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Quantum diffusion in biased washboard potentials: Strong friction limit
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Diffusive transport properties of a quantum Brownian particle moving in a tilted spatially periodic potential
and strongly interacting with a thermostat are explored. Apart from the average stationary velocity, we fore-
most investigate the diffusive behavior by evaluating the effective diffusion coefficient together with the
corresponding Peclet number. Corrections due to quantum effects, such as quantum tunneling and quantum
fluctuations, are shown to substantially enhance the effectiveness of diffusive transport if only the thermostat
temperature resides within an appropriate interval of intermediate values.
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I. INTRODUCTION

Brownian motion in periodic structures can describe di-
verse processes in many different branches of science.
Within a physical context, among other phenomena, it mod-
els the dynamics of the phase difference across a Josephson
junction [1,2], rotating dipoles in external fields [3,4], supe-
rionic conductors [5], charge density waves [6], particle
separation by electrophoresis [7], transport on crystalline sur-
faces [8,9], and biophysical processes such as intracellular
transport [ 10-13]. Yet another important area constitutes the
noise-assisted transport of Brownian particles [14,15], as oc-
curs for Brownian motors possessing ample applications in
physics and chemistry [10].

In this paper, we study the one-dimensional overdamped
motion of a quantum Brownian particle subjected to a tilted
potential U(x),

Ux)=V(x)-Fx, V(x)=V(x+L), (1)

where V(x) denotes a periodic potential of period L and F is
an external static force.

The basic quantities characterizing this motion are statis-
tical moments of position and velocity of the Brownian par-
ticle. At least the first two moments—i.e., the average posi-
tion and average velocity—and their respective dispersions
are most substantial. In particular, the stationary average ve-
locity can be defined by the relation

(v)= limM, (2)

t—o 1
where x(7) is the position of the Brownian particle at time ¢
and (---) is the average over all realizations of the thermal
noise and initial conditions. The dispersion of the position
can be characterized by the diffusion coefficient defined as

[16]

2 2
Dyyy= 1im(x (1)) = {x(1)) .
t—00 2t

(3)
In the classical case, for strong friction, when only thermal
equilibrium fluctuations affect the particle, the stationary av-

erage velocity and the diffusion coefficient can be expressed
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by exact closed formulas [17,18]. For nonequilibrium driving
they can be calculated in specific cases only; see, e.g.,
[19-21].

Depending on the form of the potential, the magnitude of
the tilt, and thermostat temperature, two interesting phenom-
ena can be observed: A giant enhancement of the diffusion
constant at a critical tilt [17,18] and a low-randomness win-
dow at subcritical tilts [22]. The influence of the shape of the
potential [22,23] and of a position-dependent friction coeffi-
cient [24] on the transport has also been investigated.

However, in many cases, like for the Josephson junction
at intermediate temperatures, the classical theory is insuffi-
cient; i.e., the leading quantum corrections [25] should be
considered. It was shown in Refs. [26,27] that in the strong
friction limit, effects of quantum Brownian fluctuations [28]
are restricted not only to low temperatures; therefore, these
should be incorporated for higher temperatures as well. This
is so because quantum fluctuations, even if reduced for one
variable, are enlarged for the conjugate variable. Quantum
corrections can modify the dynamics quantitatively and
sometimes even qualitatively. Physically relevant examples
illustrating these features are presented in Refs. [27-29].

For the average current in Eq. (2) of the Brownian particle
dynamics such quantum corrections have been studied re-
peatedly in the previous literature within different ap-
proaches [30]. In particular, within the quantum Smolu-
chowski equation these quantum corrections have been
studied recently by Ankerhold in Ref. [31] for an over-
damped Josephson junction.

In distinct contrast, with this work we mainly focus on the
role of the quantum corrections to the diffusion of the mean
squared displacement of the coordinate (or Josephson phase,
respectively) as defined with Eq. (3).

The quantum diffusive dynamics in the regime of a strong
interaction with a thermostat can be described by the so-
called quantum Smoluchowski equation (QSE) [26,27] in-
corporating quantum fluctuations above the crossover tem-
perature [14,25]. It corresponds to a classical Smoluchowski
equation, in which the potential U(x) and diffusion coeffi-
cient D are modified due to quantum effects. In other words,
the quantum non-Markovian diffusion process of a particle
position is approximated by a classical Markov process de-
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scribing motion in an effective potential and with an effec-
tive, state-dependent diffusion coefficient. This leads to a
quite comfortable situation because methods of analyzing
Smoluchowski equations are well elaborated and can directly
be applied and implemented for a wide class of systems. In
this paper we demonstrate how the quantum fluctuations in-
fluence the diffusion behavior of a Brownian particle sto-
chastically moving in washboardlike potentials.

II. CLASSICAL BROWNIAN PARTICLE IN TILTED
PERIODIC POTENTIALS

The overdamped motion of a classical Brownian particle
is described by the Langevin equation

= U'(x) + \29kTE(), (4)

where 7 denotes the viscous friction coefficient and k is the
Boltzmann constant. The overdot and prime indicate differ-
entiation with respect to time 7 and to position x, respec-
tively. The zero-mean and S-correlated Gaussian white noise
&(1), i.e. (&(r)&(s)y=38(t—s), models the influence of a ther-
mostat of temperature 7 on the system.

The calculation of the average velocity (v) and effective
diffusion D,z can be accomplished by mapping the wash-
board potential on a corresponding jump process. This con-
struction procedure has been elucidated in [22]. As a result, a
cumulative process with independent increments is obtained
and its asymptotic mean and variance are given by the first
two central moments of the escape time density [14,17,18].
In this way, the stationary average velocity [14,15,32,33] and
the diffusion coefficient [17,18] for the process modeled by
Eq. (4) can be expressed by closed-form relations involving
quadratures only—i.e.,

L
Ty(xo—xo+ L)

(V)=

L_2 Tz(.xO — Xg+ L) - T%()CO — Xg+ L)

D, = , 5
off 2 T? (X() — Xg+ L) ( )
where x; is an arbitrary, initial value and
T\(xg — b) =(t"(xo — b)) (6)

denotes the nth statistical moment of the first passage time
t(xo— b) at which the Brownian particle arrives at the point
b while starting out from the position x,. For the case b
> x,, these moments are given by the recurrence relation [34]

b
T,(xo — b) =nfB7 f dx exp[ BU(x)]

X f dyexp[- BUW)T,_i(y — b) (7)

for n=1,2,3..., where Ty(y—Db)=1, B=1/kT, and the prod-
uct ,877=D5' is the reciprocal of the Einstein diffusion coef-
ficient D,. Expressions (6) and (7) are rather complicated.
However, they can be simplified as shown in [17,18].
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III. OVERDAMPED QUANTUM BROWNIAN MOTION

To start with the investigation of quantum corrections to
diffusion we consider a quantum Brownian particle moving
in the tilted potential U(x). The evolution of its position can
be described by the respective probability density function
P(x,t)=(x|p(t)|x), which is the diagonal part of the statisti-
cal operator p(z). Within the strong friction limit (the quan-
tum Smoluchowski regime), the dynamics of such a particle
is described by the QSE which correctly takes into account
leading quantum corrections in a temperature regime above
the crossover temperature [ 14,25]. Above this crossover tem-
perature the overall escape is dominated by thermal activa-
tion with corrections stemming from quantum tunneling and
quantum reflection [35,36]. The corresponding theory as-
sumes the structure of a classical Smoluchowski equation
with modified drift and modified diffusion terms [26,27,29]:

J a( 3
WEP(I,X) = £<Ueff(x) + axD(x)>P(x,t). (8)

The effective potential reads
U, ifx) = Ux) + (1/2)NU" (x). 9)

The effective diffusion coefficient D(x), being constant in the
classical case—i.e., D(x)=D=kzT="'—becomes position
dependent, assuming the unique form [29,36]

D(x)=[AL1-1\BU"(0]] ™. (10)

This diffusion is required to remain non-negative; i.e., within
its regime of wvalidity [29,36], the inequality ABU"(x)
=ABV"(x)<1 must be satisfied for all positions x. For
smooth periodic functions V(x) and sufficiently small A3 this
inequality holds for arbitrary x.

The prominent parameter \ characterizes quantum fluc-
tuations in position space; it explicitly reads [26,27]

A= #/mn)n(h By/27M). (11)

It depends nonlinearly on the Planck constant 7 and on the
mass M of the Brownian particle, whereas, in the classical
case, the overdamped dynamics neither depends on # nor on
the mass M (note that we use the friction constant 7 which
has units kg/s as in the classical Stokes case). Note also that
this quantum correction approaches zero with the friction »
growing towards infinity.

The Langevin equation corresponding to the Smolu-
chowski equation (8) becomes, within the Ito interpretation
[37],

7 == ULy () + 27D () E01). (12)

The average stationary velocity (v) and the diffusion clas-
sical coefficient D,z can be calculated as in the case de-
scribed by the Langevin equation (4), using relation (6) and
the known formula for statistical moments of the first pas-
sage time. In comparison with Eq. (7), the statistical mo-
ments are thereby modified into the form [34]
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FIG. 1. (Color online) Schematic picture of the Brownian par-
ticle in the tilted periodic potential U(x)=V(x)—Fx, defined in Egs.
(1) and (17) below. L denotes the period of the potential V(x), and
L, stands for the length of free slide between the barriers.

b
T,(xg— b)=n7 f dxexp[ ¢(x)]

y f dyD™ (y)expl— d(y)]

—00

XT,-(y — b), (13)
where
(z
Zeff\*
b(x) = fD()dz (14)

Insertion of the expressions for the effective potential (9) and
the effective diffusion function (10) yields

b
T,(xg — b)=npBn f dx exp[ Bydx)]

X0

XJ dy exp[— By(y)I[1 - NBU" ()]

XT,1(y — b), (15)
where the thermodynamic potential ¢{(x) becomes
W(x) = U(x) + (1/2)NU"(x)
= (INBLU' )P = (AN BLU" ). (16)

We observe that quantum corrections modify the statistical
moments as given by Eq. (15) compared to the classical form
(7) in a two fold way: First, the physical potential U(x) is
replaced by the thermodynamic potential ¢4(x). This thermo-
dynamic potential depends on the temperature S of the sys-
tem and on the coupling constant of the Brownian particle
with its surroundings via the damping constant 7, which in
turn enters into the parameter N. Second, the function in the
inner integral (over the variable y) on the right-hand side of
Eq. (15) is modified by the factor [1-A\BU"(y)], which de-
pends on the curvature [i.e., on U"(y)=V"(y)] of the physical
potential U(y).

We will examine the quantum Brownian particle moving
in a tilted washboard potential like that presented in Fig. 1.
We scale the space and time in such a way that for the res-
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caled equation corresponding to Eq. (12) the friction coeffi-
cient equals =1 and the temperature is represented by the
dimensionless quantity By=10AV/kgT, where AV is the bar-
rier height of the unscaled periodic potential. We choose a
specific form of the dimesionless periodic part V(x) of the
potential U(x): namely [22],

V(x) = A exp{e[cos(x) — 1]}/e. (17)

The advantage of this choice is that by an appropriate ma-
nipulation of & and A, the barrier height and distance be-
tween neighboring barriers can be varied independently. As a
consequence, one can change two time scales independently:
a first one is related to the deterministic sliding motion be-
tween neighboring barriers, and the other is related to the
inverse of the activation rate over a barrier. In all numerical
calculations here, we have chosen =100 and A=10; thus,
the barrier height of the dimensionless potential without the
tilt is 0.1.

IV. QUANTUM DIFFUSION IN TILTED WASHBOARD
POTENTIALS

In order to understand the influence of the shape of the
washboard potential on the particle dynamics, in both the
classical and quantum regimes, is it desirable to identify
characteristic time scales. The first one is given by the time
7,=L,/ F the particle needs to slide down the distance L, (see
Fig. 1) with a constant velocity v=F (remember that the
friction coefficient =1 and the force is rescaled). This time
scale is relevant if the potential has an almost constant slope
between neighboring comparatively narrow barriers, as in
the case considered here. The second time scale 7, is deter-
mined by the escape time, as determined by the effective
quantum Smoluchowski equation. The potential V(x) has
been chosen in the above-described way, so that these time
scales can be “tuned” independently: 7, by the force F and
the parameter €, and 7, by the barrier height using both pa-
rameters &€ and A of the potential (17).

The transport of particles is optimal if a large mean ve-
locity goes along with small diffusion. This can be quantified
by the dimensionless Peclet number [38]

(v)L
Pe=——. (18)
c D.gs

The efficiency of the diffusive transport as measured by the
Peclet number can either be enhanced by an increase of the
net current (i.e., the stationary mean velocity) and/or by a
decrease of the effective diffusion, resulting in a maximal
Peclet number Pe. The average velocity for the overdamped
motion in a tilted washboard potential is limited by the free-
slide speed which coincides with the value F in our case. The
particle will approach this free-slide velocity when the bar-
riers become negligible—for example, for a sufficiently high
thermal energy kT or very strong tilt F. This situation, how-
ever, does not lead to an optimal transport performance in the
sense of a maximal Peclet number [22,39]; see also below.
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FIG. 2. (Color online) Average velocity (v) (a), effective diffu-
sion D, (b), and Peclet number Pe (c) are drawn versus tilt F.
Parameters of the potential are e=100, A=10, which result in a
barrier height of AV=0.1 in the absence of a tilt (F=0) and a
critical tilt F.=0.6 above which all barriers disappear. The rescaled
inverse temperature is set to 8=100, corresponding to a small quan-
tum parameter \y=0.00115129. The mean velocity and Peclet
number are always larger in the quantum case, even if the classical
effective diffusion is smaller (as is the case for F=<0.25). With
panel (d) we depict the corresponding classical, U(x) (dashed line),
quantum effective, U,//(x) (solid line), and thermodynamic, #(x)
(dotted line) tilted potentials, respectively. The position-dependent
diffusion coefficient is plotted in panel (e).

A. Quantum renormalization of the barrier shape

We studied the influence of quantum corrections on trans-
port in tilted periodic systems by means of a numerical
analysis of the basic expressions (5) and (15). We found that
the quantum current is always higher than the corresponding
classical one (see Figs. 2—-4). This phenomenon can be ex-
plained by comparing the potential U(x), the effective quan-
tum potential U,//(x), and the thermodynamic potential ¢(x)
with each other, as well as by analyzing the effective diffu-
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FIG. 3. (Color online) Average velocity (a), effective diffusion
(b), and Peclet number (c) versus the inverse temperature B,. The
chosen parameters are bias F=0.2 and potential parameters &
=100 and A=10. The two arrows in panel (c) mark the character-
istic temperatures where the system starts to markedly deviate from
the classical behavior (see text for details). The region of interme-
diate temperatures is located between the downward- and upward-
pointing arrows. It bridges between the regions of freely sliding
Brownian particle dynamics, characterized by the Peclet number
Pe=FLJ3, [see the thin, dotted line in (c)] and Poisson-like behavior
with Pe=2. Within this region the Peclet number assumes its maxi-
mal value.

sion function D(x) (which is constant in the classical case);
see Fig. 2. Clearly, the effective quantum potential
U, /x)(solid line) possesses slightly lower and thinner barri-
ers than U(x) (dashed line).

The state-dependent diffusion function D(x) possesses
maxima and minima. The maxima, which are shifted away
from the potential barrier locations, can be interpreted as a
higher effective local temperature. The minimum of D(x) is
located in the neighborhood of the top of the barrier [near
x~0 in panel (e)]. It means that quantum fluctuations mimic
an effective temperature which is lower at the barrier and
higher in the potential wells. For the escape dynamics the
thermodynamic potential i(x) is decisive: It contains the
combined influences of the effective potential and the effec-
tive diffusion. In the present case, ¥(x) displays both a lower
and a narrower barrier than the bare potential U(x) of the
corresponding classical process. It is remarkable that for all
cases considered, the Peclet number is always larger in the
quantum case than in the classical case, thus providing a
more coherent motion. This behavior is exemplified in Figs.
2-4.

B. Role of quantum corrections for diffusion

Depending on the relation between the thermal energy kT
and the barrier height of the tilted potential, one can distin-
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FIG. 4. The influence of quantum corrections is illustrated as a
function of bias F' vs inverse temperature 3, by the relative differ-
ence between the quantum (Q) and the corresponding classical (C)
values of the current ((v)2—(v)€)/(v)¢ (a), the effective diffusion
(Dgpf—Dg’}f)/Dgcf (b), and the Peclet number (Pe€—Pe€)/Pe€ (c),
respectively. The positive values of the depicted quantities indicate
the relevant role of quantum effects.

guish regimes of high and low temperatures, denoted in Fig.
3 by a downward and an upward arrow, respectively. To the
left of the downward arrow—i.e., for high temperatures—the
particle barely feels the barriers and thus freely slides down
the hill with an average velocity given by (v)=F.

The effective diffusion coefficient D,s can then be ap-
proximated by the Einstein diffusion coefficient 1/ /3 in both
the classical and quantum cases. The corresponding approxi-
mated values of the Peclet number, given by Pe=FLf,, are
depicted as a dotted line. To the right of the upward arrow in
Fig. 3(c) the relaxation time 7, is much smaller than the time
scale for barrier crossing. The time evolution in that case
consists of a sequence of independent activations. Indeed,
the value of the Peclet number approaches Pe=2 which is
characteristic for Poisson processes.

The most interesting region is located between the two
temperatures, indicated by two oppositely directed arrows
(one downwards and one upwards), where we found the op-
timal transport—i.e., the maximum of the Peclet number Pe.
The quantum behavior significantly deviates from the classi-
cal one only within this very region. We observe that the
transport quality, expressed in terms of the characterizer Pe,
is never suppressed by quantum effects (see Figs. 3 and 4),
even though quantum corrections may increase the effective
diffusion D, .

In Fig. 4 we depict the relative value for the correction of
D, and Pe, respectively, in the parameter space spanned by
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FIG. 5. (Color online) The influence of the quantum corrections
on the evolution of the coarse-grained probability density function
P(x,1) (see discussion in [22]) is illustrated for the same set of
parameters as in Fig. 2 and for different forces F'=0.2 and 0.3. Note
that in the quantum case the velocity is always larger; therefore, the
maximum of the density is located at a more distant position as
compared to the classical case. The width of the density differs
depending on the driving parameters and thereby reflects the effec-
tive diffusion strength.

By, F. First, it is detectable that the corrected values of
velocity, the effective diffusion, and Peclet number may dif-
fer up to 200% from the classical values. Second, the sign of
the relative corrections of (v) and Pe is positive, but in the
case of the effective diffusion D,/ it might assume negative
values within some range of parameters.

Finally, we illustrate the effect of quantum corrections on
the transport in tilted washboard potential. In Fig. 5 we
present two examples of the time evolution of the density
function P(x,t). The impact of quantum corrections is clearly
visible. The width of P(x,r) becomes larger at F=0.2 and
smaller at F=0.3 when the quantum corrections are acting,
but the peak of the probability density travels in the quantum
case with a larger velocity in both situations.

V. CONCLUSIONS

The effect of the quantum contribution on Brownian mo-
tion, in particular on the diffusion of particles and the related
transport performance, is addressed in this work. The quan-
tum current always exceeds the corresponding classical one;
quantum features like tunneling and quantum fluctuations
seemingly always assist the particle to overcome barriers and
to pass longer distances, resulting in a larger average station-
ary velocity. The diffusion coefficient D,z is found to as-
sume, generally, a nonmonotonic function of the static force
F and the temperature 3. In other words, optimal conditions
exist for both directed and diffusive transport. Depending on
the parameters of the system, quantum effects may either
increase or decrease the effective diffusion of the particle.
The Peclet number is found to be always larger for quantum
systems; see Fig. 4(c). The most significant finding is that
quantum effects always improve diffusive quantum transport
for the class of systems considered in this work.
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The findings of this work for quantum diffusion can be
tested with experiments that are aimed at evaluating, apart
from the current, also the fluctuation behavior. Ideal systems
that come to mind to do so are overdamped, driven Joseph-
son junctions for which the quantum corrections to the es-
cape rate have been determined in the literature [40-42],
vortex-Josephson quantum Brownian motors [43], or also
quantum diffusion in superionic conductors [44].
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