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Persistent random walk on a site-disordered one-dimensional lattice: Photon subdiffusion
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We study the persistent random walk of photons on a one-dimensional lattice of random transmittances.
Transmittances at different sites are assumed independent, distributed according to a given probability density
f(2). Depending on the behavior of f(¢) near t=0, diffusive and subdiffusive transports are predicted by the
disorder expansion of the mean square-displacement and the effective medium approximation. Monte Carlo
simulations confirm the anomalous diffusion of photons. To observe photon subdiffusion experimentally, we
suggest a dielectric film stack for realization of a distribution f(z).
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I. INTRODUCTION

Random walks figure prominently in a multitude of dif-
ferent physical problems. This is exemplified by such diverse
fields as the polymer physics [1], crystallographic statistics
[2,3], transport in disordered media [3-5], bacterial motion,
and other types of biological migration [6].

Random walks with correlated displacements model a
host of phenomena. For example, the vacancy mechanism of
atom diffusion in solids incorporates a correlation effect,
since an atom has a larger probability to move backward to
the hole it just vacated rather than onward [7]. Correlations
also arise in diffusion of guest molecules in zeolite channels
[8], electron hopping in Coulomb glass [9], motion of exci-
tons at low temperatures in mixed naphthalene crystals [10],
etc. Among the correlated walks, the persistent random walk
is possibly the simplest one to incorporate a form of momen-
tum in addition to random motion [3,4]. In its basic realiza-
tion on a one-dimensional lattice, a persistent random walker
possesses constant probabilities for either taking a step in the
same direction as the immediately preceding one or for re-
versing its motion. First introduced by Fiirth as a model for
diffusion in a number of biological problems [11], and
shortly after by Taylor in the analysis of turbulent diffusion
[12], the persistent random walk model is now generalized to
study, e.g., polymers [13], chemotaxis [14], cell movement
[15], and general transport mechanisms [16,17].

Recently, the persistent random walk model is utilized in
the description of diffusive light transport in foams [18-22]
which is well established by experiments [23]. A relatively
dry foam consists of cells separated by thin liquid films [24].
Cells in a foam are much larger than the wavelength of light,
thus one can employ ray optics and follow a light beam or
photon as it is transmitted through the liquid films with a
probability ¢ called the intensity transmittance. This naturally
leads to a persistent random walk of the photons. Special
attention is paid to the light transport in the ordered honey-
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comb and Kelvin structures, which have been used for an
analytic access to the physical properties of disordered foams
as exemplified by work on their rheological behavior [25].
Symmetries of hexagonal and tetrakaidecahedral cells allow
identifying specific one- and two-dimensional random walks,
which are absent in disordered foams [18,21]. Moreover, in a
first model, it is assumed that intensity transmittance does
not depend on the incidence angle of photons and film thick-
ness. Nevertheless, analytical treatment of these peculiar and
simple random walks facilitates interpretation of Monte
Carlo simulations, in which topological disorder of foams
and exact thin-film intensity transmittance are taken into ac-
count [19,21].

In the ordered honeycomb (Kelvin) structure, the one-
dimensional persistent walk arises when the photons move
perpendicular to a cell edge (face). Thin-film transmittance
depends on the film thickness. Films are not expected to have
the same thickness. These observations motivates us to con-
sider persistent random walk on a one-dimensional lattice of
random transmittances. We assume that transmittances at dif-
ferent sites are independent random variables, distributed ac-
cording to a given probability density f(z).

Our first approach to the problem is based upon a disorder
expansion of the mean square-displacement due to Kundu,
Parris, and Phillips [26]. Assuming that (1/¢)=[}f(t)/tdt is
finite, we validate the classical persistent random walk with
an effective transmittance f,, where 1/t,,=(1/t). Inspired
by this result, we generalize the effective medium approxi-
mation (EMA) formulated by Sahimi, Hughes, Scriven, and
Davis [27,28] to investigate the transport on a line with in-
finite (1/7). We show that if f(z)— f(0) as t—0, the mean
square-displacement after n steps is proportional to n/In(n).
If f(r) ~f,r7® (0<a<1) as t—0, we find that the mean
square-displacement is proportional to n>2®/2=%_ Qur
Monte Carlo simulations confirm the anomalous diffusion of
photons. Quite interesting, we find that anomalous diffusion
of persistent walkers and hopping particles on a site-
disordered lattice [27-29] are similar. Finally, for the experi-
mental observation of the photon subdiffusion, we suggest a
dielectric film stack to realize small transmittances.
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Our paper is organized as follows. In Sec. II we introduce
the model. The perturbative approach and the effective me-
dium approximation are discussed in Secs. III and IV, respec-
tively. The numerical treatment and its results are reported in
Sec. V. We close with a discussion of our results and conclu-
sions in Sec. VL.

II. MODEL

We consider a one-dimensional lattice random walk in
which steps are permitted to the nearest neighbor sites only.
We normalize the length and duration of a step to 1. At each
site j, a walker either takes a step in the same direction as the
immediately preceding one with a probability #;, or reverses
its motion with a probability r;=1-1. Here we assume sym-
metric transmittances, i.e., lijr1=tij-1=t;, as the transmit-
tance of a thin-film is the same whether the light ray is going
to the right (+) or to the left (—) direction.

We assume that (i) transmittance at each site is a random
variable, (ii) transmittances at two different sites are inde-
pendent, (iii) transmittances at all sites are distributed ac-
cording to a given normalized probability density f(7). Ap-
parently | éf(t)dt: 1. For any function A(t), we define (h(r))
= [sh(Df(1)dr.

We denote by P*(n,j)(P (n,j)) the probability that the
walker after its nth step arrives at site j with positive (nega-
tive) momentum. A set of two master equations can be es-
tablished to couple the probabilities at step n+1 to the prob-
abilities at step n:

Pr(n+1j) =t P (nj-1)+r,_ P(nj-1),

P (n+1j)=rj P (nj+ 1)+t P (nj+1). (1)

For the description of the photon distribution on the line,
we do not need to specify the internal state (*) explicitly.
That means we are mainly interested in the probability that
the photon arrives at position j at step n,

P(nj) = P*(nyj) + P~(ny), 2)
from which we extract the first and second moments after n
steps as the characteristic features of a random walk:

= <21P(nJ)>,

J
(= <212P<nj>>. G
J

Here the first bracket represents an ensemble average over all
random transmittances, and the second bracket signifies an
average with respect to the distribution P(n,j).

One obtains the classical persistent random walk assum-
ing a constant transmittance ¢ at each site. Translational in-
variance of the medium is then invoked to deduce the exact
solution of P(n,j) in the framework of characteristic func-
tions (the spatial Fourier transforms of probability distribu-
tions) [3,4]. Furthermore, the mean square-displacement of
photons after n— o0 steps can be obtained as
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Considering a lattice of random transmittances with an
almost narrow distribution f(¢), one may intuitively expect
normal diffusion of the photons, and the validity of Eq. (4)
with an effective transmittance (). However, a closer inspec-
tion reveals that even a few sites with small transmittances
(large reflectances) may drastically hinder the photon diffu-
sion: In the extreme limit where two transmittances are zero,
photons are confined between two sites. This peculiar aspect
of diffusion on a one-dimensional lattice rules out the above
guess. In the following section, we present a sound perturba-
tive approach to the problem.

III. SYSTEMATIC DISORDER EXPANSION OF MEAN
SQUARE-DISPLACEMENT OF THE PHOTONS

Many of the approaches to the transport in disordered
media have the disadvantage of being restricted to one-
dimensional problems. Here we adopt the method of Kundu
et al. [26], which is applicable to two- and three-dimensional
media. We obtain a series of approximate solutions for pho-
ton transport on a disordered line by transforming the master
equation (1) to an equivalent but more appropriate integral
equation for the characteristic function

[

P*(n,0)= 2 P(nj)e"”. (5)

j:—oo

This crucial step can be achieved utilizing the generalized
generating functions

P*(n,0) = 2 ;P*(nj)el”, (6)
j

as will be shown in the following.

First we simplify the set of coupled linear difference
equations (1) using the method of the z-transform [3,30] ex-
plained in Appendix A:

Pzj)  P(n=0)
Z Z

=t Pz = 1) +ri P (zg - 1),

P (z.j) B P (n=0y) _ I‘J-+1P+(Z,j +1)+ tj+1P_(Z,j+ 1).
(7

We assume the initial conditions P*(n=0,j)=P (n=0,j)
=8 0/2. Now we multiply both sides of (7) with exp(ij @) and
sum over j, which leads to

P*(z,0 P*(z,0
M3(z,0)( e ))=M2(6v)(~ (< )>+M1(z>, (8)

Z Z

P (z,0) P(z,0)
where
1 .
_ _ 6“9
Z
M3 (Z’ 0) = 1 >
_ei0 =
Z
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o0 _ i
M,(0) = (_ o0 i0 )9
M,(z) = : )

Thus P*(z,6) can be easily expressed in terms of P*(z, 6).
From Egs. (5) and (6)

1 _ .
P*(z) = 5— f P(z, p)e %d
2t )

P*(z,0)=2ﬁ f P(z,p)e "% ¢, (10)
J JjJ -

hence we can immediately transform Eq. (8) to an equivalent
integral equation for P(z, 0). It reads

(< 1> -M;'(z 0)M2(0))(§ EZ’ 0)) =M;'(z, M, (z)

z,0
_ E AL " e i(¢-0) E)Jr(z’ ) de, (11)
j 2w P (z,¢)

where the random variable A; is defined as

1 1
sei-(3) "

and I is the identity matrix. Note that two assumptions, that
none of the transmittances is zero, and (1/¢) is finite, are
required for the validity of Egs. (10)—(12).

Successive approximations to the solution of integral
equation (11) can be generated by the iteration method. Then
ensemble averaging over the random transmittances is
straightforward. We use the identity (A;)=0 and the assump-
tion

<AJAJI> = 6jj’A2’ (13)
to obtain the leading terms:
P*(z,0 .0
(~ @ )) = (1+A°M,(z 0))( Pz )) (14)
P (z,0) Py(z.0

where matrix My(z, @) is given in Appendix B,

Bolz,0) = — Z(<%>ei"—2c<)s <%>
R

and * denotes the complex conjugation.
The task is now calculating (P*(z, #)) from Eq. (8), and
using the identity

(15)
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la’P(z,O)‘ Goia ) ()

)P =

to obtain mean square-displacements of the photons. To this
end,

. IP*(z,0) P (z,0)
z—4iz 70 - 90
2PN =

0=0
1-72 ’
[y A2
1 1 2A 1
~ S ., (7)
1 (1-2) 1 25
-)-1 2( - —1> 1=z
t t
as z— 1. We use Tauberian theorem (A2) to conclude
: 1 V242 -
G = n+ Va.  (18)

(-1 Al

Mean square-displacement of the photons after n— % steps
is indeed proportional to n. We validate the classical persis-
tent random walk result (4) with an effective transmittance

tejff’ where
1 1
O
legr  \ 1

IV. EFFECTIVE MEDIUM APPROXIMATION

Stochastic transport in random media is often subdiffusive
or superdiffusive [3-5,28]. At this stage, we pay attention to
persistent random walk on a line with infinite (1/7), where
the normal diffusion is not guaranteed. Our approach to the
problem is based upon a variant of effective medium ap-
proximation (EMA) developed in Refs. [27,31].

To facilitate solution of Eq. (7) we introduce a reference
lattice or average medium, with all intensity transmittances
(reflectances) equal to 7,(z) (r.(z)), and probabilities P>(z.j),
so that

P:(ZZJ) _Pn=0y) =1,(2)PL(zg — 1) + ()P, (zg - 1),
P 3(5" ) _P=0d) e 1)+ P + 1),

(20)

EMA determines 7,(z) and r,(z) in a self-consistent manner,
in which the role of distribution f(¢) is manifest. This is done
by taking a cluster of random transmittances from the origi-
nal distribution, and embedding it into the effective medium.
We then require that average of site occupation probabilities
of the decorated medium duplicate P3(z.j) of the effective
medium. We will sketch the method in the following.
Subtracting Egs. (7) and (20), we obtain
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1(Q+(ZJ)) B T_(Z)<Q+(ZJ— 1)) B T+(Z)(Q+(ZJ+ 1))

2\ Q7 (z4)) 0 (zj-1) O (zj+1)
(e ) |G- 1))
‘{( 0 0 )_T (Z)KP-(zJ-n
0 0 N PH(zj+1)
+|:(rj+1 tj+])_T (Z):|<P_(ZJ'+1)>’ (21)
where

(Qw) ) . (mm ) ) (PZ(zJ)>
0 )/ \P /) \Pzj)
1.(2) rg(z)>

T_(Z)=< 0 0

(0 0
! (Z)‘<re<z> re<z>>‘ (22)

Equation (21) suggests to define an associated Green func-
tion
G G
G(zy) = (
Gy Gn

by the equation

éG(zJ) ~T()G(zj - 1) =T (2)G(zj + 1) = §l,

(23)
whose solution is the inverse Fourier transform of
2
Z
G(z,0) =
1 - 2z2,(z)cos 0+ 212(z) - r2(z)]
1 ) )
——1,()e 1 (2)e?
z
X . (24)

-i0

1 .
rJ(z)e o t,(z)e’?

For the present, we consider only the simplest approxima-
tion, and embed one random transmittance at site I of the
effective medium. Then solution of Eq. (21) is

. . 2 "
(Q (Z*’)> = f Gz 0)S(z e x (P o )d_a

0 (zy) 0 P () )27
(25)
where
S(z 0)=([t’_te(Z)]ew [rz—re(z)]e’”) (26)
’ [n-r]e [4-1,)]e)

Self-consistency equation is (P*(z,l))=P;(z,l), or

27 -1
([i-[ocoscae] )
0 2

The above matrix equation leads to two independent self-
consistency conditions. Choosing 7,(z)+r,(z)=1, one of the
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conditions can be satisfied. It is a signature of the success of
effective medium to represent the original random medium,
where f;+r;=1 holds at any site j. The second self-
consistency condition then determines 7,(z):

1 J ! f(0)dt

1)

. (28)
\J/l -7

° [1.(2) = 1] +1
‘ V1 =[2£,(z) - 112

in which the role of distribution f(¢) is manifest.
Z-transform of mean square-displacement of the photons
in the effective medium can be obtained as

S (2,2 = z i 1 +2[21,(z) 1]. 29)
n=0 (1-2)"1-2[21,(2) - 1]
We are interested in the long time behavior, thus Tauberian
theorems suggest to analyze Egs. (28) and (29) in the limit
z—1.
First we assume that (1/) is finite and 7,(z) has no singu-
larity in the limit z— 1. Then Eq. (28) yields

[ fwar
te(z)_Jo t (30)

in accordance with our second assumption. We deduce from
Egs. (29) and (A2) that

(G V=——n, (31)

therefore the system evolves diffusively. This is in complete
agreement with the predictions of Sec. IIL.

When (1/7) is infinite, the behavior of 1/¢,(z) is deter-
mined by the behavior of f(r) at small values of 7. Let us
assume that f(z) has a finite derivative at r=0. We can de-
compose the integral in Eq. (28) into a sum:

1 f F(0)dt
te(z) - 0 \“‘”1 _Zz
[1.(2)=1] V1 =[21,(z) — 1772 i
¢ [f(2) - £(0)]dt
’ 0 V1-27
[2.2) 1] V1 -[21,(z) - 11222 o
1
. f(t)fit _ 32
€ Vl-z
[te(Z) - t]

+1
V1 =[21,(z) - 11?2

where € is a small number. By assumption f(z)—f(0)
=#f"(0) near =0, and the factor ¢ cancels the potential sin-
gularity in the second term as z— 1. Indeed the only singular
behavior can come from the first term. Equation (32) then
leads to
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t,(V1 =22

1
ZZ5”“_fmnn{dl—[za@)—le}' 9

Methods for the asymptotic solution of transcendental equa-
tions [32] are invoked to obtain

-2
t(z) = A0 —2) (34)
We deduce from Egs. (29) and (A3) that
oy _ 2 N
=7 (9)

thus the transport is subdiffusive.

We now investigate the cases in which f’(0) is infinite. If
)~ fr7* (0<a<1) as t—0, self-consistency equation
(28) yields

[1,(2)]" = —Ze {

sin(7a)

1-[2 _122 al2
[ tle(_z)zz ]Z:| , (36)

where we have used [{x™¢/(1+x)dx=m/sin(7a). In this
case we find

5-al2 sin(7a)

fa

[2“"/2 sin(ma) } 2/(2-a)
W:fa n(2—2a)/(2—a).

<<’-2>>n= (4—301)
r
2-«a

2/(2-a)
u@z{ ] (1-)¥  (37)

and

(38)

Apparently, 0<(2-2a)/(2—a)<1 and the transport is sub-
diffusive.

V. NUMERICAL SIMULATIONS

The predictions of EMA can be inspected by numerical
simulations. The computer program produces 400 media,
whose transmittances are distributed according to a given
f(t). For each medium, it takes 10° photons at the initial
position j=0 and generates the trajectory of each photon fol-
lowing a standard Monte Carlo procedure.

For the binary distribution f(¢)=p,8(t—1;)+(1-p;) (-1
+1,), where p1€[0.1,0.2,...,0.9] and t
€[0.1,0.2,0.3,0.4], statistics of the photon cloud is evalu-
ated at times n € [7000,7100, ...,10 000]. The mean-square
displacement ({j2)),, is computed for each snapshot at time 7,
and then fitted to Dn+ O by the method of linear regression.
An offset O takes into account the initial ballistic regime.
Figure 1 shows the excellent agreement between numerical
simulations and D(py,t;)=t,(1-1,)/(p;=2pt,+1), pre-
dicted by Eq. (31). The maximum differences +0.04 are com-
parable to the errorbars +£0.01 which linear regression antici-
pates.

For the uniform distribution f(z)=1 (0<r¢=< 1), statistics is
evaluated at times n € [10 000,25 000, ...,400 000]. In Fig.
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t1=0.1 a

t,=0.2 3]
t,=0.3 o

t1=04

0 1 I I 1 1 1 1 1
0.1 0203040506070809 1
P4

FIG. 1. The diffusion constant as a function of p; and #; which
parametrize f(t)=p,8(t—t;)+(1—p;)8(t—1+1;). Theoretical and
Monte Carlo simulation results are denoted, respectively, by lines
and points.

2, {(*»,/n, and 2/In(n) are plotted. This figure confirms the
EMA prediction (35).

For fO=(1-a)™ o=sr=<1), where a
€[0.1,0.2,...,0.9], statistics is evaluated at times n
€[70 000,71 000, ...,100 000]. In[{{?)),] is computed for
each snapshot at time n, and then fitted to y In(n)+ O, where
O is an offset. In Fig. 3, we plot y and (2-2a)/(2-a) as a
function of a, to inspect the EMA prediction (38). The dif-
ferences are greater than the errorbars which regression an-
ticipates, but the overall agreement is excellent.

VI. DISCUSSIONS AND CONCLUSIONS

In the present paper, we address the persistent random
walk on a one-dimensional lattice of random transmittances.
The photon transport is diffusive, provided that (1/7) is finite
(class I). The transmittance of the effective medium is given
by Eq. (19). It expresses the fact that a few sites with small
transmittances (large reflectances) may hinder the photon
diffusion. As percolation properties [28], this feature is in-

022 ¥

0.21

2/In{n)

02 b

0.49 F%;

<<j2>>n/n

018 | NG

017

0.16

Pttt lvy

0000 370000

0.15 . —
10000 100000 180000 28
n

FIG. 2. {{j*)),,/n as function of n, for f(f)=1 (0<t<1). Theo-
retical and simulation results are denoted, respectively, by line and
points.
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FIG. 3. y=In[{{(j*)),]/In[n] as n—, vs a which parametrizes
f(t)=(1-a)t*. Theoretical and simulation results are denoted, re-
spectively, by line and points.

duced by the dimensionality of the lattice. Furthermore, Eq.
(18) shows that fluctuations in transmittances give rise to a
Vn correction to the mean square-displacement. Neverthe-
less, this correction is negligible at times n> A*/((1/t)—1)3.

A photon steps back by each reflection. Intuitively, one
expects the abundance of large reflectances to drastically de-
crease excursion of the photons. Our EMA predicts a subdif-
fusive transport when (1/7) is infinite. The self-consistency
equation (32) divides such distributions to two classes, IT and
III, which are summarized in Table I. Remarkably, for class
IIT the exponent of mean square-displacement is distribution
dependent (nonuniversality).

It would be instructive to compare transport of persistent
walkers and excitation dynamics in random one-dimensional
systems [27-29]. Hopping conduction is described by the
master equation

IP (1)
Jar

=wjji[P(7j - 1) = P(7y)]

+wj [ P(Tj+1) = P(7j)], (39)

where 0 <wj;,;=wj,; ;<% is the random transition rate be-

tween sites j and j+1, and 7 is the continuous time. Corre-
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lated steps are the essence of (1), while independent steps are
the base of (39). Despite this celebrated difference, Table I
reveals remarkable similarities.

As we mentioned in Sec. I, the persistent walk on a one-
dimensional lattice of random transmittances arises when the
photons move perpendicular to an edge (a face) of the hon-
eycomb (Kelvin) structure. At normal incidence on a film of
random thickness dy and refractive index ny,

2r3,(1 = cos By)
ry =21y cos By + 1

t=1- (40)
where ry=(ny—1)/(ny+1), By=4mdyny/\, and \ is the
light wavelenght [19,21]. For foams ny~ 1.34 (water) and
rw# £1, hence the above transmittance never approaches
zero, (1/t) exists, and the photon transport is diffusive.

In a realization of a distribution f(z) ~ f#~* as t— 0, small
transmittances prevail. For an experimental observation of
the photon subdiffusion, we propose dielectric mirrors to ob-
tain desired small transmittances. Consider the multilayer co-
figuration

R AL
HL HL---HL W LH---LH LH,

where H (L) is a quarter-wave layer with high (low) index ny
(ny), and N is the number of HL (LH) pairs. W is a layer of
thickness dy and index ny. Following the theory of
multilayer films [33], we obtain

(riy = 1)*(1 = cos By)
(1 = cos By) + 23 +cos By) + 1 — cos By
(41)

t=1

where ' ,=n3(ny/n,)*. Apparently, as N increases the
transmittance rapidly approaches zero. For example, suppose
ng=2.40 (TiO,), n;=1.38 (MgF,), ny=1.46 (Si0,), A
~550 nm, and By=1 (quarter-wave layer). For 1, 2, and 5
pairs, the transmittances are 0.185 604, 0.022 174, and
0.000 029, respectively. In this realization of small transmit-
tances, two points are considered. First, transmittance of the
multilayer is the same whether light rays go to the right or
the left direction. Second, parameters of the multilayer, es-

TABLE 1. EMA prediction of ultimate growth with time of the mean square-displacement.

Photons

Excitons®

J@0) G

1 1 n
)7
i <%>=00,f(t)ﬂf(0) ast—0 n/ln(n)

11 fl)~r*ast—0 (2-20)/(2-a)

Sfw) (e
(o) T
— )+ »
w
<l>=00,f(w)ﬂf(0)aSWH0 7/In T
w

fw)~w*as w—0 A2-2a)/(2-a)

“From Ref. [27]. 7 and w denote the continuous time and the transition rate between the nearest neighbors,

respectively.
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pecially N and dy, can be varied to fine tune the transmit-
tance. Moreover, absorption of the multilayer is negligible.
Note that thin metalic slabs are highly reflecting, but absorp-
tive.

Our studies can be extended to higher dimensional lat-
tices, and special two-dimensional photon paths in the hon-
eycomb and Kelvin structures [18,21]. Another path to pur-
sue is the creation of artificial one-dimensional structures to
observe anomalous diffusion of photons.
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APPENDIX A: z-TRANSFORM

The z-transform F(z) of a function F(n) of a discrete vari-
able n=0,1,2,... is defined by

F(z) =2, F(n)7".

n=0

(A1)

One then derives the z-transform of F(n+1) simply as
F(z)/z—F(n=0)/z. Note the similarities of this rule with the
Laplace transform of the time derivative of a continuous
function [3,30].

Under specified conditions the singular behavior of F(z)
can be used to determine the asymptotic behavior of F(n) for
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large n (Tauberian theorems) [3]. For example:

I'(l - a) 1
FO ~ (s — P = . (A2)
1 ne!
Fz)~—F—————— —=Fn)~———, (A3)
ln<%)(1 -7)* [(@)in(n)
-z

where T'(a)=[je 't \dt.

APPENDIX B: MATRIX M,(z, )

The matrix My(z, 6) introduced in Eq. (14) can be conve-
niently written as

~ a(z,0) + b(z,0) a(z,0)—b(z,0)>
M“(Z’O)_(a(z,a)—b*(z,o) a(z,0) +b"(z,0) ) (81
where
a(z,0) = ! , (B2)
ol
2 —
1
)
b(z,0) ! 1=z
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