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We study the persistent random walk of photons on a one-dimensional lattice of random transmittances.
Transmittances at different sites are assumed independent, distributed according to a given probability density
f�t�. Depending on the behavior of f�t� near t=0, diffusive and subdiffusive transports are predicted by the
disorder expansion of the mean square-displacement and the effective medium approximation. Monte Carlo
simulations confirm the anomalous diffusion of photons. To observe photon subdiffusion experimentally, we
suggest a dielectric film stack for realization of a distribution f�t�.
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I. INTRODUCTION

Random walks figure prominently in a multitude of dif-
ferent physical problems. This is exemplified by such diverse
fields as the polymer physics �1�, crystallographic statistics
�2,3�, transport in disordered media �3–5�, bacterial motion,
and other types of biological migration �6�.

Random walks with correlated displacements model a
host of phenomena. For example, the vacancy mechanism of
atom diffusion in solids incorporates a correlation effect,
since an atom has a larger probability to move backward to
the hole it just vacated rather than onward �7�. Correlations
also arise in diffusion of guest molecules in zeolite channels
�8�, electron hopping in Coulomb glass �9�, motion of exci-
tons at low temperatures in mixed naphthalene crystals �10�,
etc. Among the correlated walks, the persistent random walk
is possibly the simplest one to incorporate a form of momen-
tum in addition to random motion �3,4�. In its basic realiza-
tion on a one-dimensional lattice, a persistent random walker
possesses constant probabilities for either taking a step in the
same direction as the immediately preceding one or for re-
versing its motion. First introduced by Fürth as a model for
diffusion in a number of biological problems �11�, and
shortly after by Taylor in the analysis of turbulent diffusion
�12�, the persistent random walk model is now generalized to
study, e.g., polymers �13�, chemotaxis �14�, cell movement
�15�, and general transport mechanisms �16,17�.

Recently, the persistent random walk model is utilized in
the description of diffusive light transport in foams �18–22�
which is well established by experiments �23�. A relatively
dry foam consists of cells separated by thin liquid films �24�.
Cells in a foam are much larger than the wavelength of light,
thus one can employ ray optics and follow a light beam or
photon as it is transmitted through the liquid films with a
probability t called the intensity transmittance. This naturally
leads to a persistent random walk of the photons. Special
attention is paid to the light transport in the ordered honey-

comb and Kelvin structures, which have been used for an
analytic access to the physical properties of disordered foams
as exemplified by work on their rheological behavior �25�.
Symmetries of hexagonal and tetrakaidecahedral cells allow
identifying specific one- and two-dimensional random walks,
which are absent in disordered foams �18,21�. Moreover, in a
first model, it is assumed that intensity transmittance does
not depend on the incidence angle of photons and film thick-
ness. Nevertheless, analytical treatment of these peculiar and
simple random walks facilitates interpretation of Monte
Carlo simulations, in which topological disorder of foams
and exact thin-film intensity transmittance are taken into ac-
count �19,21�.

In the ordered honeycomb �Kelvin� structure, the one-
dimensional persistent walk arises when the photons move
perpendicular to a cell edge �face�. Thin-film transmittance
depends on the film thickness. Films are not expected to have
the same thickness. These observations motivates us to con-
sider persistent random walk on a one-dimensional lattice of
random transmittances. We assume that transmittances at dif-
ferent sites are independent random variables, distributed ac-
cording to a given probability density f�t�.

Our first approach to the problem is based upon a disorder
expansion of the mean square-displacement due to Kundu,
Parris, and Phillips �26�. Assuming that �1/ t�=�0

1f�t� / tdt is
finite, we validate the classical persistent random walk with
an effective transmittance tef f, where 1/ tef f = �1/ t�. Inspired
by this result, we generalize the effective medium approxi-
mation �EMA� formulated by Sahimi, Hughes, Scriven, and
Davis �27,28� to investigate the transport on a line with in-
finite �1/ t�. We show that if f�t�→ f�0� as t→0, the mean
square-displacement after n steps is proportional to n / ln�n�.
If f�t�� f�t−� �0���1� as t→0, we find that the mean
square-displacement is proportional to n�2−2��/�2−��. Our
Monte Carlo simulations confirm the anomalous diffusion of
photons. Quite interesting, we find that anomalous diffusion
of persistent walkers and hopping particles on a site-
disordered lattice �27–29� are similar. Finally, for the experi-
mental observation of the photon subdiffusion, we suggest a
dielectric film stack to realize small transmittances.*Electronic address: miri@iasbs.ac.ir
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Our paper is organized as follows. In Sec. II we introduce
the model. The perturbative approach and the effective me-
dium approximation are discussed in Secs. III and IV, respec-
tively. The numerical treatment and its results are reported in
Sec. V. We close with a discussion of our results and conclu-
sions in Sec. VI.

II. MODEL

We consider a one-dimensional lattice random walk in
which steps are permitted to the nearest neighbor sites only.
We normalize the length and duration of a step to 1. At each
site j, a walker either takes a step in the same direction as the
immediately preceding one with a probability tj, or reverses
its motion with a probability rj=1− tj. Here we assume sym-
metric transmittances, i.e., tj→j+1= tj→j−1= tj, as the transmit-
tance of a thin-film is the same whether the light ray is going
to the right ��� or to the left ��� direction.

We assume that �i� transmittance at each site is a random
variable, �ii� transmittances at two different sites are inde-
pendent, �iii� transmittances at all sites are distributed ac-
cording to a given normalized probability density f�t�. Ap-
parently �0

1f�t�dt=1. For any function h�t�, we define �h�t��
=�0

1h�t�f�t�dt.
We denote by P+�n , j��P−�n , j�� the probability that the

walker after its nth step arrives at site j with positive �nega-
tive� momentum. A set of two master equations can be es-
tablished to couple the probabilities at step n+1 to the prob-
abilities at step n:

P+�n + 1,j� = tj−1P+�n,j − 1� + rj−1P−�n,j − 1� ,

P−�n + 1,j� = rj+1P+�n,j + 1� + tj+1P−�n,j + 1� . �1�

For the description of the photon distribution on the line,
we do not need to specify the internal state ��� explicitly.
That means we are mainly interested in the probability that
the photon arrives at position j at step n,

P�n,j� = P+�n,j� + P−�n,j� , �2�

from which we extract the first and second moments after n
steps as the characteristic features of a random walk:

��j��n = 	

j

jP�n,j�� ,

��j2��n = 	

j

j2P�n,j�� . �3�

Here the first bracket represents an ensemble average over all
random transmittances, and the second bracket signifies an
average with respect to the distribution P�n , j�.

One obtains the classical persistent random walk assum-
ing a constant transmittance t at each site. Translational in-
variance of the medium is then invoked to deduce the exact
solution of P�n , j� in the framework of characteristic func-
tions �the spatial Fourier transforms of probability distribu-
tions� �3,4�. Furthermore, the mean square-displacement of
photons after n→� steps can be obtained as

�j2�n =
t

1 − t
n . �4�

Considering a lattice of random transmittances with an
almost narrow distribution f�t�, one may intuitively expect
normal diffusion of the photons, and the validity of Eq. �4�
with an effective transmittance �t�. However, a closer inspec-
tion reveals that even a few sites with small transmittances
�large reflectances� may drastically hinder the photon diffu-
sion: In the extreme limit where two transmittances are zero,
photons are confined between two sites. This peculiar aspect
of diffusion on a one-dimensional lattice rules out the above
guess. In the following section, we present a sound perturba-
tive approach to the problem.

III. SYSTEMATIC DISORDER EXPANSION OF MEAN
SQUARE-DISPLACEMENT OF THE PHOTONS

Many of the approaches to the transport in disordered
media have the disadvantage of being restricted to one-
dimensional problems. Here we adopt the method of Kundu
et al. �26�, which is applicable to two- and three-dimensional
media. We obtain a series of approximate solutions for pho-
ton transport on a disordered line by transforming the master
equation �1� to an equivalent but more appropriate integral
equation for the characteristic function

P±�n,�� = 

j=−�

�

P±�n,j�eij�. �5�

This crucial step can be achieved utilizing the generalized
generating functions

P̃±�n,�� = 

j

tjP
±�n,j�eij�, �6�

as will be shown in the following.
First we simplify the set of coupled linear difference

equations �1� using the method of the z-transform �3,30� ex-
plained in Appendix A:

P+�z,j�
z

−
P+�n = 0,j�

z
= tj−1P+�z,j − 1� + rj−1P−�z,j − 1� ,

P−�z,j�
z

−
P−�n = 0,j�

z
= rj+1P+�z,j + 1� + tj+1P−�z,j + 1� .

�7�

We assume the initial conditions P+�n=0, j�= P−�n=0, j�
=�j,0 /2. Now we multiply both sides of �7� with exp�ij�� and
sum over j, which leads to

M3�z,���P+�z,��
P−�z,��


 = M2����P̃+�z,��

P̃−�z,��

 + M1�z� , �8�

where

M3�z,�� =�
1

z
− ei�

− e−i� 1

z
� ,
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M2��� = � ei� − ei�

− e−i� e−i� 
 ,

M1�z� =�
1

2z

1

2z
� . �9�

Thus P±�z ,�� can be easily expressed in terms of P̃±�z ,��.
From Eqs. �5� and �6�

P±�z,j� =
1

2�tj
�

−�

�

P̃±�z,	�e−ij	d	 ,

P±�z,�� = 

j

1

2�tj
�

−�

�

P̃±�z,	�e−ij�	−��d	 , �10�

hence we can immediately transform Eq. �8� to an equivalent

integral equation for P̃±�z ,��. It reads

�	 1

t
�I − M3

−1�z,��M2���
�P̃+�z,��

P̃−�z,��

 = M3

−1�z,��M1�z�

− 

j


j

2�
�

−�

�

e−ij�	−���P̃+�z,	�

P̃−�z,	�

d	 , �11�

where the random variable 
j is defined as


j =
1

tj
− 	 1

t
� , �12�

and I is the identity matrix. Note that two assumptions, that
none of the transmittances is zero, and �1/ t� is finite, are
required for the validity of Eqs. �10�–�12�.

Successive approximations to the solution of integral
equation �11� can be generated by the iteration method. Then
ensemble averaging over the random transmittances is
straightforward. We use the identity �
j�=0 and the assump-
tion

�
j
j�� = �j,j�

2, �13�

to obtain the leading terms:

	�P̃+�z,��

P̃−�z,��

� = �1 + 
2M4�z,����P̃0�z,��

P̃0
*�z,��


 , �14�

where matrix M4�z ,�� is given in Appendix B,

P̃0�z,�� =
1

2	 1

t
�

z�	 1

t
�ei� − 2 cos �
 + 	 1

t
�

z2�2 − 	 1

t
�
 − 2z cos � + 	 1

t
� ,

�15�

and � denotes the complex conjugation.
The task is now calculating �P±�z ,��� from Eq. �8�, and

using the identity



j

jlP±�z,j� =
1

il� �lP±�z,��
��l �

�=0
�l = 1,2, . . . � , �16�

to obtain mean square-displacements of the photons. To this
end,


 ��j2��nzn =

z − 4iz��	 �P̃+�z,��
��

−
�P̃−�z,��

��
�
�

�=0

1 − z2 ,

�
1

	 1

t
� − 1

1

�1 − z�2 +
�2
2

2�	 1

t
� − 1
2.5

1

�1 − z�1.5

, �17�

as z→1. We use Tauberian theorem �A2� to conclude

��j2��n =
1

	 1

t
� − 1

n +
�2
2

���	 1

t
� − 1
2.5

�n . �18�

Mean square-displacement of the photons after n→� steps
is indeed proportional to n. We validate the classical persis-
tent random walk result �4� with an effective transmittance
tef f, where

1

tef f
= 	 1

t
� . �19�

IV. EFFECTIVE MEDIUM APPROXIMATION

Stochastic transport in random media is often subdiffusive
or superdiffusive �3–5,28�. At this stage, we pay attention to
persistent random walk on a line with infinite �1/ t�, where
the normal diffusion is not guaranteed. Our approach to the
problem is based upon a variant of effective medium ap-
proximation �EMA� developed in Refs. �27,31�.

To facilitate solution of Eq. �7� we introduce a reference
lattice or average medium, with all intensity transmittances
�reflectances� equal to te�z� �re�z��, and probabilities Pe

±�z , j�,
so that

Pe
+�z,j�

z
−

P+�n = 0,j�
z

= te�z�Pe
+�z,j − 1� + re�z�Pe

−�z,j − 1� ,

Pe
−�z,j�

z
−

P−�n = 0,j�
z

= re�z�Pe
+�z,j + 1� + te�z�Pe

−�z,j + 1� .

�20�

EMA determines te�z� and re�z� in a self-consistent manner,
in which the role of distribution f�t� is manifest. This is done
by taking a cluster of random transmittances from the origi-
nal distribution, and embedding it into the effective medium.
We then require that average of site occupation probabilities
of the decorated medium duplicate Pe

±�z , j� of the effective
medium. We will sketch the method in the following.

Subtracting Eqs. �7� and �20�, we obtain
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1

z
�Q+�z,j�

Q−�z,j�

 − T−�z��Q+�z,j − 1�

Q−�z,j − 1�

 − T+�z��Q+�z,j + 1�

Q−�z,j + 1�



= ��tj−1 rj−1

0 0

 − T−�z���P+�z,j − 1�

P−�z,j − 1�



+ �� 0 0

rj+1 tj+1

 − T+�z���P+�z,j + 1�

P−�z,j + 1�

 , �21�

where

�Q+�z,j�
Q−�z,j�


 = �P+�z,j�
P−�z,j�


 − �Pe
+�z,j�

Pe
−�z,j�


 ,

T−�z� = �te�z� re�z�
0 0


 ,

T+�z� = � 0 0

re�z� te�z�

 . �22�

Equation �21� suggests to define an associated Green func-
tion

G�z,j� = �G11 G12

G21 G22



by the equation

1

z
G�z,j� − T−�z�G�z,j − 1� − T+�z�G�z,j + 1� = �j,0I ,

�23�

whose solution is the inverse Fourier transform of

G�z,�� =
z2

1 − 2zte�z�cos � + z2�te
2�z� − re

2�z��

��
1

z
− te�z�e−i� re�z�ei�

re�z�e−i� 1

z
− te�z�ei�� . �24�

For the present, we consider only the simplest approxima-
tion, and embed one random transmittance at site l of the
effective medium. Then solution of Eq. �21� is

�Q+�z,j�
Q−�z,j�


 = �
0

2�

G�z,��S�z,��e−i��j−l� � �P+�z,l�
P−�z,l�


 d�

2�
,

�25�

where

S�z,�� = � �tl − te�z��ei� �rl − re�z��ei�

�rl − re�z��e−i� �tl − te�z��e−i� 
 . �26�

Self-consistency equation is �P±�z , l��= Pe
±�z , l�, or

	�I − �
0

2�

G�z,��S�z,��
d�

2��−1� = I . �27�

The above matrix equation leads to two independent self-
consistency conditions. Choosing te�z�+re�z�=1, one of the

conditions can be satisfied. It is a signature of the success of
effective medium to represent the original random medium,
where tj+rj=1 holds at any site j. The second self-
consistency condition then determines te�z�:

1

te�z�
= �

0

1 f�t�dt

�te�z� − t�
�1 − z2

�1 − �2te�z� − 1�2z2
+ t

, �28�

in which the role of distribution f�t� is manifest.
Z-transform of mean square-displacement of the photons

in the effective medium can be obtained as



n=0

�

��j2��nzn =
z

�1 − z�2

1 + z�2te�z� − 1�
1 − z�2te�z� − 1�

. �29�

We are interested in the long time behavior, thus Tauberian
theorems suggest to analyze Eqs. �28� and �29� in the limit
z→1.

First we assume that �1/ t� is finite and te�z� has no singu-
larity in the limit z→1. Then Eq. �28� yields

1

te�z�
= �

0

1 f�t�dt

t
, �30�

in accordance with our second assumption. We deduce from
Eqs. �29� and �A2� that

��j2��n =
1

	 1

t
� − 1

n , �31�

therefore the system evolves diffusively. This is in complete
agreement with the predictions of Sec. III.

When �1/ t� is infinite, the behavior of 1 / te�z� is deter-
mined by the behavior of f�t� at small values of t. Let us
assume that f�t� has a finite derivative at t=0. We can de-
compose the integral in Eq. �28� into a sum:

1

te�z�
= �

0

� f�0�dt

�te�z� − t�
�1 − z2

�1 − �2te�z� − 1�2z2
+ t

+ �
0

� �f�t� − f�0��dt

�te�z� − t�
�1 − z2

�1 − �2te�z� − 1�2z2
+ t

+ �
�

1 f�t�dt

�te�z� − t�
�1 − z2

�1 − �2te�z� − 1�2z2
+ t

, �32�

where � is a small number. By assumption f�t�− f�0�
= tf��0� near t=0, and the factor t cancels the potential sin-
gularity in the second term as z→1. Indeed the only singular
behavior can come from the first term. Equation �32� then
leads to
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1

te�z�
� − f�0�ln� te�z��1 − z2

�1 − �2te�z� − 1�2z2� . �33�

Methods for the asymptotic solution of transcendental equa-
tions �32� are invoked to obtain

te�z� �
− 2

f�0�ln�1 − z�
. �34�

We deduce from Eqs. �29� and �A3� that

��j2��n =
2

f�0�
n

ln�n�
, �35�

thus the transport is subdiffusive.
We now investigate the cases in which f��0� is infinite. If

f�t�� f�t−� �0���1� as t→0, self-consistency equation
�28� yields

�te�z���−1 =
�f�

sin�����1 − �2te�z� − 1�2z2

1 − z2 ��/2

, �36�

where we have used �0
�x−� / �1+x�dx=� / sin����. In this

case we find

te�z� � �2−�/2 sin����
�f�

�2/�2−��

�1 − z��/�2−��, �37�

and

��j2��n =
�2−�/2 sin����

�f�
�2/�2−��


�4 − 3�

2 − �

 n�2−2��/�2−��. �38�

Apparently, 0� �2−2�� / �2−���1 and the transport is sub-
diffusive.

V. NUMERICAL SIMULATIONS

The predictions of EMA can be inspected by numerical
simulations. The computer program produces 400 media,
whose transmittances are distributed according to a given
f�t�. For each medium, it takes 103 photons at the initial
position j=0 and generates the trajectory of each photon fol-
lowing a standard Monte Carlo procedure.

For the binary distribution f�t�= p1��t− t1�+ �1− p1���t−1
+ t1�, where p1� �0.1,0.2, . . . ,0.9� and t1

� �0.1,0.2,0.3,0.4�, statistics of the photon cloud is evalu-
ated at times n� �7000,7100, . . . ,10 000�. The mean-square
displacement ��j2��n is computed for each snapshot at time n,
and then fitted to Dn+O by the method of linear regression.
An offset O takes into account the initial ballistic regime.
Figure 1 shows the excellent agreement between numerical
simulations and D�p1 , t1�= t1�1− t1� / �p1−2p1t1+ t1

2�, pre-
dicted by Eq. �31�. The maximum differences ±0.04 are com-
parable to the errorbars ±0.01 which linear regression antici-
pates.

For the uniform distribution f�t�=1 �0� t�1�, statistics is
evaluated at times n� �10 000,25 000, . . . ,400 000�. In Fig.

2, ��j2��n /n, and 2/ ln�n� are plotted. This figure confirms the
EMA prediction �35�.

For f�t�= �1−��t−� �0� t�1�, where �
� �0.1,0.2, . . . ,0.9�, statistics is evaluated at times n
� �70 000,71 000, . . . ,100 000�. ln���j2��n� is computed for
each snapshot at time n, and then fitted to � ln�n�+O, where
O is an offset. In Fig. 3, we plot � and �2−2�� / �2−�� as a
function of �, to inspect the EMA prediction �38�. The dif-
ferences are greater than the errorbars which regression an-
ticipates, but the overall agreement is excellent.

VI. DISCUSSIONS AND CONCLUSIONS

In the present paper, we address the persistent random
walk on a one-dimensional lattice of random transmittances.
The photon transport is diffusive, provided that �1/ t� is finite
�class I�. The transmittance of the effective medium is given
by Eq. �19�. It expresses the fact that a few sites with small
transmittances �large reflectances� may hinder the photon
diffusion. As percolation properties �28�, this feature is in-

FIG. 1. The diffusion constant as a function of p1 and t1 which
parametrize f�t�= p1��t− t1�+ �1− p1���t−1+ t1�. Theoretical and
Monte Carlo simulation results are denoted, respectively, by lines
and points.

FIG. 2. ��j2��n /n as function of n, for f�t�=1 �0� t�1�. Theo-
retical and simulation results are denoted, respectively, by line and
points.
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duced by the dimensionality of the lattice. Furthermore, Eq.
�18� shows that fluctuations in transmittances give rise to a
�n correction to the mean square-displacement. Neverthe-
less, this correction is negligible at times n�
4 / ��1/ t�−1�3.

A photon steps back by each reflection. Intuitively, one
expects the abundance of large reflectances to drastically de-
crease excursion of the photons. Our EMA predicts a subdif-
fusive transport when �1/ t� is infinite. The self-consistency
equation �32� divides such distributions to two classes, II and
III, which are summarized in Table I. Remarkably, for class
III the exponent of mean square-displacement is distribution
dependent �nonuniversality�.

It would be instructive to compare transport of persistent
walkers and excitation dynamics in random one-dimensional
systems �27–29�. Hopping conduction is described by the
master equation

�P��,j�
��

= wj,j−1�P��,j − 1� − P��,j��

+ wj,j+1�P��,j + 1� − P��,j�� , �39�

where 0�wj,j+1=wj+1,j�� is the random transition rate be-
tween sites j and j+1, and � is the continuous time. Corre-

lated steps are the essence of �1�, while independent steps are
the base of �39�. Despite this celebrated difference, Table I
reveals remarkable similarities.

As we mentioned in Sec. I, the persistent walk on a one-
dimensional lattice of random transmittances arises when the
photons move perpendicular to an edge �a face� of the hon-
eycomb �Kelvin� structure. At normal incidence on a film of
random thickness dW and refractive index nW,

t = 1 −
2rW

2 �1 − cos �W�
rW

4 − 2rW
2 cos �W + 1

, �40�

where rW= �nW−1� / �nW+1�, �W=4�dWnW /�, and � is the
light wavelenght �19,21�. For foams nW�1.34 �water� and
rW� ±1, hence the above transmittance never approaches
zero, �1/ t� exists, and the photon transport is diffusive.

In a realization of a distribution f�t�� f�t−� as t→0, small
transmittances prevail. For an experimental observation of
the photon subdiffusion, we propose dielectric mirrors to ob-
tain desired small transmittances. Consider the multilayer co-
figuration

where H �L� is a quarter-wave layer with high �low� index nH
�nL�, and N is the number of HL �LH� pairs. W is a layer of
thickness dW and index nW. Following the theory of
multilayer films �33�, we obtain

t = 1 −
�rW� − 1�2�1 − cos �W�

rW�
2�1 − cos �W� + 2rW� �3 + cos �W� + 1 − cos �W

,

�41�

where r�W=nW
2 �nH /nL�4N. Apparently, as N increases the

transmittance rapidly approaches zero. For example, suppose
nH=2.40 �TiO2�, nL=1.38 �MgF2�, nW=1.46 �SiO2�, �
�550 nm, and �W=� �quarter-wave layer�. For 1, 2, and 5
pairs, the transmittances are 0.185 604, 0.022 174, and
0.000 029, respectively. In this realization of small transmit-
tances, two points are considered. First, transmittance of the
multilayer is the same whether light rays go to the right or
the left direction. Second, parameters of the multilayer, es-

FIG. 3. �=ln���j2��n� / ln�n� as n→�, vs � which parametrizes
f�t�= �1−��t−�. Theoretical and simulation results are denoted, re-
spectively, by line and points.

TABLE I. EMA prediction of ultimate growth with time of the mean square-displacement.

Photons Excitonsa

f�t� ��j2��n f�w� ��j2���

I 	1

t
�� �

n 	 1

w
�� �

�

II 	1

t
� = �, f�t� → f�0� as t → 0 n / ln�n� 	 1

w
� = � , f�w� → f�0� as w → 0 � / ln �

III f�t�� t−� as t→0 n�2−2��/�2−�� f�w��w−� as w→0 ��2−2��/�2−��

aFrom Ref. �27�. � and w denote the continuous time and the transition rate between the nearest neighbors,
respectively.
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pecially N and dW, can be varied to fine tune the transmit-
tance. Moreover, absorption of the multilayer is negligible.
Note that thin metalic slabs are highly reflecting, but absorp-
tive.

Our studies can be extended to higher dimensional lat-
tices, and special two-dimensional photon paths in the hon-
eycomb and Kelvin structures �18,21�. Another path to pur-
sue is the creation of artificial one-dimensional structures to
observe anomalous diffusion of photons.
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APPENDIX A: z-TRANSFORM

The z-transform F�z� of a function F�n� of a discrete vari-
able n=0,1 ,2 , . . . is defined by

F�z� = 

n=0

�

F�n�zn. �A1�

One then derives the z-transform of F�n+1� simply as
F�z� /z−F�n=0� /z. Note the similarities of this rule with the
Laplace transform of the time derivative of a continuous
function �3,30�.

Under specified conditions the singular behavior of F�z�
can be used to determine the asymptotic behavior of F�n� for

large n �Tauberian theorems� �3�. For example:

F�z� �

�1 − ��
�1 − z�1−� → F�n� �

1

n� , �A2�

F�z� �
1

ln� 1

1 − z

�1 − z��

→ F�n� �
n�−1


���ln�n�
, �A3�

where 
���=�0
�e−tt�−1dt.

APPENDIX B: MATRIX M4„z ,�…

The matrix M4�z ,�� introduced in Eq. �14� can be conve-
niently written as

M4�z,�� = � a�z,�� + b�z,�� a�z,�� − b�z,��
a�z,�� − b*�z,�� a�z,�� + b*�z,��


 , �B1�

where

a�z,�� =
1

2	 1

t
�2

, �B2�

b�z,�� =
− 1

2	 1

t
�� 1 − z2

	 1

t
�2

− z2�	 1

t
� − 2
2

�

z2	 1

t
� − 2iz sin � − 	 1

t
�

z2�2 − 	 1

t
�
 − 2z cos � + 	 1

t
� .
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