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Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice
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The propagation of transverse waves along a string loaded by N masses, each of them being fixed to a spring
with a quadratic nonlinearity, is studied. After presenting the nonlinear model and stating the equation of
propagation into a lattice with discrete nonlinearities and disorder, we propose a perturbation approach to wave
propagation in a nonlinear lattice using the Green’s function formalism. We show how the nonlinearity acts on
the propagation into a disordered lattice. In the low-frequency approximation, an analytical expression of the
boundary between the propagative regime and the evanescent one is found. Numerical results are compared to
the analytical results and phase diagrams are proposed in the ordered and disordered cases. A behavior of the
transmission coefficient is found, on an empirical basis, as a function of the length of the lattice and the
localization length in the nonlinear case. Finally, a dynamic approach is developed and the ordered and
disordered cases are addressed. This method is based on a finite difference equation and allows the construction
of the Poincaré section describing the propagation of the wave into the lattice. This approach distinguishes

between the properties of propagation in the lattice in a propagative regime and in an evanescent one.
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I. INTRODUCTION

Anderson localization phenomena have been studied
mainly in linear random media [1,2]. Up to now, it has been
clearly established that the disorder precludes the presence of
long-range propagation.

However, two scenarios have been put forward to sup-
press localization and to allow the propagation of waves:
correlation in disorder [3-5] and nonlinearity [6-17]. For
electronic motion, it was proven that the presence of an elec-
tric field can break the localization process [18,19]. Although
the former has been shown to improve transport properties, it
is beginning to seem that nonlinear waves may be strong
enough to propagate even in the presence of disorder.

Indeed, up to now, very little is known on the interplay of
nonlinearity and the classical wave localization (for a review
see [20]). Beloshapkin ef al. [21] have suggested a closed
relation between the disorder in particle chains and the dy-
namic problem of transition to chaos. Recently, Sayar et al.
[9] examined the effects of nonlinearity on the localization
behavior observed in one-dimensional linear and nearly pe-
riodic structures. In particular, they show that nonlinear
neighbor interactions delocalize the modes corresponding to
low frequencies. Furthermore, Cai et al. [22] studied the lo-
calized modes of periodic systems having nonlinear disor-
ders. On the basis of exact solutions for a set of nonlinear
algebraic solutions, they concluded that the localized modes
exist for any amount of the ratio between the linear coupling
stiffness and the nonlinear disorder parameter.

In parallel, the theory of the wave transmission in nonlin-
ear ordered lattices is now well known (for a review see
[23]). A great number of experimental studies have been
done in optics (light scattering experiments) or quantum
physics but, with classical waves, the works are very few. We
can cite McKenna and co-workers [10,11] which examined
experimentally the propagation of transversal waves in a
wire loaded by masses and showed qualitatively the influ-
ence of the nonlinearity due to the wire on the Anderson
localization.
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In this context, it is the purpose of this paper to examine
the interplay between the effects of disorder and nonlinearity
on the propagation of classical waves by means of an ana-
lytical model and numerical simulations, in the case of a
quasi-one-dimensional string loaded by N mass-spring sys-
tems.

We analyze this nonlinear problem by looking at the ef-
fect on the wave propagation of nonlinear terms in the wave
equation in the model. These nonlinear terms model the non-
linear response of springs at each node of the lattice. The
question is: what is the influence of discrete nonlinearities on
propagation in a disordered lattice?

In the first section, the wave propagation in the lattice
with discrete nonlinearities is formulated through recurrence
relations and wave “transfer” operators. The weak nonlinear-
ity case is analytically solved with the help of a perturbation
method and an analytical result is found for the low-
frequency case.

The last part presents another way to examine the inter-
play between disorder and nonlinearity: an area-preserving
nonlinear mapping is used to describe this kind of propaga-
tion. Finally, the main results are summarized in the conclu-
sion.

II. PRESENTATION OF THE NONLINEAR MODEL

In this paper, we focused on the transverse vibrations
y(x,7) of an infinite string loaded between x=0 and x=L by
N spring-mass systems acting as resonators, constituting a
lattice (see Fig. 1). The nth cell characterized by the mass M,
and the stiffness constant of the spring k,, is located at x,, and
the lattice spacing is defined by d,=x,,,—x,. (see Fig. 2).

In the remainder of the paper, two cases are investigated.
In the first one, all the physical attributes of the lattice are
identical (M,=M, k,=k and x,,,—x,=d, V n). In such cir-
cumstances, the system constitutes a periodic lattice. In the
second case, the masses M, the stiffnesses k,, of the springs,
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FIG. 1. Picture of the infinite string loaded by N mass-spring
systems located between x=0 and x=L.

and the location x,, are random variables. The system is then
a disordered medium of propagation referred to as a disor-
dered lattice. Several different situations must be considered:
(i) The masses and /or the stiffnesses are a random variable
but they are evenly located along the string (x,,,;—x,=d). In
this case we have to deal with a substitutional or cellular
disorder. When we make random substitutions in a periodic
lattice, we destroy the periodicity of physical parameters:
some of them are no longer invariant under the translation
group. Nevertheless, some quantities still remain sufficiently
periodic to display the basic lattice; (ii) the location x,, is a
random variable with M, =M and k,=k. In this case, a topo-
logical or geometrical disorder arises; (iii) all the physical
parameters are random variables, so we are dealing with a
mixed disorder.

For the sake of simplicity, we consider that the nonlinear-
ity effects are due only to the nonlinear terms in the stiffness
of the spring; this implies that between two masses the trend
for a transverse wave propagation is given simply by a linear
equation. Each spring-mass system is governed by the equa-
tion of motion:

%&zy(xn,t) . 1 dU(x,1)

T, ot T, ox |y
dyben) |yl N
ox x=x" [ - ’

where T is the tension of the string and U is the potential of
the restoring force. In the nonlinear case, the dynamic poten-
tial of the nth spring is

U(x,1) = 5k, (x50 + jak,y* (x,,0) + 067 (x,1),  (2)

where a, describes the strength of the spring nonlinearity at
the node x,. We consider a harmonic time dependence wave
such that

FIG. 2. Geometry of the nth cell.
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FIG. 3. A schematic representation of the conventional wave
structure of a periodic loaded string.

y(x,1) = y(x)e’,

where w is the angular frequency and we introduce the so-
called “describing function method.” Although intensively
used in atomic and condensed-matter physics [24], this ap-
proximation is also employed for mechanical modeling. In
our case, the term cos>(w?) is linearized as

cos’(wt) = % cos(wt)

meaning that we focus only on the fundamental frequency.
The influence of the higher harmonics has been investigated
in [25,26]. We have shown that, as a first approximation,
they may be neglected: in an acoustic lattice, the amplitude
of the higher harmonics is typically 50 times smaller than the
fundamental one.

The general propagation equation is

Fy(x) J
o PR =2 dr-x)g, @, G)
n=0

where K=w/c is the wave number with ¢=\T,/p. In the
above equation, g,(x) is now also dependent on the ampli-
tude of the wave

2
1) 3
- L)l 20 2
gn(x) = 1/)\n|:<1 - Qi) + 4any ()C):| B
where \,=T,/k, and Qi:k”/M,,. In the following, we as-
sume that the nonlinearity coefficient ¢, is a constant with
respect to the position along the lattice, i.e., a,=« for all n.

III. GENERAL STUDY

The solution of Eq. (3) for x,<x=<x,,, is written as the
sum of a forward (with amplitude A,) and a backward (with
amplitude B,) wave (see Fig. 3) [23]. By using the continuity
of the transverse displacement and the discontinuity of its
first derivative at a resonator, we find, formally, the same
system of equations as in the linear case (see Appendix A)

(An) ( (1 + u,)eKdn 4y, e/Kdn ) (A,,_l ) 5 (An_l )
Bn - unejKdn + (1 - un)e_jKd” Bn—l S Bn—l '
4)

where u,=1/2jK\,(1-w?/Q2)+6,. The nonlinear term 6,
depending on the wave intensity and on the position along
the lattice is given by
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The nonlinear operator Tn gives the following formal expres-
sion for the propagation across a nonlinear lattice made up of

N resonators:

N

A ~ (A

( N>=HT,,( 0), (5)
BN n=1 BO

where (A, B)" are the boundary conditions.
The waves outside the nonlinear structure can be de-
scribed by [20]

R,-eij + Roe_jKX
y(x) = TrejK(x—xN)

forx <0,

forx> L,

(6)

where R;, Ry, and T, are, respectively, the amplitude of the
incident wave, the amplitude of the reflected wave, and the
amplitude of the transmitted wave and where the total length
of the lattice is L=(N-1)d. By determining the amplitude of
the transmitted wave T, (or Ay), the corresponding input am-
plitude R; (or Ag) is found. So the nonlinear transmission

coefficient 7 defined as
= ITP At
R Al

is used to estimate the band structure.
The transmission problem can also be considered by
means of an iterative nonlinear equation on Y, =y(x,):

Y1 + Vo1 —=2a,Y,+ AV, J*Y,=0for0O<n<N, (7)

where

) .
a,=cos(Kd,) + 2K, 1- 9_,21 sin(Kd,,),

-3a . (Kd,)
TN sin(Kd,,).

The propagation of a mechanical wave in the inhomoge-
neous medium with discrete nonlinearities can be studied in
practice by means of these two approaches. For the case of
weak nonlinearities in a periodic lattice, a perturbation
method is used and we show that the presence of nonlineari-
ties can improve the transparency of the medium. For the
strong nonlinearity case, a general approach to the nonlinear
problem is developed with the help of a nonlinear operator.

IV. THE PERTURBATION METHOD

To show how the nonlinearities modify the wave propa-
gation, we first investigate the effects induced by one iso-
lated nonlinearity. For a weak nonlinearity, the perturbation
method leads to results consistent with numerical analysis.
Then, for a low concentration of nonlinearities, the above
results are extended to several nonlinear scatterers in the lat-
tice.
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A. The case of one nonlinearity

Consider an isolated nonlinearity placed at x=x,=0 in a
infinite uniform lattice. This nonlinearity is defined by the
term H[xo,|Y(xo)|1=Hy=Ao|Y(x0)|* in Eq. (7). When the
amplitude of the wave is sufficiently small to consider the
nonlinearity as a perturbation of the linear case, the Green’s
function of the perturbed string is written as (for x,=0):

Go(m,0,a)HyGy(0,n,a)
1 = HyGo(0,0.a)
= Go(m,n,a) + Go(m,0,a)l1(a)Gy(0,n,a), (8)

G(m,n,a) = Go(m,n,a) +

where I1(a) is the scattering operator and Gy(m,n,a) is the
Green’s function of the ordered linear lattice given by (see
Appendix B)

_ (a _ \,'02 _ 1)|m—n|

2\"’(12 -1

Go(m,n,a) =

Go(m,n,a) is interpreted as the wave amplitude at the node
x, when the unit force source is located at x,,. For a periodic
lattice, with parameter

11 o’ .
a=cos(Kd) + KN 1- Ry sin(Kd),

the Green’s function G, is defined as the solution of the
inhomogeneous discrete equation:
Go(m,n+1,a) = 2aGy(m,n,a) + Go(m,n - 1,a) = 6,,,,
9)
where §,,, is the Kronecker delta.
Two different propagation behaviors (stopband and pass-

band) are considered and the Green’s function is determined
for each case.

1. The evanescent mode (stopband)

The pole of the Green’s function given by
Go(m,n,a) = 1/[A0|Y(X0)|2]

is outside a passband since Ag|Y(xo)|* is real. The value a,
of the parameter a corresponding to this pole is

1.1

a,=\1+ lA%|Y(x0)|4

and the magnitude of this evanescent mode Y(x;) is found
with the help of the residue of the Green’s function for

aza,,.

Y (x,) PP = Res[G(m,n,a,)].

For n=0 and using the equation of the Green’s function in
the unperturbed linear case, the amplitude is written as

[Y(xo)P[>=2 1—(i>2
0 A b

and the vibration amplitude at point x,,=nd is given by

Y (x,)] = Y (x0) P[(|Agl- VAG = 1)"
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For |Ay| <1, the amplitude |Y(x,)| has a complex form what
shows the propagative nature of the mode. This result is
completely opposed to that of the linear case, where an eva-
nescent mode is present for the same value of a. So, a mode
belonging to the forbidden band in the linear case becomes
propagative with the presence of one nonlinearity in an or-
dered lattice. Conversely, for |A,| > 1, propagation is impos-
sible and the corresponding evanescent mode decreases ex-
ponentially in the vicinity of the nonlinearity location with
the localization length &:

d
T (Ao~ VAZ- 1)

2. The propagative mode (passband)

When |a| <1, all the modes are propagative (Green’s
function does not have any pole). The amplitude of the mode
at a given node of the lattice results in the convolution prod-
uct of the excitation and the Green’s function in the per-
turbed case. The energy transmission coefficient ¢ of the non-
linearity is given by the relation [27]

1
= >
|1 - A0|Y(Xo)| Go(0,0,a)

2

where the Green’s function element G,(0,0,a) is given by
Go(0,0,a)=(=j)/\1—-a>. Finally, by setting a=cos(gd) ¢ is
the solution of the cubic equation:

A+ t sin*(gd) — sin*(qd) = 0.

This third order equation can be numerically processed to
illustrate the behavior of the system with localized nonlin-
earity and to show its influence on the transparency of the
medium.

B. The case of several nonlinearities

When p consecutive nonlinearities are present in the lat-
tice, the perturbation is written as

p-1

Hp = 2 Ai|Y(~xi)
i=0

2
k)

and the Green’s function of the string is given by the recur-
sive relation:

G,(m,n,a)=G,_(m,n,a)

" Gp—l(m’p - 1’a)Ap—l|Y(-xp—l)|2Gp—l(p - lvn’a) )
- Ap—l|Y(xp—l)|2GO(p - 1’p - 1,(1)

If |A;| <1, for i=1,...,p, all the modes are propagative in
the lattice with a finite number of discontinuities. In the op-
posite case, the modes are evanescent and the medium is
completely opaque. So the theory of the Green’s function
and the perturbation method show that a wave with a small
amplitude and with a frequency within a stopband of the
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linear lattice can propagate in a medium with weak nonlin-
earities.

V. TRANSPARENCY OF THE NONLINEAR LATTICE
FOR LOW FREQUENCIES

To address quantitatively the question of what happens in
the low-frequency range regime, let us approach the problem
physically by following the amplitude trend of the wave in-
jected into the nonlinear lattice. By letting

¢n=An+Bn9

lpn:An_Bn’

and with the low-frequency hypothesis (Kd<<1), Eq. (4) be-
comes

¢n = ¢n—1 _jKdnwn’

‘/In = lr//n—l _jKdn¢n - 2”n¢ns
where u,=1/(2jK\,)(1-w?/Q2)+3a/(8FKN)| b,)>.
continuum form, these equations are

d¢(n)
dn

In the

=—jKy(n),

dif(n)
dn

: 2u,,
=~ JjK¢(n) - —=ln).
¢(n) is then the solution of the following equation:

d? 2j
Z(Zn) == |:K2 - J_[(Mn:| ¢(n) == B2¢(n)v (10)

d

where d is the mean value of d,. If we look for a traveling
wave having the form ¢(n)=p(N)e/PN-"A=T g=IBN-1d e
find

_K2 1 ( w2> 3a

2
_?_E ]—E —4d3)\|T,| for a=0,

BZ

, K1 o’ 3a
B=?—E 1—& +M|Tr| for a <0,

where \ and () are the mean values of \, and (),. The trans-
mission of the wave essentially depends on the sign of /32,
i.e., the transmitted intensity |T,|>. When 8%>0, the wave is
propagative. The value

7= \/4[1<2d— N1 - 0*/0?)]
" 3al\

(1)

characterizes the boundary between the propagative and the
nonpropagative regimes. The nonlinear term narrows the
passband width when a>0 and, conversely, the nonlineari-
ties change a stopband into a passband for a<<0. These re-
sults reinforce the idea of a competition between the effects
of the disorder and those of the nonlinearities in the wave
propagation process.
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FIG. 4. Phase diagram with a positive nonlinearity a>0 [(a)]
and a negative one a<<0 [(b)]. The inset shows the boundary line
between the propagative and the nonpropagative regime resulting
from the Eq. (11).

VI. NUMERICAL RESULTS

By using the inverse of the nonlinear relation (5), the
propagation of a mechanical wave through a lattice made up
of N nonlinear resonators is simulated. The inverse of Eq. (5)
is used to avoid divergent and bifurcation problems due to
the nonlinearities (the multistability phenomenon comes into
play in the calculation of the transmitted wave).

In contrast to the linear case, the transmission coefficient
depends on the amplitude of the input wave. Several cases
with different initial conditions are considered. To express
the similarity between the mean of the magnitudes of the
nonlinearity A and the intensity of the wave Yﬁ, the variable
[A] T% is introduced as a measure of the nonlinearity.

To determine the allowed and forbidden bands, we pro-
ceed as follows. For a fixed value of the frequency Kd the
amplitude of the transmitted wave is chosen. The recurrence
formula (7) is used to calculate the amplitude of the incident

wave. If the ratio 7 given by

[T
R

is higher (lower) than a threshold (in our case 7,,=0.6) the
frequency belongs to allowed (forbidden) bands. The rel-
evant physical quantity may be described by representing the
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FIG. 5. E=—2a+A|Y,|> vs Kd for the linear case (solid line),
positive nonlinear case (dotted line), and negative nonlinear case
(dashed line). The forbidden bands in the different cases are illus-
trated by the hatched parts under the graph.

dimensionless frequency Kd versus the variable |A | Tz. Each
point on the graph is defined for a given frequency and a
value of |A|77. A point in the black-colored area corresponds
to an allowed band (a propagative mode), otherwise a point
in the white-colored area is a signature of a forbidden band
(a localized mode).

A. The periodic lattice case

The analysis of Fig. 4 shows that the nonlinearities per-
turb the band structure of the lattice. The behavior of the
propagation is not as simple as in the linear case and a wide
range of situations has to be considered. The comparison of
Figs. 4(a) and 4(b) reveals the importance of the sign of the
nonlinearity: for &>0 [Fig. 4(a)], the width of the first stop-
band (low frequencies) increases but the second and third
ones fully disappear; the first allowed band gets narrower,
increasing the opacity of the lattice in this frequency range;
for @< 0 [Fig. 4(b)] the first allowed band stretches.

These results are confirmed by a qualitative analysis re-
sulting from the recursive equation

Yn+1 + Yn—l + (_ 2a+A|Yn|2)Yn=O'

In the linear case (a=0), the allowed bands are given by the
condition —1 <a = 1. By analogy, for low wave amplitude Y,
the value of —2a+A|Y,|* gives the qualitative behavior of
the propagation regime. Figure 5 shows how the cutoff fre-
quencies move when

—2a— —2a+A|Y,]?

for >0 and <0 as a function of Kd (for Y,=1).

When a<0, the first stopband disappears because —2a
+A|Y,|* becomes greater than —2, but, on the contrary, for
a>0, the width of this stopband increases. For the second
stopband, —2a+ A |Y,|* becomes smaller than 2 for a> 0, but
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greater than 2 for «<<0 and the tendency is reversed. The
presence of nonlinearities can change the regime of the
propagation according to its sign and the frequency. Some
stopbands can become passbands but conversely some pass-
bands can become stopbands. All these results are confirmed
by the simulation [Fig. 4].

For @>0 the comparison of the simulation results with
the analytical results [inlet Fig. 4(a)] resulting from Eq. (11)
in the low-frequency approximation shows the validity of
this approach. It is also worth noting that the value of |A | Tf,
resulting from the relation (11), does not depend on the value
of the nonlinearity:

|A|T? = |—sin(Kd)|[Kd— L(1 - ﬁ)}
’ KN\ 0¥ ]
In other words, for low frequencies, positive nonlinearities
lead to a decrease of the passband width, whatever their
strengths.

The second important nonlinear effect is multistability.
Indeed, for some frequency values, a gap in the propagative
regime appears in relation with the magnitude of |A|7>. Fig-
ures 6(a) and 6(b) illustrate two examples of this phenom-
enon, one for a corresponding passband in the linear case
[Fig. 6(a)] and the other belonging to a stopband [Fig. 6(b)].
These responses are a manifestation of the multistability and
are directly connected to the chaotic nature of the wave
propagation in such a medium. In some circumstances, the
nonlinearities transform a stable regime (passband) into an
unstable one (stopband) and vice versa. Several changes of
regime can induce a chaotic situation synonymous with full
opacity.

In short, the nonlinearities with a well-chosen sign and for
low wave intensity increase the transparency in the case of a
frequency belonging to a passband (linear case) and reduce
the share of the stopbands. Conversely, for high intensity, no
transmission is possible and the medium becomes opaque for
almost all frequencies. For a periodic nonlinear lattice, two
important results are, first, that the sign of the nonlinearity
has a great influence on the nature of the wave propagation
in the medium and, second, that these nonlinearities can be
the cause of chaotic behavior which prevents any propaga-
tion.

B. The disordered lattice case

In this section, special attention is given to the coexist-
ence of nonlinearities and disorder. The nonlinear operator
formalism is used to simulate the propagation of a mechani-
cal wave through a disordered lattice. The interactions be-
tween nonlinearities and disorder are examined. Two situa-
tions are studied: cellular and topological disorders with the
same nonlinearity for each resonator (a>0).

Figure 7 shows the disorder effects: (i) disorder restricts
the passband width with respect to the ordered linear case
and destroys the band structure. As in the linear case, the
effect of topological disorder [Fig. 7(b)] is more efficient
than that of cellular disorder [Fig. 7(a)]. Nevertheless, the
nonlinearities can counteract the disorder effect for large
wave amplitudes associated with low frequencies: (ii) the
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FIG. 6. Transmission coefficient versus |A|7% for Kd=2.1 (a)
and for Kd=5 (b).

second stopband of the linear case (between Kd=2.2 to
Kd= ) almost disappears, regardless of the type of disorder
[Figs. 7(a) and 7(b)].

To illustrate this remark, the transmission coefficient is
plotted for a particular frequency as a function of lattice
length in Fig. 8. In the linear case, this coefficient depends
on the localization length & through the relation [28]

T=e L%,

In the nonlinear case, the nonlinear transmission coefficient
behaves as (see Fig. 8):

- 1
T~L o

since it is represented by a line in the same reference. In this
case, the localization length &(a) depends weakly on the
strength of the nonlinearity « as Fig. 8 shows.

The nonlinearities act as a factor of delocalization because
the localization length increases with nonlinearity. It must be
noted however that the Anderson localization overcomes the
effects of nonlinearity for high frequency: the lattice stays or
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FIG. 7. Phase diagram with a cellular disorder (a) and a topo-
logical disorder (b) with a standard deviation o=0.1.

becomes opaque as in the linear case. The same conclusions
apply when the strength of the disorder is high: no wave
propagates through the medium, even for low frequency.

To conclude this section, we shall now sum up the major
results. We have shown that the presence of nonlinearity in-
creases the transparency of the lattice for a low-strength dis-
order. Nevertheless, the nonlinear behavior of the medium
does not preclude the general decrease of transmittivity and
Anderson localization for a high-strength disorder. The mul-
tistability phenomenon is always present, with the disorder

1
. a=1
0.1 SRR ¢
g / “U\‘ | AIH!\‘\\M)I‘ I ;

2 VT  eso
0.01
0.001

01 1 10
L(m)

FIG. 8. Transmission coefficient with disorder on masses (o
=10) vs the lattice length for Kd=2.4 and with =10, a=1, «
=0.1.
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showing the effective role of nonlinearity in the low-
frequency domain and the need for an approach to describe
this aspect of the propagation. A nonlinear discrete map is
developed in the following section to study the disorder ef-
fect on this nonlinear phenomenon.

VII. NONLINEAR DISCRETE MAPPING

In this section, we investigated how the wave moves
through the lattice considered as a dynamic system. Similar
studies have been worked out in solid state physics
[23,29-36].

When we speak of a dynamic system, we understand
something like an n-particle system characterized at any time
by their positions and momenta. The state of this system is
specified as a point in a 2n-dimensional phase space in which
the observable quantities of the system such as energy are
smooth real-valued functions. When the dynamic system
evolves, it is subject to constraints due to the constants of the
motion, so its representative point evolves only in a sub-
manifold of the phase space. Depending on the behavior of
the system, the trajectory of the representative point is a
closed trajectory (limit circle), a trajectory rolled up around a
torus or an aperiodic solution of the system.

Our approach uses the finite difference Egs. (7), which
link together the values of the wave function at three con-
secutive nodes of the lattice. From the real and imaginary
parts of the wave function

Xn=Xn+ jVn

we get a system of two coupled equations. The wave is then
represented as a point in a four-dimensional space, the coor-
dinates of which are (x,_;,x,,y,_1,y,). This space is inter-
preted as the phase space of the wave seen as a dynamic
system.

When the wave runs through the lattice, localizing the
trajectory of its representative point gives important informa-
tion about the constants of the motion. To make it easier to
analyze how the wave moves through the lattice, we consider
its Poincaré section, which is a mapping of the intersections
of its trajectory in the phase space with a plane. For example,
for a wave traveling in a linear periodic lattice, the Poincaré
section reduces to a single point. This map is characterized
by two control parameters: the wave number K and the in-
tensity of the incidence wave. In this plane, the solutions of
the propagation equation are represented by orbits which de-
scribe the propagation regime.

The orbits generated by the intersection of the trajectory
with the plane can be either bounded or unbounded. Only
those from the first category contribute to the transmission
(corresponding to a passband frequency). The bounded orbits
(closed curves) are organized into quasiperiodic orbits of dif-
ferent periods (called n-periodic orbits where 7 is the number
of periods). Conversely, the unbounded orbits are synony-
mous with an aperiodic trajectory and describe a wave which
does not propagate through the lattice.

A. Mathematical formalism

The first equation of system (7), written in terms of real
and imaginary parts of the transverse amplitude Y,, repre-
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sents a nonlinear system defined in a four-dimensional space.
Letting Y, =k,e/", we find

Kn+1COS(A7n+1) + Kil—ICOS(Ayn—l) = 2fn(Kn),

Kn+ISin(A7n+l) + K, —ISin(A’y”—l) =0, (12)

where Avy,=v,—7v,-; and f,(x)= %x(Anxz—Zan). The second
equation of this system provides an invariant of motion

—1 " % .
]n = ?(YnYnH - Yn+1Yn) = KnKn+ls“l(A‘Yn+l) (13)

and allows the nonlinear mapping to be reduced from four to

two dimensions. Using the variable Un=%(YZYn+1+Y:+1Yn),

the nonlinear transmission problem is described by mapping
H:
2
n

2, 2
K, ==, +JT),

:kml -

H: (14)

2 2
V1 =— Uy — Kn—](AnKn—l - 261”).
With the variables p,= %A,, Ki and ¢g,=v,/ Kﬁ+ %(—Zan

+AnK121), the mapping H is area-preserving and symmetrical

[31]

(A,J,)°
pn—1=pn(_an+pn+qn)2+ - B
H: !
Pn
qn-1=—4qnt l_p (_an+pn+qn+pn—l)~
n—1

(15)

The orbits corresponding to this mapping in the phase plane
(pu»q,) are built. They are similar to the Poincaré section of
the nonlinear dynamic system, where n plays the role of a
discrete time.

Starting from the “initial” conditions Yy,; and Yy, we
obtain «,,; and ky, which lead to the invariant Jy and to v,,.
Using the system (15), we go back to the origin of the mo-

tion (n=0) and the transmission coefficient T can be esti-
mated.

With this method, two possibilities are available for illus-
trating the propagation through a nonlinear lattice: the calcu-
lation of the transmission coefficient or the building of the
Poincaré section.

B. Numerical results

In order to examine the nonlinear transmission problem in
more detail, two typical cases are described in the (p,,q,)
plane and the results are shown in Figs. 9 and 10 for an
ordered lattice. In these figures, the transmission is linked
with orbits which are bounded (transmitted waves) or diverg-
ing (localized waves). Each orbit corresponds to a different
value of |A| Tf: we proceed by fixing the output Tf and cal-
culate the corresponding p, and ¢, for each value of n.

Figure 9 presents the orbits for a propagative wave with a
frequency Kd=4.21 corresponding to a linear passband. For
a weak amplitude, the curves at the left of the figure are
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FIG. 9. Some of orbits corresponding to values of |A|7? for
Kd=4.21 in the (p,,q,) plane for the nonlinear ordered case.

bounded, showing one-periodic or quasiperiodic behavior
synonymous of propagation through the lattice.

From the value |A|72=0.7, the orbits have unstable be-
havior and no longer display any periodicity (the points are
almost randomly distributed). This zone corresponding to
0.7<|A|T><0.9 corresponds to a gap in the transmission
[see the phase diagram in Fig. 4(a)] and represents a forbid-
den band (evanescent wave). For |A|7%>0.9, the orbits re-
turn to periodic behavior with a double period (two-
periodic): two attraction basins are present and are indicated
by arrows. This phenomenon shows the existence of a bifur-
cation during the unstable behavior.

For higher values of the |A|7? parameter, the two-
periodic orbits are unstable, leading to a stochastic behavior
associated with the opacity of the medium. This shows that
nonlinearities can transform a region which is stable in the
linear case into an unstable region.

Figure 10(a) shows the results for a frequency Kd=2.5
corresponding to a linear stopband. In this case, nonlineari-
ties transform unstable orbits corresponding to a stopband
into stable ones corresponding to a passband. The stable one-
periodic orbits are surrounded by four-periodic orbits (see
arrows) which become chaotic and lose their stability. In this
case, there is no gap in the transmission but the difference
between the two sorts of transmittive waves can be observed
with this illustration. Generally, this change of period pre-
cedes a transmission loss (see Fig. 6) because the two- or
four-periodic orbits are less stable than the one-periodic
ones. This example illustrates how the representation of the
wave in the phase space gives an insight into the various
propagation properties of the medium.

The effect of the disorder on the transmission may also be
observed from the Poincaré sections. In this case, we con-
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FIG. 10. (a) Some of orbits corresponding to
values of |A|7? for Kd=2.5 in the (p,,q,) plane
for the nonlinear ordered case. (b) Corresponding
case of (a) with a small cellular disorder.
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sider only a weak disorder to assume that J, is a constant of
motion (at least as a mean value). For a wave propagating in
a nonlinear lattice with a small amount of disorder, the
Poincaré section has the same global structure as the ordered
case, but is now blurred. Figure 10(b) illustrates such a re-
sult: the orbits of Fig. 10(a) are spread out by the effects of
the disorder. This means that a weak disorder perturbs the
transmission through the medium but does not prevent it. In
the same way, we observe from the numerical simulations
that the orbits lose their stability more easily with disorder
than without disorder.

These results are in good agreement with those of the
previous section: the effect of the disorder is attenuated by
nonlinearities as long as its strength is not too high, whereas
for strong disorder, the Anderson localization overrides the
nonlinear effects.

VIII. CONCLUSION

In the present paper, we have studied the relationship be-
tween disorder and nonlinearity in a wave propagating
through a quasi-one-dimensional string loaded by resonators.
On the basis of numerical simulations carried out on relevant
physical parameters, particular conclusions have been ob-
tained on the band spectrum of the vibrating modes.

Nonlinearity exhibits more complex features, depending
on a variety of parameters such as the magnitude of the non-
linearity and the amplitude of the waves. For some frequen-
cies, nonlinearity increases the transparency of the medium
without perturbing the other transmitting frequencies in the
small nonlinearity or amplitude regime.

Generally, the presence of nonlinearities acts as a factor of
delocalization when the sign of the nonlinearity is well cho-
sen. In an ordered lattice, it is clearly shown that the trans-
mission coefficient increases and, with the help of a nonlin-
ear discrete mapping, we have demonstrated the existence of
several sorts of transmitted waves with various degrees of
stability. For the disordered case, with a low-strength disor-
der, the transmission is increased by the presence of nonlin-

05 08

earities. For higher frequencies, these effects are less effi-
cient and this trend is accentuated when the strength of
disorder increases.

By adjusting the various parameters which govern the
complicated competition between the effects of disorder and
nonlinearities on wave propagation, we hope to control the
flow of acoustic or mechanical energy through a large
structure.

APPENDIX A: PROPAGATION IN A PERIODIC
LINEAR LATTICE

In an ordered lattice, all the physical quantities are inde-
pendent of their position and so the medium is periodic with
the periodicity d=x,,;—x,. In the nth cell (for x, <x<x,,,),
the amplitude of the wave is the contribution of forward and
backward waves with respective amplitudes A, and B,;:

Y(0) = 4,0 4 eI,

The matching conditions for the function y(x) and its first
derivative at the nodes x, lead to the recurrence relations:

A, =1 +uA,_ e/ +uB, ek,

Bn == uAn—lejKd-" (1 - M)Bn—le_jKd’ (Al)

where u=1/(2jK\)(1-w?/Q?). This system (Al) may be
written in matrix form as

{Am}_ (1+u)e®d  yemikd {An}_T{An}
Bl | —u®™ (Q-we’*||B,| "B,
(A2)

where T is the propagation matrix modeling the transmission
across a cell. The elements of T depend on the frequency in
two ways: through the wave number of the string K(w) and
through the frequency dependence of the scatterer
(X and Q). The reciprocity principle and the fact that the
system is non-dissipative lead to the relations det T=1 and
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T22=TT1 for the propagation matrix. The forward and back-
ward wave amplitudes in the nth cell determine the traveling
wave amplitudes in any other cell of the lattice by the re-
peated application of T or T~

The general propagation problem in the lattice between
nodes n and m is then described by the iteration of (n—m) T

matrices
A, A,
=T , (A3)
B, B,

where (A,,,B,,)" can be considered as a boundary condition.
The eigenvalues of T"™, which depend on the frequency
and on the parameters of the lattice, give the behavior of the
waves through the dispersion relation of the wave [37].

APPENDIX B: CALCULATION OF THE GREEN
FUNCTION FOR THE LINEAR ORDERED CASE

The Green function verifies the equation

Go(m,n + 1,a) + Go(m,n - 1,a) — 2aGy(m,n,a) = 4,

m,n

(B1)
We set

1 +7T~ )
Go(m,n,a) = —f G(6)e!" %,
2w)_,
and

1 A
Spn="—1| " ™o, (B2)

where G(6) represents the Fourier transform. Using Eq. (B1)
we obtain
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1 + ej(m—n)@
Gy(m,n,a) = — ——d6. B3
olrm,n.) 277] » 2[cos(0) —a] (B3)

The residue theorem allows us to calculate Gy(m,n,a) by an
integration in the complex plane. Setting z=¢/’ and d6
=—jdz/z, we find

_j Zmn
Go(m,n,a)=— | ————dz, B4
olm.n,a) 2WfC12—2a1+1 ‘ (B4)

where C is the unit circle. Using the residue theorem, we find

f f(z)dz=2jm Res[f(z)],
c

with

Zm—n

flz) = (B5)

Z-2az+1°

Only the pole such that |z| <1 contributes to the integral. In
this case, one has only one pole

JE—
Zp=a—\e’a2—1

and

m-n

Z

Res[f(2)] = lim (z - 2,)f(z) = = lim (z - z,)) (z2-z,)(z+z,)

=2y 2=z
Finally, by using Eq. (B4), we find the expression of the
Green function, for the linear ordered case:

(a—a*— 1)

— (B6)
2Va -1

GO(m’n’a) =
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