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Segregation of large granules in a vibrofluidized granular bed with inhomogeneous granular number density
distribution is studied by an event-driven algorithm. Simulation results show that the mean vertical position of
large granules decreases with the increase of the density ration of the large granules to the small ones. This
conclusion is consistent with the explanation that the net pressure due to the small surrounding particle impacts
balances the large granular weight, and indict that the upward movement of the large granules is driven by the
buoyancy. The values of temperature, density, and pressure of the systems are also computed by changing the
conditions such as heating temperature on the bottom and restitution coefficient of particles. These results
indicate that the segregation of large granules also happen in the systems with density inversion or even
close-packed cluster of particles floating on a low-density fluid, due to the buoyancy. An equation of state is
proposed to explain the buoyancy.
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I. INTRODUCTION

Granular matter is composed of many pieces of grains
that can move independently. In the past two decades, it has
attracted a large amount of research attention �1�, and is be-
coming one of the most active research fields. In addition to
its importance in industries and its ubiquitous existence in
nature, this is attributed to the unique properties of granular
matter. While the granular matter shares many properties
with solids, liquids, or gases, it cannot be simply classified as
anyone of them, i.e., it should be considered as an additional
state of matter in its own right. Therefore, beyond the stan-
dard statistical mechanics, hydrodynamics, or traditional
solid mechanics, unique theoretical ideas are required.

Segregation phenomena exist extensively in granular ma-
terials of different species. For instance, in a vibrated granu-
lar system, depending on subtle variations in physical condi-
tions, large particles can rise to the top, sink to the bottom, or
show other patterns. The first two are known as “Brazil Nut
effect” �2� and “anti-Brazil Nut effect,” respectively.

Many experimental, numerical, and analytical techniques
have been applied to probe segregation. For a recent review,
see Ref. �3�. The underlying reason for segregation is the
dissipative nature of the granular matter, arising from the
frictional forces among grains. Nevertheless, segregation has
been shown to be a complex phenomenon �1�. Many factors,
associated with external physical conditions or particle-
specific properties, can play significant roles in segregation.
These factors include the frequency and amplitude of vibra-
tion �4–11�, the nature of interstitial air, the size
�2,4,6,7,10,12–14� and size distribution of granular particles
�11,15�, the shape of particles �16�, and other properties such
as density �13,14,17–25�, elasticity �11�, and others such as
the nature of interstitial air �20,21,26�. As a consequence,
albeit the Brazil Nut effect has been observed for decades, a

completely satisfactory explanation still seems absent �3,27�.
A variety of mechanisms has been proposed for segrega-

tion. The corresponding theoretical models include the void
filling �2�, the arching �4�, the inertia �18,22,25�, the global
convection models �5�, and the condensation models �25�,
etc. Naturally, each of these models involves a number of
assumptions. While these assumptions may be plausible in
some cases, they can be invalid in other cases. For instance,
the “void filling” mechanism, which states that the upward
movement of large particles in the Brazil Nut effect is due to
the higher probability of the void filling by small particles,
neglects the function of global-convection motions that can
be important in some cases �5�.

Recently, segregation was investigated in the dilute vibro-
fluidized regime �14�. In contrast to the dense regime where
enduring contacts of multiple particles dominate, particles in
vibro-fluidized granules are sufficiently agitated such that the
main particle interactions are two-particle collisions and sus-
tained contacts rarely occur. Using the discrete element com-
puter simulations, Shishodia and Wassgren investigated an
intruder model system in a two-dimensional vibrofluidized
bed �14�. The large particle, namely the intruder, was ob-
served to rise approximately to an equilibrium height and
then fluctuate about that height. The equilibrium height was
measured as a function of a variety of parameters, including
the vibration amplitude, the mass density ratio of the intruder
to the surrounding small particles, and the diameter ratio, etc.
Instead of the mechanism mentioned in the previous para-
graph, it was reported that segregation can be explained by a
balance between the intruder weight and the net granular
pressure, or “buoyant” forces within the vibro-fluidized bed.
The quantitative agreement of the theoretical predictions and
the simulation results is more or less satisfactory.

In the work of Shishodia and Wassgren, the spatial distri-
bution of the surrounding small particles was considered to
be homogeneous. However, the inhomogeneity of spatial dis-
tributions of particles in vibrofluidized granules occurs more
frequently than homogeneity. The density inversion and one
of its limiting cases, the close-packed floating clusters, were*E-mail: xianqyang@sina.com.cn
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reported in both simulations �28–31� and experiments
�32–34�. There is no guarantee that, although plausible, the
buoyancy mechanism is mainly responsible for segregation
in a vibrofluidized bed in which the small particles are non-
uniformly distributed. In particular, the theoretical methods
in Ref. �14�, which were used to calculate the equilibrium
height of the intruder, have to be adjusted or improved. A
systematic investigation seems justified.

The organization of the present paper is as follows. In
Sec. II, we employ the event-driven �ED� algorithm �35� to
simulate the intruder model system in a two-dimensional vi-
brofluidized bed. The granular particles are fluidized by a
rapidly vibrating bottom plate, which, together with the grav-
ity field, results in an inhomogeneous vertical distribution of
the small particles. Various quantities, including the equilib-
rium height of the intruder�s�, the granular temperature, the
granular pressure and its gradient, are measured or calcu-
lated. Section III presents a theoretical model for the segre-
gation phenomena observed in Sec. II; a comparison of the
theoretical prediction and the simulation results is made. A
brief discussion is given in Sec. IV.

II. SIMULATIONS

The simulated granular materials consist of N1 disks of
diameter d1=2 mm and N2 disks of d2=6 mm; the corre-
sponding mass densities are denoted as �1 and �2, respec-
tively. The present work focuses on the case N1�N2, i.e., the
intruder model system. The particles are restricted to move in
the x-y plane, with gravity acceleration g acting in the nega-
tive y direction. They are placed within a frictionless infi-
nitely high well with width Lx=0.2 m in the x direction; a
driving base is located at y=0 in the vertical direction. The
fluidized state of the particles is obtained by colliding with
the vibrating bed that oscillates with high frequencies and
small amplitudes: there is no other direct coupling between
the vibration bed and the collective granular motion. Thus,
instead of specifying frequency and amplitude for the oscil-
lating bed, one can characterize the extent of vibrofluidiza-
tion by a granular temperature for an immobile bottom plate
�the definition of the granular temperature will be given
later�, say T0. Immediately after colliding with the base, the
velocity of a particle is given from a Maxwell distribution
with temperature T0 �measured in the units of energy�. Then,
the kinetic energy is gradually lost by inelastic hard-core
collisions with other particles and with the walls of the well.
The particle-particle and particle-wall coefficients of restitu-
tion were set identical, and are denoted as r.

First, we simulated granular of N1=1200 and N2=20. The
restitution coefficient was set at r=0.90 and the temperature
of the bottom plate was T0=1.44. The density of small par-
ticles was taken as �1=1.0 g/mm2, and �2 was varied. Initial
simulations of about 1�104 collisions per particle are dis-
carded for the transients to die out. For ratio �2 /�1=0.4, 1.0,
and 2.0, the corresponding typical configurations of the par-
ticles are shown in Figs. 1�a�–1�c�, respectively. These sug-
gest that the relative vertical positions of the larger particles
�intruders� to those of the smaller ones �host particles� de-
pend on their mass-density ratio �2 /�1. For �2 /�1�1, the

Brazil Nut Effect occurs, namely, the intruders float to the
top; for �2 /�1�1, the intruders sink to the bottom, the anti-
Brazil Nut Effect; for �2 /�1=1.0, the larger particles almost
stick around the middle of the well. Figures 1�a�–1�c� also
show that the vertical distribution of small particles are not
homogeneous: near the bottom and the top of the bed they
are dilute while they are rather dense in the middle of the
bed. As the number of the intruders is small enough, effects
of the intruders on the distribution of the small particles can
be neglected. Thus, the inhomogeneity is independent of the
presence of the intruders.

The time-averaged vertical positions of the intruder par-
ticles and those of the host particles were measured. The
ratio �y2� / �y1� is shown in Fig. 2�a�, as a function of the ratio
�2 /�1. This indicates that the ratio �y2� / �y1� is a monotoni-
cally decreasing function of ��2� / ��1�. For �2 /�1=1, the
value of the ratio �y2� / �y1� is roughly 1. Only for rather large
�or small� values of �2 /�1 do the intruders sink to the bottom
�or rise to the top� of the bed. In comparison of these results
with those in Refs. �14,24,36�, we conclude that the segrega-
tion of intruders from the inhomogeneously distributed host
particles is also driven by buoyancy: balance of the gravity
force and the “buoyant” forces owning to the interparticle
collisions. Nevertheless, a quantitative theory is still desired,
since the distribution of host particles is no longer uniform as
in Refs. �14,24,36�.

Next, for a quantitative description of the inhomogeneity
of the host particles, we simulated the vibrofluidized bed
with N2=0, i.e., the absence of the intruder. To obtain the
number density of small particles, we divide the two-
dimensional box into several small domains in the y direc-
tion and then calculate the number of small particles in every

FIG. 1. Three typical configurations of a bed with N1=1200 and
N2=20 for different values of �2 /�1=0.4 �a�, 1.0 �b�, and 2.0 �c�.
The restitution coefficient r=0.90, and the base temperature T0

=1.44. The data are obtained after 104 collisions pre-particle.
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small domain. Let n denote the number density of the small
particles. Further, the granular temperature of particles as the
height increasing within the bed was calculated to character-
ize granules in the vibrofluidized limit. We define the granu-
lar temperature T of the particles as

Tx,y =
m

2
��vx,y

2 � − �vx,y�2� , �1�

where vx,y is the velocity of the small particles in the x di-
rection or the y direction and the angular brackets represent
the statistical average over configurations arising from differ-
ent initial particle distributions. Owning to the vector nature

of the velocity, the temperature T is not a scalar in vibrated
systems either, and equipartition of energy is not observed
�33�. Therefore, Tx and Ty are not equal. Here, we focus only
on velocity in the y axis and obtain the temperature in the
vertical direction Ty. Figure 3 shows the number density of
particles and the granular temperature as a function of the
height y. As expected, the particles are not homogeneously
distributed: dilute on the top and at the bottom of the well,
and dense in the middle. Namely, the particle density inver-
sion is observed. But, granular temperature exhibit different
behavior: Ty decreases with the height monotonically. There-
fore, in the case of uniformity of the small particles and
monotonically decreasing of granular temperature, we would
wonder why the value of ratio �y2� / �y1� shows linearly de-
creasing, as seen in Fig. 2�a�.

FIG. 2. �a� The ration �y2 /y1� as a function of the density ratio
�2 /�1 for d2 /d1=3.0. The restitution coefficient r=0.90, and the
base temperature T0=1.44. The data are obtained after 104 colli-
sions per particle. �b� compares vertical positions of intruders ob-
tained by Eqs. �6� and �7� �open circle� with the simulations �solid
circle�. The restitution coefficient r=0.90, and the base temperature
T0=1.44. The data are obtained after 104 collisions per particle.

FIG. 3. �a� The particle number density n�y� versus the height y
with different restitution coefficient r. The particle diameter d
=2 mm, density �=1.0 g/mm2, the base temperature T0=2.25, the
number of particle N=2000. �b� shows that the granular temperature
Ty �scaled by units of energy� versus the height y with different
restitution coefficient r. The particle diameter d=2 mm, density �
=1.0 g/mm2, the base temperature T0=2.25, the number of particle
N=2000.
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As buoyancy dominates, net pressure is from particle col-
lisions in the vertical direction. Suppose there is a number of
horizontal walls which do not exist actually and are only
considered as test surfaces, and collisions between particles
and the walls are elastic. If a particle with vertical velocity vy
touches the wall, the difference of the momentum of the
particle after and before the collision is

− mivy − mivy = − 2mivy , �2�

and the impulse of particle exerted by the wall in the vertical
direction is 2mivy, according to the second law. To calculate
the collisional vertical stresses, let us consider the number of
particles colliding with one wall locating at yl in a time in-
terval �t. We define an average vertical velocity vy of par-
ticles within the region �yl−d ,yl+d�, where d denotes the
radius of the small particles, thus the average time interval is
�t=d /vy. If colliding with the wall, particles above the wall
satisfy

viy � 0, yl � yiy � yl + �viy�t� , �3�

and particles below the wall have

viy � 0, yl − �viy�t� � yiy � yl. �4�

Therefore, the total impulse of particles exerted by the
wall is �2miviy, where the summation is over all collisions
occurring in time �t. Then, the net force acting in the vertical
direction reads

F =
� 2miviy

�t
, �5�

and the net pressure in the vertical direction is

P =
F

Lx
. �6�

On the basis of the above equation, one can compute the
distribution of the net pressure within the bed. Figure 4
shows the pressure versus the height y, which suggests that
the pressure distribution is also inhomogeneous. The pres-
sure increases rapidly with the increase of the height y in the
region where the value of the height is below about 0.015 m;
while the value of the height is above about 0.015 m, net
pressure decrease monotonically with the increase of the
height. As we know, the pressure distribution given here is
different from that obtained in a vibrofluidized bed where the
pressure increases with increasing depth from the free sur-
face of the bed and reaches a maximum at the floor �14�. In
the work of Shishodia and Wassgren, two modes including
the “streaming” mode and the “collisional” mode have been
taken into account because the systems investigated there
have flow states. But, here we only consider collisions be-
tween particles.

At equilibrium, the net vertical force acting on an intruder
due to collisions with the surrounding particles will balance
with the intruder’ weight. Thus, equating the net pressure
force with the weight gives

Pd2 = m2g , �7�

where m2 and d2 are the mass and the diameter of the in-
truder, respectively.

In the vibrofluidized limit, it is plausible that the presence
of some intruders does not change the pressure distribution
of host particles. Then, Eqs. �5�–�7� yield the equilibrium
position of the intruder, as long as the density �2 is given.

On the other hand, the pressure distribution given by Eq.
�6� in the case of density inversion can be checked by calcu-
lating the equilibrium position of the intruder. As shown in
Fig. 4, there are two heights at which the net pressure force
balances the intruder weight. But, near the bottom of the bed,
that is y�0.015 m, granular temperature is very high, and
particles are very dilute, as seen in Fig. 3, therefore the po-
sition of the intruder below about 0.015 m becomes unstable
due to intensive perturbation of surrounding small particles
to the intruder. The stable position of the intruder is only
above the height about 0.015 m. For given density of in-
truder particles, according to Eq. �7�, the net pressure balanc-
ing the weight of the intruder can be obtained. Therefore the
expected equilibrium positions of the intruder corresponding
to the net pressure can be estimated with the aid of Fig. 4.

Figure 2�b� compares the equilibrium positions of the in-
truder particles predicted by the net pressure, with the equi-
librium positions found in simulations with different density
ratios between large intruder particles and small host par-
ticles. As shown in Fig. 2�b�, open circles correspond to the
equilibrium position of the intruder particles predicted by
Eqs. �6� and �7�, and solid circles represent the equilibrium
positions of the intruders obtained from simulations. One can
see that the agreement between simulations and the net pres-
sure predictions is very good. The near linear dependence of
the equilibrium position on the density ratio occurs due to
the approximately linear varies of the net pressure with the
height.

FIG. 4. The pressure P versus the height y with different resti-
tution coefficient r. The particle diameter d=2 mm, density
�=1.0 g/mm2, the base temperature T0=2.25, the number of
particle N=2000.
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Figures 3 and 4 also show the particle number density n,
the granular temperature Ty, and the net pressure distribu-
tions by changing restitution coefficient of granular r. In Fig.
3�a�, the particle number density increases with the increase
of the height y, to a maximum, and then decrease with fur-
ther increase of height y. The particle number density inver-
sion happens. As the restitution coefficient r is suppressed,
the value of n�y� increases for a fixed height y, and the
height y of the highest number density shifts toward the left.
Moreover, Fig. 3�a� shows that the maximum value of n�y�
increases when r is reduced. When the value of r is about or
below 0.85, the maximum value of n�y� does not further
increase. In this case, a close-packed cluster occurs. the
granular temperature Ty is shown in Fig. 3�b�, which sug-
gests that the value of Ty is the highest on the base, and
monotonically decreases with the height. Further, as ex-
pected, the value of Ty ascends when r is enhanced. Figure 4
shows the net pressure as a function of y for several values of
r: the value of the pressure monotonically decreases with that
of y. Thus, if an intruder is placed in the system, the equi-
librium position rises with the decrease of its density; in the
case of the close-packed cluster, the intruder can rise across
the top if its density is sufficiently small.

Figure 5 shows the net pressure P�y� for several values of
the base temperature T0. It is suggested that, for a given
height y above a certain value, increasing T0 would raise the
value of the pressure P. Further, the granular temperature Ty
and the impulse of particle collisions increase when T0 goes
up, because more energies can be obtained from the environ-
ment. As a result, the net pressure obtained from Eq. �6�
increases with the increase of the base temperature. There-
fore, when an intruder is in the system, its equilibrium posi-
tion will rise with the decrease of its density, because of a
balance between the intruder weight and the net granular
pressure.

III. A THEORETICAL MODEL

The above simulation results indicate that no mean flow
of macroscopic grains exists in the system of density inver-
sion or close-packed cluster. In this case, the molecular chaos
assumption breaks down, and the Navier-Stokes granular hy-
drodynamics �NSGH� is not applicable. Recently, using free
volume arguments in the vicinity of the hexagonal packing,
Grossman et al. �30� derived an equation of state �EOS� P
= P�n ,Ty�, describing almost close-packed floating cluster.
The EOS reads

P = nTy
nc + n

nc − n
, �8�

where nc=2/ �	3d2� denotes the close-packing density, n is
the particle number density, Ty represents the granular tem-
perature, and P is the pressure. Then, a variant of the NSGH
was proposed to describe the density inversion or the almost
close-packed floating clusters �31�. A very good agreement
between the number density obtained by this hydrodynamics
and molecule dynamics �MD� simulations was obtained in
Ref. �31�. Therefore, we believe that Eq. �8� is also suitable
for characterizing our model.

Figure 6 compares the net pressure, predicted by the EOS
�open circle curve�, with the pressure obtained by simula-
tions �solid circle curve� with N=2000 of particles with di-
ameter d=2 mm, density �=1.0 g/mm2, r=0.95 and the
temperature at base T0=0.64. Here we do not intend to work
out the constitutive relations �CRs� proposed in Refs.
�30,31�, and only calculate the P by replacing n�y� and Ty�y�
in Eq. �8� by simulations shown in Fig. 3. One can see that
the agreement between the EOS and simulations is surpris-
ingly good.

FIG. 5. The pressure P versus the height y with different values
of the base temperature T0. The particle diameter d=2 mm, density
�=1.0 g/mm2, the restitution coefficient r=0.95, the number of
particle N=2000.

FIG. 6. The pressure P versus the height as predicted by the
EOS �open circle curve�, and obtained by simulations �solid circle
curve� with N=2000 of particles with diameter d=2 mm, density
�=1.0 g/mm2, r=0.95 and the temperature at base T0=0.64.
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The results shown above indicate that the vibrofluidized
steady state, considered in this work, has zero mean flow.
Accordingly, in Sec. III, the method for computing the net
pressure which only considers collisions between particles
and ignore the “streaming” mode, is successful. Although the
buoyancy dominate size segregation in both the model pro-
posed by Shishodia and Wassgren and us, the origin of buoy-
ant forces in our model is different from that in Ref. �14�.
Thus, these results also indicate that buoyant forces which
drive the size segregation come neither from differences in
the local granular temperature �37�, nor from convection trig-
gered by the dynamically created temperature gradient �38�,
in presence of density inversion, or almost close-packed
floating cluster. Instead, it is from particle collisions in the
vertical direction.

IV. CONCLUSIONS

Size segregation of large granules from the small ones has
extensively been studied in systems where the spatial distri-
bution of the surrounding small particles is homogeneous. In
this paper, we used an event-driven algorithm to investigate
the size segregation of intruder large particles from small
particles with an inhomogeneous particle number density.
Simulation results exhibit that the mean vertical position of
large granules decreases with the increase of the density ra-
tion of the large particles to the small ones. The pressure of
granular system due to the surrounding small particle im-
pacts has been calculated. One can see that the pressure de-
creases with the increase of the height. With the aid of the
pressure, the equilibrium position of the intruders can be
derived and gives an agreement with the simulation results.
Therefore, the upward movement of the large granular is
driven by the buoyancy.

The values of temperature, small particle number density,
and pressure of the systems are also computed by changing
the conditions such as temperature of the thermal base and
restitution coefficient of particles. These results indicate that
the segregation of large intruder granules also happen in the
small surrounding particle systems with density inversion or
even close-packed cluster of particles floating on a low-
density fluid, due to the buoyancy.

The simulation results here indicate that an intruder will
move to an equilibrium position within the bed such that the
net pressure balances the particle weight. This conclusion
looks like the results obtained in Ref. �14�. In fact, our model
is different from one presented in Ref. �14�. In Ref. �14�, an
intruder moves to top in the homogeneous vibrofluidized
bed. However, in this paper, we discuss that intruders are in
the nonhomogeneous systems, even in the case of the density
inversion or close-packed floating cluster. The cause of
buoyant forces in our model is also different from that of-
fered in Ref. �14�. On the other hand, only an intruder’s
equilibrium position can be predicted from the granular pres-
sure profile. In the paper, the pressure profile cannot only be
used to predict intruders’ equilibrium position, but can be
explained by an equation of state.
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