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Reaction-subdiffusion equations
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To analyze possible generalizations of reaction-diffusion schemes for the case of subdiffusion we discuss a
simple monomolecular conversion A — B. We derive the corresponding kinetic equations for the local A and B
concentrations. Their form is rather unusual: The parameters of the reaction influence the diffusion term in the
equation for a component A, a consequence of the non-Markovian nature of subdiffusion. The equation for the

product contains a term which depends on the concentration of A at all previous times. Our discussion shows
that reaction-subdiffusion equations may not resemble the corresponding reaction-diffusion ones and are not
obtained by a trivial change of the diffusion operator for a subdiffusion one.
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Many phenomena in systems out of equilibrium can be
described using a picture of reactions. Apart from chemistry,
the examples are exciton quenching, recombination of charge
carriers or radiation defects in solids, predator-pray relation-
ships in ecology, etc. Reactions in homogeneous media are
often described by formal kinetic schemes. Thus, the concen-
trations C;(¢) of the components follow the first-order differ-
ential equations dC,(1)/dt=f{C,(1),...,Cy(t)} where the
reaction terms typically have a form f{Cy,...,Cy}
=x,k,C|'C2,...,C\V, with the powers n; depending on the
stoichiometry of the reaction, and the k; denote the corre-
sponding reaction rates. In inhomogeneous situations (lay-
ered systems, fronts, etc.) a mesoscopic approach based on
reaction-diffusion equations for the position-dependent con-
centrations C;(r,?) is often the appropriate way of descrip-
tion. In case of normal diffusion such equations are obtained
by adding a diffusive term to classical reaction schemes
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with f;=f{C,(r,1),...,Cy(r,1)} and K; being the diffusivity
of the component i. This approach is applicable whenever
characteristic scales of spatial inhomogeneities are much
larger than mean interparticle distances and particles’ mean
free paths (see, e.g., [1]). As we proceed to show, the possi-
bility to put down such schemes is due to the Markovian
nature of normal diffusion.

In many cases, however, the diffusion is anomalous [2].
Although reactions under anomalous diffusion conditions are
under extensive investigation since the late 1970s (when the
works appeared following the splash of interest to fractal
systems), a general theoretical approach going beyond sim-
plest models and scaling considerations is still absent. Some
important steps to adequately describe the situation were
done quite recently. One is pertinent to situations described
within the continuous-time random walk (CTRW) scheme
[3]. In this case the subdiffusive nature of motion stems from
the fact that particles get trapped and have to wait for a time
t [distributed according to a power-law probability density
function ¢A(t)¢~'=%] until the next step can be performed
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[4-7]. The microscopic approach of these works aims on the
understanding of the situation when the particles performing
CTRW react on encounter (and do not react as long as they
do not move). Such a situation is pertinent to exciton
quenching in solids, or to transport in ion channels [8].

In many cases, however, a mesoscopic approach is desir-
able. Such an approach was adopted in the case of reactions
under Lévy flights, Refs. [9,10], where the transport process
involved is Markovian. The case of subdiffusion is much
more subtle due to the non-Markovian character of subdiffu-
sive transport [11]. Here two different situations can be en-
countered. Thus, the reaction at small scales can be also sub-
diffusion controlled (like in the models discussed above) or
the reaction locally follows normal, classical kinetics. This
last case, that we address here, adequately describes reac-
tions in porous media, a situation of extreme importance in
hydrology, where the transport in catchments is hindered by
trapping in stagnant regions of the flow, caves, and pores on
all scales. The transport at long times and large scales is well
described by CTRW [12]. However, the particles trapped in
stagnant regions can still react. A mesoscopic approach to
such a case was adopted in [13] within a probabilistic
scheme, while [14] tackle this problem by using equations of
the same form as our Eq. (1) where the diffusion operator is
changed for a subdiffusion one, containing an additional
fractional derivative in time [3,15]

aCi(rv t) —a;
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In this equation «; is the exponent of the anomalous diffusion
for the component i, (D, “ is the operator of fractional
(Riemann-Liouville) derivative, and K, is the correspond-
ing anomalous diffusion coefficient. Such equations with de-
coupled transport and reaction term were postulated based on
the analogy with Eq. (1) and look quite plausible. In some
cases also a reaction term has to be modified by applying a
fractional derivative as suggested by a microscopic model in
[5].

In what follows we derive the reaction-subdiffusion equa-
tions for the simplest reaction scheme (monomolecular con-
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version A— B) corresponding, e.g., to radioactive decay of
isotope A which is introduced into the ground water at some
place at time =0 and is transported according to anomalous
diffusion. We show that the corresponding equations do not
follow a pattern of Eq. (2), so that the reaction and diffusion
terms do not decouple.

Let us assume for the time being that all properties of A
and B particles are the same, so that the reaction corresponds
to a relabeling of A into B taking place at a rate «. In what
follows we will use one-dimensional notation, the generali-
zation to higher dimensions is trivial. Equations (1) for this
case read

0A
— =KAA - KA,

B
— =KAB+ KA, (3)
ot ot

with K being the normal diffusion constant. Let C(x,?)
=A(x,t)+B(x,t) be the sum of concentrations. It evolves ac-
cording to a diffusion equation

aC
— =KAC. (4)
ot

Both concentrations A and B follow

A(x,1)=eC(x,1), B(x,0)=[1-e"]C(x,2). (5)

To see this apply Laplace transform to Egs. (3). Note that the
solution for A(x,?) in the Laplace domain is A(x,u)=C(x,u
+ ). Equation (5) reflects the fact, that the conversion is
independent of the motion of particles, so that concentrations
of As and of Bs are proportional to the overall concentration
multiplied by the probability for a particle to survive as A or
to become B. The same argument leads to the conclusion that
Eq. (5) also holds in anomalous diffusion, whatever the evo-
lution equation for C is. For subdiffusion

JC(x,1)
at

=K, D *AC(x,1), (6)

so that in Fourier-Laplace domain for the initial condition
C(x,0)=5(x) one has 5‘(/(,u)=(u+u1‘0‘k2K0()‘1 so that, for
instance

1

Alkow) = (u+ k) +w+r)""%K,

™)

However, neither the solution of Eq. (2) nor the solution of
the fractional equation with the modified reaction term [5]
reproduce this result: the simple reaction-subdiffusion
schemes do not describe the conversion reaction correctly.
Let us now turn to the derivation of correct reaction-
diffusion equations for our case. We will follow the way of
the derivation of the generalized master equation for CTRW
used in Ref. [16] based on the ideas of [17]. We start from
a discrete scheme and consider particles occupying sites of
a one-dimensional lattice. The generalized reaction
(sub-)diffusion equations follows from the balance condi-
tions for particle numbers. A balance condition for the mean
number A; of particles A on site i of the system reads
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d .
/zllt(t) =I1(0) = I; (1) = kA1), ®

where [;(¢) is the loss per unit time due to the particles’
departure from the site (loss flux) at site i, I7(z) is the gain
flux, and «A; is the loss due to conversion. Particles’ conser-
vation for transitions between the two neighboring sites cor-
responds to

L@ =wig L (1) + wiyy i (1), )
where w; ; is a probability to jump to site j when leaving i.
For unbiased walks one has w;_; ;=w;,;;=1/2. Thus
dA(r) 1 1
=—I_(t)+ [, (1) = I; (1) — kA(1). 10
dt 2 z—l() 2 z+l() 1() z() ( )

We now combine this continuity equation with the equation
for I7 (1) following from the assumption about the distribution
of sojourn times. The loss flux at time ¢ is connected to the
gain flux at the site in the past: the particles which leave the
site i at time ¢ either were at i from the very beginning (and
survived without being converted into B), or arrived at i at
some later time ¢’ <t (and survived). A probability density
that a particle making a step at time ¢ arrived at its present
position at time ¢’ is given by the waiting time distribution
(t—1"), the survival probability being p(r)=e~*'. Thus

(1) = lr)e™AL(0) + J l We—1)eOr(dr . (11)
0

Applying Eq. (8) we get

F0= 0080+ [ we-| S0 caers i |ar
0
(12

where i,(1)=i(t)e™™" is the nonproper waiting time density
for the actually made new step provided the particle sur-
vived. This approach can also be generalized to bimolecular
reactions though leading to equations with a more involved
structure than in the present case. Changing to the Laplace

domain and noting that (1) = J{u+ k) we get

with @ (1) given by

- + K) P+
&, () = WOt 0 (14)
1 — u+ k)
Returning to the time-domain we thus get
t
I(t)= f D (r—1)A(t")dt' . (15)
0

Note that ®,(r) given by the inverse Laplace transform of
® (u) corresponds to ® (1) =Py(r)e™ where Py(r) obtained
by taking k=0 is the usual memory kernel of the generalized

master equation for the CTRW.
Combining Eq. (15) with Egs.(8) and (9) we get
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dA(t ! () A
()fq)(_,) ,1()+ )
dt 2 2

— KA. (16)

- A1) |dt

Transition to a continuum in space (x=ai) gives

A (x,1)
at

=—f D (1—1")AA(x,t")dt’ — kA(x,1)

2 rt
== f Do(t — 1)e ™ AA(x,1')dt - kA(x,1),
0

(17)

a rather unexpected form, where the reaction rate explicitly
affects the transport term.
For the exponential waiting time distribution (r)=e"

corresponding to {u)=N\/(u+\) the kernel reads ®(r)
=\&(r), and the existence of an additional exponential mul-
tiplier does not play any role: The reaction diffusion equation
is perfectly exact.

In the case of slowly decaying ®(z) the exponential cut-
off introduced by the reaction is crucial. For power-law wait-
ing time distributions and for x=0 the integral operator
Jo@o(r—1")f(t")dt’ is the operator of the fractional deriva-
tive: For such distributions J(u) =1-(7u)*T'(1-a) (where 7
is the appropriate time scale) we have (for u—0) dgo(u)
=[1/7T(1-a)]u'~® which is proportional to the operator
of the Riemann-Liouville derivative of the order
a: (a212)[i®y(t—1")f(t'")dt' =K, ,D,”“f for sufficiently
regular functions f. The generalized diffusion coefficient
reads K,=a*[27T(1-a)]™". For k>0 however the reaction
affects the diffusion part of the equation: the Laplace trans-
form of the integral kernel ®,(z) reads

Nt

- 1 .
D, (u) = m(uﬂdl (18)

and is no more a fractional derivative. The integral operator
T(1-a,k)f=rT(1-a) [4® (t—1")f(t")dr'

time domain to
—K(t t")
T(1-a,k)f= dJ 7= af(t )dt’

—K(t—t)
+Kf )" af(t')dt’), (19)

turning to be a fractional derivative only for k=0. The equa-
tion for the A concentration thus finally reads

corresponds in

O0A(x,1) B
o

T,(1 — a,K)AA(x,1) — kKA(x,1).  (20)

Although our reaction does not depend on the particles’ mo-
tion, the parameters of the reaction explicitly enter the trans-

port operator T of the equation.
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Analogously we will now derive an equation for the B
particles. As for A one has a balance condition for the mean
particle number B; of B particles on site i

dB; (t)

=Ji (1) = Ji (1) + kA1), 21

where J! denotes the gain flux and J; the loss flux of par-
ticles B at site i. The continuity equation reads

dBT’f”% 0+ 3T~ T+ KAL), (22)

A B particle that leaves the site i at time ¢ either has come
there as a B particle at some prior time or was converted
from an A particle that either was at site i from the very
beginning or arrived there later, at ' >0. Thus

J ()= f Yt —1")JE()dt' + A0)(t)[1 — e™]
0

+ f t We— 1)1 = e O e (23)
0

We then use the local balance equation (21), apply Laplace
transform, solve for 77 (1) and use the initial condition
B;(0)=0 as well as Eq. (13) for ~Fl We get

T; () = Bo() Bi(u) + [Bo(u) - B, (w)]A (). (24)

We now substitute the inverse Laplace transform of this into
the continuity equation (22) and perform the transition to a
continuum

dB(x,1) a* ('
£=a_f Dt — ) AB(x,1")dt" + kA(x,1)
ot 2 Jo

2 [t
+ % f Dyt — 1)1 = e AA(x,1)dr' .
0

(25)

For the exponential waiting time density for which ®(r)
=\&(t) the third term in Eq. (25) vanishes and a normal
reaction-diffusion equation arises. For a power law waiting
time distribution Eq. (25) can be written in terms of frac-

tional derivatives and the operator f",(l -a, k), Eq. (19)
IB(x,1)
ot

=K 4oD) " “AB(x,1) + KA(x,1)

+K D= T,(1-a,K)]AA(x,1).  (26)

Note that the equation for the product contains a term de-
pending on the concentration of the component A at all pre-
vious times. This term has to do with the fact that the prod-
ucts are introduced into the system later on in course of the
reaction, and their motion therefore is described not by the
normal CTRW (and the corresponding fractional diffusion
equation) but by the aged one [18]. Note also that the sum of
Egs. (20) and (26) always yields the “normal” subdiffusion
equation for the overall concentration C(x,t), Eq. (6). More-
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FIG. 1. Shown are the exact solution for independent subdiffu-
sion and conversion for A particles (solid line) and B particles
(dashed line) and the numerical solution of Eq. (2) for A particles
(solid line with dots) and B particles (dashed line with dots). The
parameters are: a=0.75, k=0.001, K,=7.76 X 1073, t=2000.

over the solutions of Egs. (20) and (26) satisfy Eq. (5).

In order to elucidate the difference between the correct
scheme and the simple reaction-diffusion approach we com-
pare the exact result with the numerical solution of Eq. (2)
with decoupled transport and reaction term for the initial
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condition A(x,0)=48(x), B(x,0)=0. The exact solution for
C(x,1)=A(x,t)+B(x,t) is known as the Fox’s H function [3]

x| |- a/Z,a/Z):|
HY)| — . @7
‘*‘[ VK4 (0,1)

Clx,1) =

4K

from which A(x,)=e™¥C(x,t) and B(x,f)=[1-e"*]C(x,1)
follow. Equation (2) is solved numerically using a numerical
scheme recently proposed by Yuste et al. [19]. The results
are shown in Fig. 1. The qualitative differences between the
forms of the concentration profiles are quite evident.

In summary, we derived here the equations describing the
time evolution for the local A and B concentrations in a
simple monomolecular conversion reaction A— B taking
place at a constant rate « and under subdiffusion conditions.
These equations do not have a usual form of reaction-
diffusion equations with the transport term independent on
the reaction one. This fact is due to the non-Markovian prop-
erty of the subdiffusion process, and will persist for more
complex reaction schemes as well. The reaction-diffusion
scheme with decoupled transport and reaction term fails even
qualitatively to describe the situation.
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