are
consistent with the duality symmetry, and panel �d� displays
a map of the electric field vector norm.

To test the predictive character of the MG formula �for a
discoidal inclusion� we compare its prediction with the
FDTD data summarized in Figs. 3�a�, 4�a�, and 5�a�. The

FIG. 4. �Color online� �a� A comparison of the simulated results for the effective �relative� permittivity �=�y of a composite containing
a single inclusion with the effective medium equation of MG as a function of the surface fraction of inclusion �2. The inclusion is the ST
with �1=1 and �2=10. Symbols denote the different iteration numbers n as indicated in the inset. The solid lines correspond to the
permittivity evaluated by using HS upper ��U� and lower ��L� bounds, respectively. The dashed line corresponds to the MG prediction for
a discoidal inclusion and cannot be distinguished from the HS lower bound. �b� Same as in �a� for the effective �relative� permittivity as a
function of p̃��2. The inset shows that the similarity relations obtained by using Eq. �3� agree well with our data. The shift factors are: 0.58,

0.33, 0.19, and 0.11 for n=1, 2, 3, and 4, respectively. �c� A comparison of �̃=
�y�10,1��x�1,10�

10 as a function of �2 with the expected value, i.e.,
1, from the duality, Eq. �1� relation. For comparison we have also indicated the data corresponding to a discoidal inclusion ���. �d� Maps of
the FDTD-calculated electric field vector norm �Ex

2+Ey
2. The inclusion is the third iteration of the ST with �1=1 and �2=10. The local field

vector norm is normalized to the source electric field vector norm and is indicated by color as defined in the color bars. �2=0.10.
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simulations reproduce the monotonic increase of � at low
surface fraction of inclusion �dilute limit�, but we note that
Eq. �2a� does not capture the quantitative features of the data
for �2�0.15. A similar trend is obtained if one uses Eq. �2b�
instead of Eq. �2a� �not shown�. In our case, this behavior is
due in part to the sensitivity of the effective permittivity to
the details of the morphology at a high surface fraction. In
addition, we recall that MG formula is based on a dipolar
description that contains no reference to microscopic features
of the structure of the inclusion. These features are very
similar to general observations found in the literature, e.g.,
Refs. �2,3,18�. It is further interesting to observe that even if
one has complete information about the permittivity of each
constituent and if the geometry of the composite is known,
calculating � remains difficult. Because of that difficulty,
there has been much effort devoted to deriving upper and
lower bounds on the allowed values of � �3,4�. The impor-
tance and ingenuity of these methods cannot be overstated.
Rigorous bounds that apply when �1 and �2 are both real and

positive have been obtained using several different methods,
e.g., Hashin and Shtrikman �HS� �21�. Figures 3�a�, 4�a�, and
5�a� display a comparison of upper and lower HS bounds on
the effective permittivity and the calculated data in the
present work. These graphs indicate that: �1� the MG result
cannot be distinguished from the lower HS bound and �2� the
FDTD prediction for the permittivity is bounded by �L and
�U, but the HS bounds provide a relatively loose estimate of
the actual permittivity.

Since there is a complex interplay between the surface
area and perimeter effects which produces the overall fea-
tures of the dielectric behavior, it is legitimate to ask what
specific descriptor should be used to discriminate between
the morphological features of the inclusion. Recent simula-
tions �18� have shown that the p̃��2 dependence of � pro-
vides us with a simple means to rationalize the dielectric
behavior as the number of iteration of the fractal pattern
changes. This originates from the mathematical conversion
from �2 to p̃ which is given by p̃n	

1
d��2n

, where n denotes

FIG. 5. �Color online� �a� A comparison of the simulated results for the effective �relative� permittivity �=�y of a composite containing
a single inclusion with the effective medium equation of MG as a function of the surface fraction of inclusion �2. The inclusion is the KS
with �1=1 and �2=10. Symbols denote the different iteration numbers n as indicated in the inset. The solid lines correspond to the
permittivity evaluated by using HS upper ��U� and lower ��L� bounds, respectively. The dashed line corresponds to the MG prediction for
a discoidal inclusion and cannot be distinguished from the HS lower bound. �b� Same as in �a� for the effective �relative� permittivity as a
function of p̃��2. The inset shows that the similarity relations obtained by using Eq. �3� agree well with our data. The shift factors are: 0.71,

0.40, and 0.18 for n=1, 2, and 3, respectively. �c� A comparison of �̃=
�y�10,1��x�1,10�

10 as a function of �2 with the expected value, i.e., 1, from
the duality, Eq. �1� relation. For comparison we have also indicated the data corresponding to a discoidal inclusion ���. �d� Maps of the
FDTD-calculated electric field vector norm �Ex

2+Ey
2. The inclusion is the third iteration of the SQ with �1=1 and �2=10. The local field

vector norm is normalized to the source electric field vector norm and is indicated by color as defined in the color bars. �2=0.18.
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the iteration number �n=0 corresponds to the primitive �gen-
erator� equilateral triangle for KS and ST and to the �genera-
tor� primitive square for SQ�. Furthermore, our calculations
show that the relative change of p̃��2 between n=0 and any
arbitrary value of n can be expressed as p̃0

��20
=s�n�p̃n

��2n. Now, an essential ingredient of fractal struc-
tures is self-similarity under scale changes. These elementary
considerations lead us to introduce the following relation:

�0�p̃0
��20� = �n�s�n��p̃n

��2n�� , �3�

where �n is the permittivity for iteration number n. As indi-
cated by Eq. �3�, the behavior of the permittivity versus it-
eration number of the fractal structure can be used to obtain
a single master curve. This inference is confirmed on the
graph of Figs. 3�b�, 4�b�, and 5�b� for at least the first three
iterations of the fractal patterns. To within the accuracy of
our calculations a satisfactory collapse is obtained for all the
data as shown in these figures.

We now turn to the effect of phase interchange on �.
The graphs displayed in Figs. 3�c�, 4�c�, and 5�c� show that

�̃=
�y�10,1��x�1,10�

10 is close to unity only in the dilute limit ��2


0.15�. By contrast, the simulation results for �2�0.15 dis-
agree with duality predictions as shown in Figs. 3�c�, 4�c�,
and 5�c�. Remarkably, we find that the enhancement of �̃
relative to 1 can be substantial, i.e., �5–10% for �2=0.5.
Why does this happen? First, we recall that for a perfectly
discoidal particle in the dilute limit only the dipole interac-
tion contributes to the polarization. In the �2�0.15 region
the occurrence of structurally induced multipoles leads to
other length scales and, hence, to other conditions that must
be satisfied in order to physically describe the quasistatic
limit of the polarization mechanisms. It is pertinent to under-
stand the origin of the apparent conflict between the FDTD

simulations of � and the duality symmetry so ubiquitously
claimed to play an important role in 2D composite materials.
Since in the most basic models �MG and SBG descriptions�
there is an implicit averaging whose effect is to render the
composite to be both translationally and rotationally invari-
ant, these equations are unable to describe the numerical re-
sults outside the dilute limit region. Failure of the mean-field
analysis of � can be also confirmed from Figs. 3�d�, 4�d�, and
5�d�, which show simulation results for the local field distri-
butions. A close look at the spatial field distributions reveals
significant enhanced fields �hot spots� which are localized to
the perimeter of the heterostructures. Thus, one confirms that
the electric field is nonuniform inside the inclusion, thus pre-
cluding the application of effective medium theory such as
that represented by the SBG equation for describing the di-
electric properties of composite materials containing irregu-
larly shaped inclusion.

The analysis presented above is relevant to any composite
material that contains fractal inclusion. However, several
points should be noted. �i� A basic characteristic of fractal
structures is the Hausdorff dimension df �Table I�. Typically,
it is a measure of how complicated a self-similar structure is.
What appears to be remarkable is that our results are in fair
agreement with the similarity relation, Eq. �3�, for the three
structures having very different values of df and morpholo-
gies, i.e., the KS is connected in the sense that it does not
have any breaks or gaps in it, while the ST and SQ are
perforated. Because df for the KS is much closer to unity
than for the ST and SQ as can be seen in Table I, we expect
that a stronger influence of the corrugated perimeter rather
than the surface area happens. This might help to explain
why there are only modest differences in � between the it-
erations, as seen in Fig. 3�a�, when it is plotted as function of
�2, whereas an ordered progression of the � vs p̃��2 curves
can be observed in Fig. 3�b�. �ii� We note a limitation on our

TABLE I. Relationships for geometric parameters of the topological structures considered in the present work: P, K, and df denote the
perimeter, surface area, and Haussdorff dimension, respectively, n is the number of iteration, and R is the radius of the circumscribed disk
containing each inclusion. The perimeter to surface ratio is p̃= P

K . We also define the function g as g�n�=1+�k=1
n 4k−1� 1

3
�2k−1 for n�1, with

g�0�=1.

Inclusion
shape

Total area after the nth
iteration: R−2Kn R−2K�

Perimeter after
the nth iteration:
R−1Pn R−1P�

Similarity ratio:

s�n�=
p̃0

��20

p̃n
��2n

Hausdorff
dimension: df

KS
3�3

4
�1 +

3

5
�1 − �4

9
�n	
 6�3

5
3�3��4

3
�n	 �

�4

3
�−n

�g�n� df =
log 4

log 3
� 1.26

ST
3�3

4
��3

4
�n	 0

3�3��3

2
�n	 � �3�−n/2 df =

log 3

log 2
� 1.59

SQ
2��8

9
�n	 0

4�2

5
�4 + �8

3
�n	 �

5� 8n/2

4�3n� + 8n� df =
log 8

log 3
� 1.89
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numerical technique that prevents us from probing the simi-
larity transformation for n is larger than n*. When n�n*, the
perimeter of the inclusion in the composite material becomes
very large, presumably larger than the dimension of the
sample and the wavelength. Thus, we are unable to unam-
biguously determine the effective permittivity in the fre-
quency range considered. To give a concrete example, it is
easy to check that for the KS, the lower limit n* is typically
of the order of

ln� c

3�3Rf
�

ln�4

3
�

which is approximately equal to 10 for the largest value of
�2 investigated. However, as n�4 the large uncertainties in
the calculated value of the perimeter may be critical for an
accurate check of the similarity transformation by direct
comparison with the values of s�n� given in Table I. �iii� In
the calculations reported here we have considered lossless
composite systems, but the analysis can be easily modified to
account for the absorption loss. In this case the response of
the dielectric heterostructure to an oscillating electric field is
expressed in terms of a complex effective permittivity �
=��− j��. Details will be reported in a future publication
�22�.

IV. CONCLUSIONS

In summary, the effective permittivity of two-dimensional
two-phase lossless heterostructures with inclusion of deter-
ministic fractal geometry has been investigated in detail via
FDTD simulations. Remarkably, we found that a similarity
transformation offers a direct rationalization for the permit-
tivity as a function of the iteration number of the fractal
pattern. However, there are quantitative differences between
our numerical results and those expected from the duality
symmetry, a subject worthy of further study. Our results con-
firm that the morphology dependence of permittivity in these
heterostructures is governed by the concomitant changes in
surface area and perimeter. However, the physics behind

these empirical relations is unclear as indicated by the gen-
eral lack of comparisons with experimental reports.

At the coarse grain level description of this work, we
expect the results presented here to have general implications
in applications ranging from dielectric characterization of
pathologic biological tissues for cancer research �23�, and
development of artificial materials with electromagnetic re-
sponse driven by surface �interface� phenomena, e.g.,
magneto-electric nanostructures �24�. It should be noted that,
although the method developed here is a useful extension of
the previous analysis that helps to account for potential in-
fluences of the inclusion shape on the dielectric properties of
composite materials, two additional factors may also be im-
portant. First, our next goal is to consider random distribu-
tions of inclusions with such complex geometries and to in-
vestigate the equilibrium effective dielectric properties. This
requires a statistical approach. In this context, the recent re-
sults of Refs. �25,26� for random �continuum� distributions
of disks in a plane assume a particular significance. In these
random materials, multiple interactions result in a litany of
new behavior. Interestingly, some of these interactions can
eventually compete with the surface �interface� effects de-
scribed in the current paper and will produce rich dielectric
properties. Second, almost all analyses to date have ignored
the fact that the permittivity of each constituent in the com-
posite is frequency dependent, i.e., dispersive material. De-
spite the inherent computational difficulties such calculations
would be highly desirable to investigate how frequency in-
fluences the nature of the local-field enhancement around the
inclusion. Finally, our study points toward the possibility of
employing physics-based knowledge of dielectric hetero-
structures to build relevant structures for engineering appli-
cations, e.g., fractal antennas �27�, or mesoporous low-
permittivity materials, which will be used as interlevel
dielectrics for the next generation of monolithic microwave
integrated circuits �28�.
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