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The properties of a wide variety of growing models, generically called X-RD, involving the deposition of
particles according to competitive processes, such that a particle is attached to the aggregate with probability
p following the mechanisms of a generic model X that provides the correlations and at random �random
deposition �RD�� with probability �1− p�, are studied by means of numerical simulations and analytic devel-
opments. The study comprises the following X models: Ballistic deposition, random deposition with surface
relaxation, Das Sarma–Tamboronea, Kim-Kosterlitz, Lai–Das Sarma, Wolf-Villain, large curvature, and three
additional models that are variants of the ballistic deposition model. It is shown that after a growing regime, the
interface width becomes saturated at a crossover time �tx2� that, by fixing the sample size, scales with p
according to tx2�p�� p−y �p�0�, where y is an exponent. Also, the interface width at saturation �Wsat� scales as
Wsat�p�� p−� �p�0�, where � is another exponent. It is proved that, in any dimension, the exponents � and y
obey the following relationship: �=y�RD, where �RD=1/2 is the growing exponent for RD. Furthermore, both
exponents exhibit universality in the p→0 limit. By mapping the behavior of the average height difference of
two neighboring sites in discrete models of type X-RD and two kinds of random walks, we have determined the
exact value of the exponent �. When the height difference between two neighbouring sites corresponds to a
random walk that after walking �n� steps returns to a distance from its initial position that is proportional to the
maximum distance reached �random walk of type A�, one has �=1/2. On the other hand, when the height
difference between two neighboring sites corresponds to a random walk that after �n� steps moves �l� steps
towards the initial position �random walk of type B�, one has �=1. Finally, by linking four well-established
universality classes �namely Edwards-Wilkinson, Kardar-Parisi-Zhang, linear �molecular beam epitaxy �MBE��
and nonlinear MBE� with the properties of type A and B of random walks, eight different stochastic equations
for all the competitive models studied are derived.
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I. INTRODUCTION

The study and understanding of the properties of growing
interfaces have attracted great interest. In fact, interfaces are
ubiquitous in Nature and their study has opened a promising
field of multidisciplinary research �1–4�. Interfaces naturally
emerge in a wide variety of systems such as film growth by
vapour deposition, chemical deposition, or molecular beam
epitaxy �1,5�, propagation of fire fronts �6�, diffusion fronts
�7�, bacterial growth �8�, solidification �9�, propagation of
reaction fronts in catalyzed reactions �10�, electrodeposition
and dissolution experiments �11�, sedimentation �12�, etc.

Models of growing interfaces may be defined and studied
either by using discrete lattices or by means of continuous
equations. Discrete models are defined by a set of rules that
provide a detailed microscopic description of the evolution
of the growing aggregate. In these models the interface is
described by a discrete set h�i , t� that represents the height
of site i at time t. The interface has Ld sites, where L is
the linear size and d is the dimensionality of the substrate.
The interface of the aggregate is characterized through
the scaling behavior of the interface width W�L , t�

��1/Ld	i=1
Ld

�h�i , t�− �h�t���2. For this purpose, the Family-
Vicsek phenomenological scaling approach �12,13� has
proved to be very successful for the description of the dy-
namic evolution of growing interfaces. In fact, it may be
expected that W�L , t� would show the spatiotemporal scaling

behavior given by �12,13� Wsat�L� for t� tc and W�t�� t� for
t� tc, where tc�LZ is the crossover time between these two
regimes. The scaling exponents �, �, and Z=� /� are called
roughness, growth, and dynamic exponents, respectively.
Also, different models can be grouped into universality
classes when they share the same scaling exponents.

In contrast to the microscopic details of the growing
mechanisms of the interface, continuous equations focus on
the macroscopic aspects of the roughness. Essentially, the
aim is to follow the evolution of the coarse-grained height
function h�x , t� by using a well-established phenomenologi-
cal approach that takes all the relevant processes that survive
at a coarse-grained level into account. This procedure nor-
mally leads to stochastic nonlinear partial differential equa-
tions that, in general, may be written as follows �1,14–16�:

�h�x,t�
�t

= Gj
h�x,t�� + F + 	�x,t� , �1�

where the index j symbolically denotes different processes,
Gj
h�x , t�� is a local functional that contains the various sur-
face relaxation phenomena and only depends on the spatial
derivatives of h�x , t� since the growth process is assumed to
be determined by the local properties of the surface only.
Also, F denotes the mean deposition rate and 	�x , t� is the
deposition noise that determines the fluctuations of the in-
coming flux around its mean value F. It is usually assumed
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that the noise is spatially and temporally uncorrelated.
In order to establish the correspondence between a con-

tinuous growth equation and a discrete model one can apply
at least three different methods: �i� to numerically simulate
the model and compare the obtained scaling exponents with
those of the corresponding continuous equation, �ii� to de-
velop a set of plausibility arguments using physical prin-
ciples, and �iii� to derive the continuous equation analytically
starting from a given discrete model. There are few papers in
the direction of the last method. For example, a systematic
approach proposed by Vvedensky et al. �17�, where the con-
tinuous equations can be constructed directly from the
growth rules of some discrete models, based on the master
equation description, has been applied successfully �17–20�.
This procedure requires a regularization step, in which
nonanalytic quantities are expanded and replaced by analytic
approaches, e.g., the step function is approximated by a
shifted hyperbolic tangent function expanded in a Taylor se-
ries. As pointed out by Předota and Kotrla �19�, the choice of
the regularization scheme for the step function is ambiguous.
Thus, the coefficients entering in the derived continuum sto-
chastic equation cannot be determined uniquely. Another
method has shown the connection between the ballistic depo-
sition discrete model and the Kardar-Parisi-Zhang �KPZ�
equation in d= �1+1� dimensions. However, this method is
not successful in d= �2+1� dimensions �21�.

It is worth mentioning that most of the already mentioned
progress in the understanding of the properties of interfaces
has been achieved when the growth of the aggregate is due to
one kind of particle only. In contrast, less attention has been
drawn to the study of the dynamics of competitive growing
processes. It is well known that these competitive processes
are significant to the growth of real materials in at least two
different ways: �a� when the growing process involves two or
more kinds of particles and �b� when deposition of a single
kind of particle is considered, but such type of particle may
undergo different growing mechanisms.

One example of case �a� arises from the deposition of
alloys or systems with impurities, see, e.g., Refs. �22–27�,
and references therein. In this case, there may be different
interactions between different kinds of particles causing the
growing mechanisms to change �22–27�. Based on these
ideas, Cerdeira et al. �22–25� have studied various models
for binary systems involving competitive randomlike and
ballisticlike deposition. Recently, the scaling behavior of a
two-component surface-growth model has been studied by
Kotrla et al. �27�. This study addresses the relationship be-
tween kinetic roughening and phase ordering in a
�1+1�-dimensional single-step solid-on-solid model with
Ising-like interactions between two components.

On the other hand, considering the deposition of one kind
of particle �case �b��, Pellegrini et al. �28,29� have studied a
ballistic model of surface growth that considers “sticky” and
“sliding” particles. The model interpolates between a stan-
dard ballistic model when only sticky particles are deposited
�with probability P=1� and a completely restructured ballis-
tic model for P=0 when only unrestricted sliding particles
are allowed to become attached to the sample. Using this
model Pellegrini et al. �28,29� have given evidence of a
roughening transition in dimensions d=3 and d=4, while

such kind of transition is no longer observed in d=2.
In a related context of competitive growing processes, we

have also studied two competitive growth models in �1+1�,
�2+1�, and �3+1� dimensions �30–32�. In the first discrete
growth model, namely, the RDSR-RD model, the same types
of particles are aggregated according to the rules of random
deposition with surface relaxation �RDSR� with probability p
and according to the rules of random deposition �RD� with
probability �1− p� �30�. In the second discrete growth model,
namely, the BD-RD model, particles are aggregated accord-
ing to the rules of ballistic deposition �BD� with probability
p and according to the rules of random deposition �RD� with
probability �1− p� �31�.

For both the RDSR-RD and the BD-RD models the satu-
ration process of the interface width depends sensitively on
p: saturation takes place at longer times for smaller values of
p, while the final width of the interface is smaller for larger p
values. Furthermore, in both models, three different regimes
and two corresponding crossovers can easily be observed.
For short times, say t
 tx1, the random growth of the inter-
face is observed �i.e., the RD process dominates�. At this
stage, correlations have not been developed yet and W�t�
�t�RD �t
 tx1 ,�RD=1/2� holds. During an intermediate time
regime, say tx1
 t
 tx2, correlations develop since the RDSR
�BD� process now dominates leading to W�t� �t�RDSR �W�t�
� t�BD�. At a later stage, for t� tx2, correlations can no longer
grow due to the geometrical constraint of the lattice size and
saturation is observed. The saturation value of the interface
width Wsat�L , p� and the characteristic crossover time tx2 be-
have as �30–32�

Wsat�L,p� � L�Xp−� �p � 0� �2�

and

tx2�L,p� � LZXp−y �p � 0� , �3�

respectively. Here, � and y are exponents and X� RDSR or
BD, depending on the model. On the other hand, one has that
the crossover time tx1 also scales with p as tx2 does �see Eq.
�3��.

In these previous studies we have shown that the expo-
nents y and � are independent of the dimensionality. For
the RDSR-RD �BD-RD� model we have found that
��1��1/2� and y�2��1� �30–32�. Based on these numeri-
cal estimates we have conjectured the following exact values
�=1 and y=2 for RDSR-RD, and �=1/2 and y=1 for BD-
RD. Very recently, this early conjecture has proved to be
correct by using an exact analysis �33�. Furthermore, these
values allowed us to formulate another conjecture by stating
that �=y /2 for both models �30–32�.

Also, we have shown that the stochastic representation of
the RDSR-RD model is given by �30–32�

�h�x,t�
�t

= F + �0p2�2h�x,t� + 	�x,t� , �4�

while for the BD-RD model one has
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�h�x,t�
�t

= F + �0p�2h�x,t� +
�p3/2

2
��h�x,t��2 + 	�x,t� ,

�5�

where �0 plays the role of an effective surface tension, �
represents the lateral growth, and 	�x , t� is the uncorrelated
white-noise term.

Within this context, the aim of this work is to perform a
systematic study of a wide variety of competitive growth
models of the type X-RD, with X=Das Sarma–Tamboronea
�DST� �34�, Kim-Kosterlitz �KK� �35�, Lai-Das Sarma
�LDS� �36,37�, Wolf-Villain �WV� �38�, large curvature �LC�
�39,40�, RDSR �12�, BD �1�, BD1, BD2, and BD3. The last
three ballistic deposition-motivated models are variants of
the BD model that will be described in detail below. The
study is focused on the behavior of the exponents y and � as
well as on the derivation of the stochastic equations of com-
petitive models. For this purpose the manuscript is organized
as follows. In Secs. II and III the relevant properties of y and
� are addressed and the exact relationship between both ex-
ponents is derived, respectively. Subsequently, in Sec. IV
numerical results obtained by means of Monte Carlo com-
puter simulations covering all competitive models listed
above are presented. After that, in Sec. V, the exact values
for the exponents y and � are obtained for all the studied
models. Section VI is devoted to the derivation of the sto-
chastic equations for different competitive models while our
conclusions are stated in Sec. VII.

II. THE RELATIONSHIP BETWEEN � AND y

In previous papers �30–32� we have shown that for the
RDSR-RD and the BD-RD models, the values of the expo-
nents � and y are independent of the dimensionality of the
substrate. Furthermore, our study leads us to conjecture a
simple relationship between them, namely, �=y /2. Further-
more, we have also proposed and numerically tested the fol-
lowing phenomenological dynamic scaling ansatz for both
the RDRS-RD and the BD-RD models �30–32�

W�t,L,p� � L�Xp−�F
 t

LZXp−y�, p � 0, t � tx1, L → 
 ,

�6�

where X�RDSR or BD depending on the model and F is a
suitable scaling function. Now, if we restrict the previous
ansatz by considering variations of p only �i.e., fixing L�, Eq.
�6� can be written as

W�t,p� � p−�F*�t/p−y�, p � 0, t � 0, L → 
 , �7�

where F*�u� is a suitable scaling function such that �i�
F*�u��u�RD for u→0, �ii� F*�u��u�X for u in the interme-
diate regimen, and �iii� F*�u�=const for u�1. It is worth
mentioning that the ansatz given by Eq. �7� is valid for the
three regimens �t�0� while the previous one, given by Eq.
�6�, only holds for regimes �ii� and �iii� with t� tx1. This
effect is due to the fact that by fixing the lattice size one also
fixes the crossover time tx1 that depends on L. In order to

check the validity of the new ansatz, Fig. 1 shows log-log
plots of W�t ,L , p�p� versus t / p−y as obtained in d=1 dimen-
sions, by using values of p within the range 0.01� p�0.64,
and for both models. Here, we have taken L=256 and L
=512 for the RDSR-RD and the BD-RD models, respec-
tively.

Considering the short-time regime t
 tx1, or equivalently
u→0 in Eq. �7�, we observed that the initial slope is inde-
pendent of the considered model and it is given by �RD
=1/2, since the RD process dominates the early stages of
growth. Consequently, within the short-time regime, Eq. �7�
can be written as

W�t,p� � p−��t/p−y��RD, p � 0, t 
 tx1, L → 
 ,

�8�

and, according to the results shown in Fig. 1, this relation has
to be independent of p. So, this is true only if

� = y�RD. �9�

This result strongly suggests that the factor 1 /2 already
found in the relationship between � and y �30–32� is just
�RD. It is also worth mentioning that �RD is independent of
the dimensionality of the substrate, and therefore one should
expect that Eq. �9� would also hold in any dimension.

III. NUMERICAL EVIDENCE ON NEGLIGIBLE
FINITE-SIZE CORRECTIONS TO THE VALUES OF THE

EXPONENT �

Usually, it is observed that the numerical values of the
scaling exponents ��, �, and Z� undergo systematic devia-
tions when the size of the lattices used in the simulations is
changed. Figure 2 shows log-log plots of Wsat�L , p� /L�BD

versus p as obtained for lattices of different size and taking

FIG. 1. Log-log plot of W�t ,L , p� / p−� versus t / p−y where X
=RDRS, BD. Results obtained for different values of p �0.01� p
�0.64� and lattices of size L=256 for X=RDRS and L=512 for
X=BD. The data corresponding to the BD-RD model have been
shifted one decade to the left for the sake of clarity. The dotted line
has slope �RD=1/2 and has been drawn for the sake of comparison.
More details in the text.
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the BD-RD model. In this figure, we have added the data
corresponding to L=10 to the results already shown in Ref.
�31�. Using the exact value �BD= 1

2 , straight lines are ob-
served, in agreement with Eq. �2�, and the best fit of the data
gives the slope ��0.45±0.01. However, a rather small sys-
tematic deviation of the data, according to the size of the
lattice, is observed: the larger the lattice, the smaller the or-
dinate. This behavior is due to high-order corrections to scal-
ing that we have neglected in Eq. �2�. On the other hand,
using the roughness exponent obtained by fitting our data,
namely, �BD� =0.43±0.05 for L=512, 256, 128, and �BD�
=0.46±0.05 for L=10, it is possible to achieve an excellent
data collapsing, as shown in the inset of Fig. 2. In this case,
the slope obtained by means of a least-squares fit is also �
�0.45±0.01. Summing up, all results shown in Fig. 2 point
out that the scaling ansatz given by Eq. �2� holds for the
BD-RD model. Furthermore, we would like to emphasize
that the systematic shift of the data observed in Fig. 2 does
not affect the slope of the power law, and consequently the
exponent � is almost independent of the lattice size �up to
L=10 in Fig. 2�.

Figure 3 shows log-log plots of Wsat�L , p� /L�RDSR versus p
as obtained for the RDSR-RD model using lattices of differ-
ent size. In this figure, we have also added the data corre-
sponding to L=10 to the results already shown in Ref. �30�.
Using the exact value �RDSR= 1

2 for L=256,128,64 and
�RDSR=0.46 for L=10, straight lines are observed, in agree-
ment with Eq. �2�, and the best fit gives the slope �
�0.97±0.01.

So, these results show that the values of � are not appre-
ciably affected by systematic deviations even when ex-
tremely small lattices are used �up to L=10 in the examples
of Figs. 2 and 3�. It is worth mentioning that for both models
we have arrived at the same conclusion in higher dimen-
sions. More explicitly, we have performed numerical simu-
lations by using L�L=6�6 in d= �2+1� and L�L�L=6

�6�6 in d= �3+1� and we have found ��0.45 and �
�0.97 independently of the dimensionality, for the BD-RD
and RDSR-RD models, respectively. �These results are not
shown here for the sake of space.�

The lack of appreciable finite-size effects in the values of
� �up to L=10� is a rather surprising result. It should be
noticed that a similar behaviour is also found in the exponent
�RD for the random deposition model, and it is due to the
lack of correlations between different columns of the aggre-
gate. So, although we have not a convincing explanation for
the behavior of � in our case, we think that it may be related
in a nontrivial way to the decorrelation induced by the frac-
tion �1− p� of particles that are deposited according to the
random deposition rules, which are expected to play a rel-
evant role precisely for p→0.

IV. SYSTEMATIC EVALUATION OF THE EXPONENT �
FOR A FAMILY OF COMPETITIVE MODELS

In this section we take advantage of the almost negligible
dependence of the values of the exponent � on the lattice
size, as discussed in the previous section, in order to evaluate
it by using small lattices for a wide family of competitive
models called X-RD. This family of models is defined such
that particles of the same type are aggregated according to
the rules of a generic discrete model X with probability p and
according to the rules of RD with probability �1− p�.

We expect that for this family of models, the dynamics of
the RD process would play the same role as in the cases of
the RDSR-RD and the BD-RD models. That is, RD causes
the slowing down of correlations among particles. So, we
also expect that Eqs. �2� and �3� would be valid, but the
values of the exponents � and Z entering in the scaling rela-
tionships have to be those of the X model that introduces the
correlations among particles. Furthermore, we expect that the
general relationship given by Eq. �9� will also hold, allowing
us to evaluate the exponent y after the determination of �.

Figure 4 shows log-log plots of Wsat versus p, in d=1, as
obtained for the family of models of the type X-RD where

FIG. 2. Log-log plots of Wsat�L , p�L−�BD versus p obtained for
lattices of different size, as indicated in the figure, and assuming
�BD=1/2. The full line has slope �=0.45 and corresponds to the
best fit of the data. The inset shows the same scaled plot but ob-
tained assuming �BD� =0.43 for L=512, 256, 128 and �BD� =0.46 for
L=10. Again the full line with slope �=0.45 corresponds to the best
fit of the data.

FIG. 3. Log-log plots of Wsat�L , p� /L�RDSR versus p obtained for
lattices of different size, as indicated in the figure, and assuming
�RDSR=1/2. The full line has slope �=0.97 and corresponds to the
best fit of the data.
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X=Das Sarma–Tamboronea �DST� �34�, Kim-Kosterlitz
�KK� �35�, Lai–Das Sarma �LDS� �36�, Wolf-Villain �WV�
�38�, large curvature �LC� �39�, RDSR �12�, BD �1�, BD1,
BD2, BD3. The last three models are variants of the BD
model and the difference between them is due to the rules
used for the sticking of the particles that are shown schemati-
cally in Fig. 5. In fact, for the BD1 model, when the height
of a selected site for the deposition of a particle is lower than
that of a neighboring site, the particle becomes stuck at half
height between the selected site and the highest neighbouring
site. For the case of the BD2 model, when the height of the
site selected to deposit a particle is lower than that of a
neighboring site, the particle becomes stuck to the highest
neighboring site but the actual deposition height is decreased
by one lattice unit. Finally, for the BD3 model, when the
selected site for the deposition of a particle is lower than a
neighboring site, the particle sticks leaving a single hole in

the selected column, so after deposition the height of the
selected site becomes enlarged by two lattice units. �See also
Fig. 5.�

As shown in Fig. 4, the behavior of � exhibits two rel-
evant features. On the one hand, the obtained values of � are
independent of the universality class of the competitive
model that introduces the correlations to the aggregate. So,
models belonging to different universality classes may have
the same value of �, while models belonging to the same
universality class may have different values of �. On the
other hand, the exponents � obtained in the p→0 limit can
only assume two possible values that are very close to �
=1/2 and �=1. Further support to this statement is given in
Fig. 6 that shows plots of the effective value of the exponent
� obtained for the family of X-RD models. So, we conjec-
tured that in the p→0 limit the exact values for � should be
1/2 or 1, depending on the model. Furthermore, due to the
large number of models considered, it would not be surpris-
ing that the exponent � for all models of the type X-RD may
assume one of the already found values.

V. ANALYTICAL CALCULATION OF THE EXACT
VALUES OF � IN THE p\0 LIMIT

In order to evaluate the exact values of � we have used
three concepts linking the interface width �W� to the height
difference between two neighbouring sites �h�i�−h�i+1�� in
a competitive growth model.

First, we take into account that from the statistical point
of view, it is easy to show that if the interface width stops its

FIG. 4. Log-log plot of Wsat versus p for the following competi-
tive models in dimension d=1: DST-RD for L=6, KK-RD for L
=10, LDS-RD for L=8, WV-RD for L=8, LC-RD for L=10,
RDSR-RD for L=10, BD-RD for L=10, BD1 for L=10, BD2 for
L=10, BD3 for L=10. Different plots have been shifted vertically
for the sake of clarity.

FIG. 5. Schematic view of the deposition of particles in the
BD1, BD2, and BD3 models. More details in the text.

FIG. 6. Log-linear plot of � versus p for the following competi-
tive models in dimension d=1: DST-RD for L=6, KK-RD for L
=10, LDS-RD for L=8, WV-RD for L=8, LC-RD for L=10,
RDSR-RD for L=10, BD-RD for L=10, BD1 for L=10, BD2 for
L=10, and BD3 for L=10.
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growth �i.e., by reaching a saturation value�, then the height
difference between two neighboring sites must stop its
growth too. Secondly, we considered that if the growing
stage of the interface width can be described by a power law
of the type W�t�� tb, then one also has that �h�i , t�−h�i
+1, t� ��tb. Finally, if the dependence of the interface width
on p is given by another power law, namely, W�p�� pb, then
the relationship �h�i , p�−h�i+1, p� ��pb must also hold. It is
worth mentioning that the inverse relationships are also valid
in all cases.

So, based on these statements we studied the behavior of
�h�i�−h�i+1�� in order to obtain the relevant properties of the
interface width. The simplest example for the application of
the above-discussed concepts is provided by the RD model.
Here, the height difference between two neighboring sites
due to the deposition of a single particle can only be in-
creased or reduced by one lattice unit. So, this height differ-
ence corresponds to the displacement of a typical random
walk. This fact allows us to conclude that if h�i , t=0�−h�i
+1, t=0�=0 �as usual�, then ��h�i , t�−h�i+1, t��2�� t and us-
ing this result we conclude that W�t�� t1/2, in agreement with
the fact that �RD=1/2.

Considering a competitive growth model, let us call “RD
particles” and “X particles” those particles that are deposited
according to RD rules and X rules, respectively. Since in the
p→0 limit the deposition probability of RD particles is
larger than that of X particles, the deposition process in an
X-RD model can be thought as cycles involving the deposi-
tion of ni RD particles followed by a single X particle �ni is
the number or RD particles in the cycle i�. Also, it is clear
that from the statistical point of view, the evolution through
this kind of cycles is equivalent to the evolution of any hy-
pothetic model such that the same number �n� of RD par-
ticles followed by an X particle is deposited during each
cycle, where �n� are the average number of RD particles
given by

�n� = 	
n=0




n�1 − p�np =
1 − p

p
. �10�

Since the statistical evolution of the height difference
�h�i�−h�i+1�� is related to the saturation width of the inter-
face according to

Wsat�p� � � ���h�i� − h�i + 1��2�� , �11�

our aim is to show that the behavior of Wsat�p� can also be
derived from the statistical knowledge of �h�i�−h�i+1�� as a
function of the deposition cycles.

On the one hand, it is straightforward to show that for
models such as BD-RD, BD1-RD, and BD2-RD, the behav-
ior of h�i�−h�i+1� in each cycle corresponds to a random
walk that after �n� steps returns either �i� to its initial posi-
tion, �ii� to a point placed at a distance that is just half of the
maximum distance reached from its initial position, or �iii� to
a neighboring site of its initial position. So, these types of
competitive models �h�i�−h�i+1�� correspond to a random
walk that in each cycle walks �n� steps and after that returns
to a site placed at a certain distance �from the starting point�

that is proportional to the maximum distance reached from
its initial position, a being the proportionality constant. Here-
after, this kind of random walk is called “type A.” Now,
when the number of cycles is large enough the saturation of
the interface width is expected to occur and consequently
one has

��h�i� − h�i + 1��2� = �n�	
j=1




aj = �n�
a

1 − a
, �12�

where j is the number of cycles. So, using Eq. �10� it follows
that Eq. �12� is equivalent to ��h�i�−h�i+1��2��1/ p �p
→0�, so that Eq. �11� gives

W�t� � p−1/2. �13�

On the other hand, it is easy to show that for the BD3-RD,
TDS-RD, LDS-RD, KK-RD, WV-RD, LC-RD, and
RDSR-RD models, the behavior of �h�i�−h�i+1�� in each
cycle corresponds to a random walk that after �n� steps re-
turns to a site placed at a distance �l� from the maximum
distance reached during the walk �we call this random walk
“type B”�. So, after the first cycle one has

�
�h�i� − h�i + 1��1�2� = ���n� − l�2, �14�

then after the second cycle it follows that

�
�h�i� − h�i + 1��2�2� = ���n� + ���n� − l�2 − l�2, �15�

and so on. The analytic form of ��h�i�−h�i+1��2� when the
number of cycles is large enough can be obtained by follow-
ing a simple procedure: Since after reaching saturation
�h�i�−h�i+1�� stops growing, in the next cycle after satura-
tion the increment of �h�i�−h�i+1�� due to the deposition of
�n� RD particles is equal to the effect caused by the subse-
quent X particle. As we have already discussed, the effect
of the additional X particle is just to move towards its
initial point l step. So, if before the deposition of the new
particle one had ��h�i�−h�i+1��2�=c2 �where c is a con-
stant�, then after that deposition one already has ��h�i�
−h�i+1��2�= �c− l�2. Then, the difference between them is
given by �
�h�i�−h�i+1��2�before�− �
�h�i�−h�i+1��2�after�
�2l��h�i�−h�i+1���, and it has to be equal to the effect of
the �n� RD particles. So,

��h�i� − h�i + 1��� � �n� , �16�

and using Eq. �11� one obtains

Wsat�p� � p−1. �17�

Therefore, we conclude that for all models that can be
mapped into random walks of types A and B one has that
�=1/2 �see Eq. �13�� and �=1 �see Eq. �17��, respectively.
These results provide an independent, more general, confir-
mation of the exact values of the exponents obtained very
recently for the RDSR-RD and BD-RD models �33�. Of
course, by using Eq. �9� one can also obtain the exact value
of the exponent y for any model that can be mapped into the
two types of random walks already considered.

C. M. HOROWITZ AND E. V. ALBANO PHYSICAL REVIEW E 73, 031111 �2006�

031111-6



VI. PHENOMENOLOGICAL STOCHASTIC GROWTH
EQUATIONS

It is well known that the stochastic growth equations de-
scribing the BD-RD and the RDSR-RD models are the KPZ
�see Eq. �5�� and the Edwards-Wilkinson �EW� �see Eq. �4��
equations, respectively. So, both models belong to the same
universality class as that of the model that introduces the
correlations among particles, namely, the X model with X
=BD and X=RDSR �30–33�. Also, using scaling arguments
on p and the values of � and y we have found that for the
BD-RD model the parameter p appears in the linear and
nonlinear terms of the stochastic equation, taking the form
��p�=�0p and ��p�=�p3/2 �see Eq. �5��, while for the
RDSR-RD model the parameter p appears as a factor of the
form ��p�=�0p2 �see Eq. �4�� �30–33�.

The scaling argument on p implies that, assuming the in-
terface h�x , p , t� to be self-similar, on rescaling the coordi-
nate p according to

p → p� � cp �18�

and the height according to

h → h� � c−�h , �19�

one should obtain an interface that is statistically indistin-
guishable from the original one. Since the interface rough-
ness depends on time t as well, one should have

t → t� � c−yt . �20�

So, for any competitive model belonging to the X-RD
family we can propose a stochastic growth equation similar
to its X model equation where the parameter p appears in the
linear and nonlinear terms. After that, by using the scaling
arguments on p and the exact values of � and y, it is possible
to obtain the exact dependence of the prefactors on p for any
stochastic equation. This systematic procedure and the re-
sults of the previous section allows us to conclude that the
behavior of �h�i�−h�i+1�� quantitatively determines the ex-
act dependence of the stochastic equation on p.

Summing up, by using this procedure we have found that
in the cases of BD1-RD, BD2-RD, and BD-RD models, the
KPZ stochastic growth equation is given by

�h�x,t�
�t

= F + �0p�2h�x,t� +
�p3/2

2
��h�x,t��2 + 	�x,t� .

�21�

On the other hand, for the KK-RD and BD3-RD models,
the KPZ stochastic growth equation is given by

�h�x,t�
�t

= F + �0p2�2h�x,t� +
�p3

2
��h�x,t��2 + 	�x,t� .

�22�

Also, for the case of LDS-RD, WV-RD, LC-RD, and
RDSR-RD models, the EW stochastic growth equation is
given by

�h�x,t�
�t

= F + �0p2�2h�x,t� + 	�x,t� , �23�

while for the case of the DST-RD model, the stochastic
growth equation is given by

�h

�t
= − Kp2�4h�r,t� + �1p3�2��h�r,t��2 + 	�r,t� . �24�

Finally, in Table I we have summarized the list of all possible
stochastic equations resulting for competitive deposition
models belonging to four different universality classes when
the competitive process can be mapped into the two types of
random walks already considered.

VII. CONCLUSIONS

We have studied a wide family of competitive growth
models �generically called X-RD models� where particles of
the same type are aggregated according to the rules of a
generic discrete model X with probability p and according to
the rules of random deposition �RD� with probability �1
− p�.

First, we have focussed our study on the properties of the
exponents related to the interface width Wsat� p−� and the
characteristic crossover time tx2� p−y. We have shown that
both exponents are not independent and one has that the
exact relationship �=y�RD ��RD=1/2� holds for the BD-RD
and RDSR-RD models. However, we expect that the above

TABLE I. Summary of stochastic equations corresponding to models belonging to four different univer-
sality classes such that the competitive process can be represented by random walks of type A and B. More
details in the text.

Universality class Random walk A Random walk B

Edwards-Wilkinson �h�x , t� /�t=�0p�2h�x , t�
+	�x , t�

�h�x , t� /�t=�0p2�2h�x , t�
+	�x , t�

Kardar-Parisi-Zhang �h�x , t� /�t=�0p�2h�x , t�
+�p3/2��h�x , t��2+	�x , t�

�h�x , t� /�t=�0p2�2h�x , t�
+�p3��h�x , t��2+	�x , t�

Linear MBE �h�x , t� /�t=−Kp�4h�x , t�
+	�x , t�

�h�x , t� /�t=−Kp2�4h�x , t�
+	�x , t�

Nonlinear MBE �h�x , t� /�t=−Kp�4h�x , t�
+�1p3/2�2��h�x , t��2+	�x , t�

�h�x , t� /�t=−Kp2�4h�x , t�
+�1p3�2��h�x , t��2+	�x , t�
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relationship would hold for any competitive growth model of
the type X-RD.

Also, we have found that the values of the exponent � do
not significantly depend on the finite size of the sample. This
property has allowed us to systematically study competitive
growth models using lattices of modest size. This study
shows that � exhibits universality and its values, in the limit
p→0, are restricted to either �=1/2 or �=1, depending on
the model considered. Furthermore, by using a correspon-
dence between two neighboring sites in the discrete model

�h�i�−h�i+1��� and two types of random walks, we have
determined the exact values of the exponent �. When the
height difference between two neighbor sites corresponds to
a random walk of type A that in each cycle walks �n� steps
and after that returns to a point at a distance proportional to
its initial position, one has �=1/2 and consequently y=1. On
the other hand, when the height difference between two
neighboring sites corresponds to a random walk of type B
that after �n� steps moves towards its initial position l steps,
we have found that �=1 and y=2.

Finally, using the exact values for the exponents � and y,
as well as a scaling argument on p, we have derived the
stochastic growth equations for the whole family of competi-
tive models studied. So, we conclude that the properties of
the height difference at saturation �h�i�−h�i+1�� in the dis-
crete model, which determines the behavior of Wsat, have
allowed us to quantitatively determine the exact dependence
on p of the coarse-grained stochastic equations.

It is worth mentioning that the derivation of this type of
coarse-grained stochastic equations, based on the growing
rules of the corresponding microscopic models, is an inter-
esting challenge in the field of modern Statistical Physics.
So, we expect that the relationships between microscopic
parameters and stochastic equations obtained and discussed
in this work will stimulate studies of this field.
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