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Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focus-
ing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesi-
mal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher
bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in
repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-
Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in
the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate
from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain

parameter regimes.
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I. INTRODUCTION

Light propagation in fabricated waveguide arrays and op-
tically induced photonic lattices is under intensive study
these days due to its physics and light-routing applications
[1,2]. In such a periodic optical medium, linear light propa-
gation exhibits Bloch bands and forbidden bandgaps, and the
dispersion relation is drastically different from that in a ho-
mogeneous medium [3-5]. Some of the unusual conse-
quences are that optical beams can undergo normal and
anomalous linear diffraction, and lattice solitons can exist
with both self-focusing and self-defocusing nonlinearity
[4—7]. The periodic potential in the waveguide arrays and
photonic lattices also gives rise to dipole solitons, vortex
solitons, necklace ring solitons, random-phase solitons and
others that would have been impossible or quite different in a
homogeneous medium [7-26]. Soliton trapping and steering
in a periodic medium has also been explored using the dis-
crete nonlinear Schrodinger model [27].

Light propagation in a nonuniform waveguide array or
photonic lattice has also been investigated in Refs. [28-34].
In the linear regime, light may be locally trapped in a single
waveguide in the form of a defect mode [28,32]. This trap-
ping occurs not only in attractive defects, but also in repul-
sive defects. In the latter case, it was found experimentally
that higher-power light beam tends to spread rather than fo-
cus in a Kerr medium [28]. Defect solitons and their stability
in the Kronig-Penney periodic medium with delta-function
linear and nonlinear defects were analyzed in Ref. [29]. It
was shown that with a focusing cubic nonlinearity and an
attractive linear defect, nonlinear defect modes (defect soli-
tons) in the first (semi-infinite) bandgap are linearly stable in
certain parameter regions and become unstable when the
slope of the power diagram changes sign [due to the
Vakhitov-Kolokolov (VK) stability criterion [35]]; defect
solitons in the second bandgap are stable at low powers, but
exhibit oscillatory instabilities at high powers. If the linear
defect is repulsive while the nonlinearity is still focusing,
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defect solitons in the second bandgap can be stable at low
powers, but exhibit oscillatory instabilities at high powers.
Defect solitons with defocusing cubic nonlinearity were ana-
lyzed in Ref. [29] too. The propagation of light pulses tilting
at small angles in structural defects of waveguide arrays was
investigated in Ref. [30], and distinctly different behaviors
were reported at low and high powers. Lastly, linear defect
modes in optically induced photonic lattices were examined
in Refs. [32,33]. It was found that a weak defect can induce
an infinite number of defect modes, one in each bandgap. In
addition, strongly localized defect modes in a repulsive de-
fect occur when the light intensity at the defect site is non-
zero rather than zero. Recently, linear defect modes in both
one- and two-dimensional photonic lattices have been suc-
cessfully observed [34].

Despite the above progress, defect solitons and their sta-
bility in a nonuniform optical medium are still poorly under-
stood. Indeed, defect solitons have not been analyzed at all in
optically induced photonic lattices. Recent successful experi-
mental observations of linear defect modes in photonic lat-
tices [34] call for investigation of properties of such nonlin-
ear defect modes. Even though some previous studies
[28,29] are quite relevant, they dealt with different physical
systems or less physical defects and nonlinearities. As our
present studies show below, there are many phenomena on
defect solitons in photonic lattices which are different from
previous studies. Such phenomena are yet to be analyzed so
that their experimental observations could be made.

In this article, we study defect solitons and their stability
properties in an optically induced photonic lattice with fo-
cusing saturable nonlinearity. This type of lattice and nonlin-
earity are appropriate in photorefractive crystals. First, we
show that defect solitons bifurcate from every infinitesimal
linear defect mode. We also show that low-power defect soli-
tons are linearly stable in lower bandgaps but unstable in
higher bandgaps. At high powers, defect solitons may be-
come unstable in attractive defects, but can remain stable in
repulsive defects, which is quite surprising. Specifically, de-
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FIG. 1. (Color online) Inten-
sity functions of two defected
photonic lattices used in this pa-
per. Here Ey=6 and [y=3. Left
column: repulsive defect (hp=
—0.5); right column: attractive de-
fect (hp=0.5).
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fect solitons in the second bandgap of a repulsive defect are
found to be all stable, which contrasts with the results in Ref.
[29] where instability of such solitons at high powers was
reported. In the case of attractive defects, defect solitons in
the first bandgap suffer VK-type exponential instability in
certain power intervals. But this instability is different from
the usual VK instability caused by a sign change in the slope
of the power diagram (as reported in Ref. [29]). Here, the
slope of the power diagram never changes sign, and this sign
corresponds to the stable case. But high-power defect soli-
tons can still become linearly unstable because the number of
negative eigenvalues in the partial linearization operator £,
changes from 1 to 2, which is a special case of the VK
instability less well known in the literature [35-40]. A con-
sequence of this special VK instability is that this instability
always leads to robust snakelike position oscillations of de-
fect solitons regardless of the sign of perturbations, while the
usual VK instability leads to either soliton decay or ampli-
tude oscillations depending on the sign of perturbations [41].
Another interesting phenomenon on defect solitons in this
first bandgap is that as the power increases, solitons change
from stable to unstable, then to stable, then to unstable again.
That is, solitons alternate between stable and unstable re-
gions as the power goes up. On the other hand, solitons in
the second bandgap of an attractive defect are oscillatorily
unstable at high powers. This instability is induced by Bloch-
band-edge bifurcations, and is similar to that reported in Ref.
[29]. Lastly, we demonstrate that in each bandgap, in addi-
tion to defect solitons which bifurcate from infinitesimal lin-
ear defect modes, there is also an infinite family of other
defect solitons which have nonzero minimal powers. In par-
ticular, positive-amplitude and single-humped defect solitons
exist in a repulsive defect, and they are stable in certain
parameter regimes.

II. FORMULATION OF THE PROBLEM

Here we consider the physical situation where an ordi-
narily polarized lattice beam with a single-site defect is

launched into a photorefractive crystal. This defected lattice
beam is assumed to be uniform along the direction of propa-
gation. Such a lattice has been created successfully in our
recent experiments [34]. Meanwhile, an extraordinarily po-
larized probe beam is launched into the defect site. This
probe beam is incoherent with the lattice beam and propa-
gates collinearly with it. The nondimensionalized model
equation for the probe beam is [12,42,43]

Eg

U +U, . ——2 =
e e T L+ |UP

0. (2.1)
Here U is the slowly varying amplitude of the probe beam, z
is the propagation distance (in units of 2k,;D?/72), x is the

transverse distance (in units of D/), E, is the applied dc
field [in units of ﬂ'z/(k(z)njDzr%)],

I =1y cos® x{1 + hpfp(x)} (2.2)

is the intensity function of the photorefractive lattice normal-
ized by I;+1,, where I, is the dark irradiance of the crystal
and [, the background illumination, / is the peak intensity of
the otherwise uniform photonic lattice (i.e., far away from
the defect site), fp(x) is a localized function describing the
shape of the defect, A, controls the strength of the defect, D
is the lattice spacing, ko=27/\ is the wave number (N, is
the wavelength), k,=kon,, n, is the unperturbed refractive
index, and r33 is the electro-optic coefficient of the crystal.
The dark irradiance /; corresponds to the thermal generation
of electrons in a photorefractive crystal kept in dark (no light
illumination). In typical experiments on photorefractive crys-
tals, the background illumination 1,>1,, thus I,+1,=1,. In
this article, we assume that the defect is restricted to a single
lattice site at x=0. Thus, we choose function f(x) as

fo(x) =exp(-x¥/128).

Other choices of single-site defect functions f), are expected
to give similar results. When 5, <0, the light intensity /; at
the defect site is lower than that at the surrounding sites. It is
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FIG. 2. (Color online) Linear defect-mode eigenvalues w in the two lattices of Fig. 1. Symbols * and O represent defect modes for the
repulsive and attractive defects, respectively. The thick line segments are Bloch bands.
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called a repulsive (negative) defect in which, according to
traditional total-internal-reflection guidance, light tends to
escape from the defect to nearby lattice sites. In such a de-
fect, our previous studies show that strongly confined defect
modes arise when the light intensity at the defect is nonzero
(hp>-1) rather than zero (hp=-1) [32,33]. When h;>0,
the defect is called an attractive (positive) defect where the
light intensity ; at the defect site is higher than that of the
surrounding sites. Both types of defects can be generated
experimentally by optical induction [34]. Consistent with our
experiments [34], if we take typical physical parameters as
D=20 um, \y=0.5 um, n,=2.3, and r33=280 pm/V, then
one x unit corresponds to 6.4 um, one z unit corresponds to
2.3 mm, and one E, unit corresponds to 20 V/mm. To facili-
tate quantitative investigation of defect solitons and their sta-
bility below, we will further take ;=3 and E,=6, which are
typical in experimental conditions. In addition, we take A,

we (—,2.57811U [2.9493,4.7553] U [6.6011,7.6251] U [11.8775,12.2738] - .

They will be called sequentially as the first bandgap, second
bandgap, third bandgap, and so on in this article.

Defect solitons in Eq. (2.1) are sought in the form
U(x,z) = e *u(x), (2.4)

where function u(x) is localized in x, real valued, and satis-
fies the equation

Uyy + (/*L_ Lz)"tzo7
1+1,(x)+u

and w is a propagation constant lying inside bandgaps of the
periodic lattice. The power P of a soliton is defined as

(2.5)

P(w) = f“’ w*(x)dx. (2.6)

III. LOW-POWER DEFECT SOLITONS AND THEIR
LINEAR STABILITY BEHAVIORS

When powers of defect solitons are small, these solitons
are close to linear defect modes. In this case, these solitons
can be calculated analytically by perturbation methods. In
addition, their linear stability properties can also be deter-
mined. This will be done in this section.

First, we consider linear (infinitesimal) defect modes in
Eq. (2.5). These modes satisfy the linear eigenvalue equation

u +(M—L)u=0
i 1+IL(.X) ’

which admits an infinite number of eigenvalues u=pu,, n
=0,1,2,... [32,33]. Each eigenvalue u, is simple since Eq.

(3.1)
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=-0.5 or 0.5, which gives a repulsive or attractive defect.
The value hp=-0.5 is chosen since at the present I, and E
values, it has been shown that this s, gives rise to strongly
confined defect modes [32,33]. The value £7=0.5 is chosen to
correspond to the choice of 7=-0.5. These two specific re-
pulsive and attractive defects are displayed in Fig. 1.

Before we discuss defect solitons, we need to understand
the bandgap structure of a uniform periodic lattice, because
defect solitons should lie inside the bandgap of the periodic
lattice. The bandgap structure of a periodic optical medium
has been studied in numerous previous articles (see Refs.
[3-5] for instance). For our model (2.1), this bandgap struc-
ture was given in Ref. [33]. In particular, with [,=3 and E,
=0, this structure is displayed in Fig. 2. The thick line seg-
ments represent Bloch bands, and regions between Bloch
bands are bandgaps. There is an infinite number of bandgaps
here, which are

(2.3)

(3.1) is a self-adjoint Schrodinger operator. Each eigenfunc-
tion is either symmetric or antisymmetric in x. For the two
defects shown in Fig. 1, these linear defect-mode eigenval-
ues are shown in Fig. 2. Notice that in the attractive defect, a
linear defect mode exists in every bandgap (including the
first bandgap); but in the repulsive defect, linear defect
modes exist only in the second and higher bandgaps.

Next, we expand low-power defect solitons into a pertur-
bation series around these linear defect modes as

u(x) = ug(x) + Eug(x) + -+ 1, (32)

and

w=pp+ Cr€+ oo . (3.3)
Here e<1, {uy(x), s} is the kth linear defect mode of Eq.
(3.1), and C; is a constant. For convenience, we normalize
the eigenfunction u; such that max(|uy)=1. Then € is the
amplitude of the defect soliton (to the leading order in €). To
calculate the constant C;, we substitute the two expansions
(3.2) and (3.3) into (2.5). At order €, we find the equation
for uy, as

Ey Eguy
Upo ox T+ (Mk 1L )Mkz == Cuy — ( (3.4)
L

1+1,)%

Notice that u,(x) is a homogeneous solution of the above
equation. In order for the solution u,; to be localized, the
solvability condition is that the right-hand side of Eq. (3.4)
be orthogonal to u,;. This condition readily gives the constant
Cy as
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FIG. 3. (Color online) Defect solitons in the second bandgap for the repulsive defect. (a) The power diagram (shaded regions are Bloch
bands); (b) the amplitude diagram (solid: numerical; dashed: analytical); (c)—(e) profiles of three defect solitons at w=2.95, 3.2, and 3.64
[marked by circles in (a) and (b)], respectively; the shaded stripes denote locations of high intensities in the defected lattice.
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We see that Cy is always negative. Thus each linear defect
mode generates a family of defect solitons with the propaga-
tion constant u below the linear defect-mode eigenvalue ;.
Furthermore, the soliton amplitude € is proportional to
Vug—pm [see Eq. (3.3)]. In addition, the symmetry of the
linear defect mode is also the symmetry of this family of
defect solitons.

Next we analyze the linear stability of these low-power
defect solitons. We introduce perturbations in the form

Ulz,x) = e {u(x) +[0(x) = w(x)]e™ + [0(x) + w(x)] e 7,
(3.6)

where v(x) and w(x) are infinitesimal perturbations, and the
superscript * represents complex conjugation. Then func-
tions (v,w) satisfy the following linear eigenvalue problem:

o))

(3.7)

where

L (0 EO) (3.8)
\z, o) '
Ey
Lo=—0— D — 3.9
0 w 'U“+1+IL+u2 (3.9)
E0(1+IL—M2)
Li=—0.,— —_—5, 3.10
1 o — Mt (1+IL+M2)2 ( )

and \ is the eigenvalue. If there exists an eigenvalue N\ with
Re(N) >0, then the defect soliton is linearly unstable. Other-
wise, it is linearly stable.

For low-power defect solitons (3.2) and (3.3), in the limit
€—0, L,— Ly, and the eigenvalue problem (3.7) is decou-
pled,

Low+w)=—iNv+w), (3.11)

Low=-w)=iNv-w). (3.12)
Each of the above two equations is the same as Eq. (3.1) for
linear (infinitesimal) defect modes. Thus eigenvalues of Egs.

(3.11) and (3.12) are
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FIG. 4. (Color online) (a) Eigenvalue spectrum of the linearization operator £ for the soliton in the repulsive defect with u=3.2 [see Fig.
3(d)]; (b) stable evolution of this soliton under 10% random noise perturbations. The marks denote locations of high intensities in the

defected lattice.

A= il — ), n=0,1,2, ..., (3.13)

with the plus sign for Eq. (3.12), and minus sign for Eq.
(3.11). The eigenvalue A=0 is a doublefold discrete eigen-
value. The other eigenvalues +i(u;— u,), n # k are all simple
discrete eigenvalues lying on the imaginary axis, but they
may be embedded inside the continuous spectrum of Egs.
(3.11) and (3.12). For instance, a discrete eigenvalue A\
=i(u;—pm,) of the subsystem (3.12) may be embedded in the
continuous spectrum of the other subsystem (3.11), and vice
versa. The condition for N\==+i(u;—u,) to be embedded in-
side the continuous spectrum is that 2u;,—u, resides inside
the Bloch bands of Eq. (3.1).

When 0# e<1, some of the above discrete eigenvalues
may bifurcate off the imaginary axis and create linear insta-

|attice

|

T.l

probe / lattice : 1 /30

probe / lattice : 15/ 30

X

bility. The zero eigenvalue does not bifurcate because it re-
mains a doublefold discrete eigenvalue for arbitrary values of
€ due to the phase invariance of Eq. (2.1). Nonembedded
eigenvalues of +i(u;—pum,), n#k do not bifurcate off the
imaginary axis either, because nonembedded eigenvalues can
only move off the imaginary axis through a pairwise colli-
sion [44-46], but the eigenvalues +i(u,—p,), n# k are all
simple. However, if these eigenvalues are embedded at €
=0, then they generically will bifurcate to the complex plane
and create oscillatory instabilities when 0+# e<<1 [45,46].
Regarding edges of the continuous spectrum, they do not
bifurcate off the imaginary axis in the present case. Thus, the
necessary and sufficient condition for low-power defect soli-
tons to be linearly unstable is that at least one of the eigen-
values +i(u;—p,), n=0,1,2,...,n#k is embedded in the

FIG. 5. (Color online) Propa-
gation of a Gaussian beam (4.1) in
the repulsive-defected lattice (left
column), uniform lattice (middle
column), and without lattice (right
column), at low (middle row) and
high (bottom row) powers. Top
row: lattice intensity patterns;
middle row: propagations of a
low-power beam with initial in-
tensity i of the lattice; bottom
row: propagations of a high-power
beam with initial intensity % of
the lattice. In all simulations, E,
=6, [y=3, and the propagation
distance is z=10.
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FIG. 6. (Color online) Defect solitons in the first bandgap for the attractive defect of Fig. 1. (a) The power diagram; (b) the amplitude
diagram; (c)-(e) profiles of three defect solitons at ©=0.9, 1.6, and 2 [marked by circles in (a) and (b)], respectively. In (a) and (b), the
dashed lines indicate exponential instability of those solitons, and the solid lines indicate their linear stability, see Fig. 7.

continuous spectrum of Egs. (3.11) and (3.12), i.e., at least
one value of 2u;—w, (n=0,1,2,...,n#k) lies inside the
Bloch band of Eq. (3.1).

As an application of the above stability results, let us
consider the previously selected two cases with Ey=6, I,
=3 and hp==0.5. At these E; and [, values, the bandgaps of
the uniform periodic lattice are both given by Eq. (2.3). For
hp=-0.5 (repulsive defect), the linear defect-mode eigenval-
ues of Eq. (3.1) are u(=3.664, w;=6.782, u,=11.9,...
[32,33]. We see that 2uy—pu,, n=1,2,... all fall into the
bandgaps (2.3), so are not embedded. Thus low-power defect
solitons originating from the defect mode u,=3.664 are lin-
early stable. This family of solitons lies in the second band-
gap of Eq. (2.3). However, 2u;—u©y=9.8996 falls in the
Bloch band of Eq. (3.1), thus low-power defect solitons in
the third bandgap, which originate from the defect mode
1 =6.7818, are linearly unstable. We expect that low-power
defect solitons in even higher bandgaps will be unstable as
well.

When hjp=0.5 (attractive defect), the linear defect-mode
eigenvalues of Eq. (3.1) are uy=2.2583, w,;=4.6182, u,
=7.598,... [32,33]. Using similar arguments, we find that
low-power defect solitons in the first and second bandgaps of
Eq. (2.3) are linearly stable. These solitons originate from the
defect modes u(=2.2574 and w;=4.6169, respectively.
However, low-power defect solitons in the third bandgap,

which originate from the defect mode w,="7.598, are linearly
unstable. We expect low-power defect solitons in even higher
bandgaps to be linearly unstable too.

As powers of defect solitons increase, other eigenvalue
bifurcations and instabilities may arise. These bifurcations
may be difficult to track analytically, but they could be traced
efficiently by numerical methods.

In the next two sections, we numerically investigate de-
fect solitons and their stability properties at both small and
large powers by shooting methods (see, e.g., Ref. [47] for
details). Since defect solitons tend to be unstable in higher
bandgaps (see above), we only focus on defect solitons in
lower bandgaps below. Specifically, in the attractive defect of
Fig. 1, we consider defect solitons in the first and second
bandgaps; while in the repulsive defect of Fig. 1, we con-
sider defect solitons in the second bandgap (low-power de-
fect solitons do not exist in the first bandgap for this case, see
Fig. 2). When powers of solitons are small, the numerical
results will also be compared with the analytical results
above.

IV. DEFECT SOLITONS AND THEIR STABILITY
IN A REPULSIVE DEFECT

In this section, we discuss defect solitons in the second
bandgap for the repulsive defect of Fig. 1. We have deter-
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FIG. 7. (Color online) (a) The second smallest eigenvalue of the partial linearization operator £; versus u for defect solitons in the first
bandgap in the attractive defect. The sign change of this eigenvalue signals the onset of linear instability. (b) Eigenvalues of the linearization
operator £ for these defect solitons. Solid curves: purely real (unstable) eigenvalues; dashed curves: purely imaginary eigenvalues (internal
modes). The straight line in the upper right corner is the boundary of the continuous spectrum.

mined these solitons numerically, and the results are pre-
sented in Fig. 3. Figure 3(a) shows the power diagram, Fig.
3(b) gives the amplitude diagram, while Figs. 3(c)-3(e) dis-
play three defect solitons at high, moderate, and low powers,
respectively. We see that these solitons are symmetric in x,
and their profiles are oscillatory (hence having an infinite
number of nodes). Also, they bifurcate from the linear defect
mode at uy,=3.664 in the second bandgap, consistent with
the analysis above. Furthermore, quantitative comparison be-
tween the numerically obtained and analytically calculated
soliton amplitudes is made in Fig. 3(b), and good agreement
can be seen. When u << u, but is close to w, the correspond-
ing defect modes have small amplitudes and powers [see Fig.
3(e)]. As w decreases, the amplitude and power increase.
When o approaches the edge of the first Bloch band, the
amplitude approaches a constant, but the soliton becomes
less localized and develops quasiperiodic tails in the far field,
thus its power approaches infinity. This phenomenon of de-
localization at higher powers, which was previously reported
in Ref. [28], occurs since the propagation constant u of the
soliton approaches the upper edge of the first Bloch band,
where the second-order dispersion is negative [3,33]. Thus
the focusing nonlinearity of the present model causes a de-
focusing effect.

Next, we determine the linear stability of these defect
solitons. At low powers, the analysis in the previous section
shows that these solitons are linearly stable. Can instability
arise at high powers? We will use numerical methods to re-
solve this question. Numerically, we have obtained the entire
spectrum of the linearization operator for defect solitons at
both low and high powers. In all cases, we never found un-
stable eigenvalues. Thus this whole family of defect solitons
is stable. To demonstrate, we choose u=3.2, where the cor-
responding defect soliton is displayed in Fig. 3(d). For this
soliton, the whole spectrum of the linearization operator is
plotted in Fig. 4(a). We see that all eigenvalues are purely
imaginary, hence the soliton is linearly stable.

Here we would like to make a comment. For delta-
function linear and nonlinear defects, Sukhorukov and
Kivshar [29] found that for the focusing nonlinearity and a

repulsive linear defect, these defect solitons “can be stable at
low powers... while at higher powers exhibit oscillatory in-
stabilities.” At low powers, their results are the same as ours.
But at high powers, no oscillatory instabilities appear in our
case.

The linear stability of defect solitons discussed above is
further corroborated by direct numerical simulations of these
solitons under perturbations. To demonstrate, we again
choose the defect soliton at u=3.2 [see Fig. 3(d)], and per-
turb it by 10% random-noise perturbations. Its evolution is
displayed in Fig. 4(b). We see that the soliton is robust and
exhibits stable evolution under perturbations. We have also
tried several other random-noise perturbations, and the evo-
lution results are qualitatively the same.

In experimental conditions, the probe beams usually have
Gaussian profiles. Thus it is desirable to theoretically inves-
tigate how Gaussian beams propagate in the repulsive defect
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FIG. 8. (Color online) Evolutions of four defect solitons in the
first bandgap in the attractive defect under 10% random noise per-
turbations. These defect solitons have ©=0.14, 0.24, 0.9, and 1.6 in
(a)—(d), respectively; the first and third are linearly unstable, while
the second and fourth are linearly stable.
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of Fig. 1. For this purpose, we have simulated the propaga-
tion of a Gaussian beam in this repulsive defect for propaga-
tion distance z=10, and the results are shown in Fig. 5. For
comparison, propagations of Gaussian beams in a uniform
lattice and without a lattice are also simulated and presented
in this figure. Here the initial Gaussian beam is taken as

Ux,0) = VT ™ ", (4.1)
whose profile resembles the linear defect mode in Fig. 3(e),
and 1,,,p, is the peak intensity of the probe beam. At low
intensity of Iprobe=$lo’ the defect guides the probe beam
very well, as can be seen in the left column and middle row
of Fig. 5. When the defect is absent, the probe beam experi-
ences discrete diffraction and energy spreads to the outer
field (middle column, middle row of Fig. 5). If there is no
lattice at all, the Gaussian beam experiences continuous dif-
fraction and spreads out very quickly (right column, middle
row of Fig. 5). These results show that a repulsive defect can
guide a low-power probe beam much better than a uniform
lattice or no lattice. At higher intensity of Ipmbezé—(s)lo, the
probe beam spreads out somewhat in the defected lattice, but
its intensity peak still remains in the center of the defect (left
column, bottom row of Fig. 5). Longer simulations confirm
that the probe beam eventually approaches a defect soliton
with peak intensity about 1, closely resembling the defect
soliton in Fig. 3(c). If the lattice has no defect, the probe
beam evolves into a lattice soliton [12] (middle column, bot-
tom row of Fig. 5). If there is no lattice at all, the probe beam
evolves into a familiar spatial soliton (right column, bottom
row of Fig. 5).

In previous studies by Peschel et al. [28], the authors
reported that in a repulsive defect of a waveguide array, a
low-power probe beam is trapped as a defect mode, but a
high-power beam escapes from the defect site. In the present
system, with the repulsive defect in Fig. 1(a), we did not
observe escape of high-power beams (see Fig. 5). However,
if we use a deeper repulsive defect as in Ref. [32] [Fig. 1(a)],
we did observe escape of probe beams at high powers. This
means that the moderate repulsive defect of Fig. 1(a) used in
this paper is better at guiding probe beams at both low and
high powers.

V. DEFECT SOLITONS AND THEIR STABILITY
IN AN ATTRACTIVE DEFECT

In this section, we study defect solitons in the first and
second bandgaps for the attractive defect of Fig. 1.

A. Solitons in the first bandgap

This family of defect solitons originates from the linear
defect mode with w;=2.2574 in the first bandgap. Their
power and amplitude diagrams are plotted in Figs. 6(a) and
6(b), and three representative profiles at high, moderate, and
low powers are displayed in Figs. 6(c)-6(c). We see that
these solitons are symmetric in x, single humped, and en-
tirely positive. Different from defect solitons in the previous
section, the solitons here do not delocalize at higher powers.

Stability of this family of defect solitons is an important
issue. Since these solitons do not have nodes, the VK stabil-
ity criterion applies [35-40]. The most familiar VK criterion
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FIG. 10. (Color online) (a) Leading unstable eigenvalues versus
w for defect solitons in the second bandgap in the attractive defect.
(b) and (c) Spectrum of the linearization operator £ at two u values
before and after the oscillatory instability sets in [u=4.15 and 4.4
as marked by * in (a)].

is that the soliton is stable if P’'(w)<<0 and unstable if
P’ () >0. For this family of defect solitons, Fig. 6(b) shows
that P'(u) <0 everywhere. Does it mean these solitons are
all linearly stable? The answer is no. The reason is that the
above criterion based on the sign of P’'(u) holds only if the
partial linearization operator £, defined in Eq. (3.10) has a
single negative eigenvalue. If £; has more than one negative
eigenvalue, then the soliton is unstable regardless of the sign
of P’'(u) [40]. In the present case, we found that £,’s small-
est eigenvalue N\ [£,] is always negative, its third smallest
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FIG. 11. (Color online) Evolution of unstable (a) and stable (b)
defect solitons in the second bandgap in the attractive defect under
10% random noise perturbations. The unperturbed soliton has u
=3.51in (a) and 4.4 in (b).

eigenvalue \;[£,] is always positive, but its second smallest
eigenvalue \,[£,] is positive only in certain w intervals, and
is negative in the other u intervals. To demonstrate, we plot-
ted N\,[£,] versus u in Fig. 7(a). We see that this eigenvalue
changes sign at several places, which indicates that defect
solitons change stability there. Specifically, N,[£;]>0 when
pw>1.18, 0.16<u<<0.38,..., and N [£;]<0 when 0.38
<u<I1.18,0.1<u<0.16,... . When \,[L,]>0, the soliton
is stable; while when \,[£,]<0, the soliton is unstable.

These stability results based on the number of negative
eigenvalues in operator £; have been verified directly by
determining the eigenvalues of the full linearization operator
L. The eigenvalues of £ versus u are plotted in Fig. 7(b).
Here the solid line means that the eigenvalue A is purely real
(thus unstable), while the dashed line means that \ is purely
imaginary (thus stable). Note that the stable w intervals of \
coincide precisely with those where N\,[£,]>0, while un-
stable w intervals of N coincide with those where \,[L;]
<0. This is in complete agreement with the VK stability
criterion [40]. The VK instability is always purely exponen-
tial, which is clearly seen in Fig. 7(b). We also found that the
eigenfunctions corresponding to these unstable eigenvalues
are antisymmetric in x. This contrasts the usual VK instabil-
ity induced by P’(u)>0 where unstable eigenfunctions are
usually symmetric in x [41].

The instability of defect solitons discussed above is physi-
cally surprising. Here the attractive defect and single-hump
defect-soliton profiles both tend to make us anticipate that
these defect solitons should be stable. But they are not in
certain parameter regimes. This instability is even more sur-
prising in view of the fact that the more complicated defect
solitons in the repulsive defect (see the previous section) are
actually all stable. Another interesting fact is that the stable
and unstable intervals of the present defect solitons are inter-
twined [see Fig. 7(b)], which makes it difficult to give it a
simple physical explanation. Notice that unstable defect soli-
tons have relatively high powers, where the defect may be-
come less important. If so, then the stability results in Fig. 7
may also hold for solitons in a uniform lattice (without de-
fects). This conjecture is yet to be confirmed.

Lastly, we examine the evolution of these stable and un-
stable defect solitons under random-noise perturbations. For
this purpose, we select four defect solitons with u=0.14,
0.24, 0.9, and 1.6, respectively. Of these four solitons, the
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first and third ones are unstable, while the second and fourth
ones are stable (see Fig. 7). The random-noise perturbations
we imposed on these solitons are 10%. Their evolutions are
displayed in Fig. 8. In Figs. 8(b) and 8(d), we see stable and
quasistationary evolution of defect solitons under perturba-
tions, which is consistent with the linear stability analysis
above. What is more interesting are Figs. 8(a) and 8(c),
where the VK instability of the underlying solitons does not
lead to their breakup. Rather, the solitons evolve into robust
snakelike oscillations around the defect site. We have also
tried many other realizations of random-noise perturbations
on these four solitons, and their evolutions are all qualita-
tively the same as those shown in Fig. 8.

A comment is in order here. While unstable defect soli-
tons develop robust snakelike oscillations due to linear insta-
bility, stable defect solitons can also develop long-lasting
position and shape oscillations due to the presence of internal
modes (see Refs. [48,49], for instance). Indeed, stable defect

solitons here always possess internal modes which are the
dashed eigenvalues in Fig. 7(b). These modes are antisym-
metric in x, and they cause position oscillations to stable
defect solitons—somewhat analogous to those seen in Figs.
8(a) and 8(c). However, there is a big difference between
oscillations in these stable and unstable defect solitons. The
position oscillations in unstable defect solitons are very
strong, i.e., the magnitude of swings from one side to the
other is quite large [see Figs. 8(a) and 8(c)]. In addition,
these strong oscillations can be induced by very weak per-
turbations. For instance, in Figs. 8(a) and 8(c), if the initial
random-noise perturbation is reduced from 10% to 1%, we
would still obtain snakelike oscillations of similar magni-
tude. In comparison, position oscillations in stable defect
solitons are much weaker, even for strong initial perturba-
tions. This is the main reason that oscillations in Figs. 8(b)
and 8(d) are hardly visible. If the perturbation decreases,
oscillations in stable solitons would be even less visible.
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The development of VK instability in Figs. 8(a) and 8(c)
is drastically different from that in the usual VK instability
caused by P’(u)>0. It has been shown in Ref. [41] that the
usual VK instability leads to either soliton decay or ampli-
tude oscillations, depending on the sign of perturbations (see
also Ref. [14]). However, in the present case, the VK insta-
bility always leads to snakelike position oscillations (rather
than amplitude oscillations) regardless of the sign of pertur-
bations. The cause of this difference clearly lies in the fact
that the present VK instability is due to the number of nega-
tive eigenvalues in the operator £; changing from 1 to 2,
while in the usual VK instability, the number of £,’s nega-
tive eigenvalues is always equal to 1 but P’(u) changes sign.
Recall that snakelike position oscillations of solitons are in-
duced by antisymmetric eigenfunctions of the linearization
operator £, while amplitude oscillations are induced by sym-
metric eigenfunctions of L. In the usual VK instability,
eigenfunctions are symmetric, and in the present VK insta-

bility, eigenfunctions are antisymmetric. Thus, it is no won-
der that instability developments between the usual and the
present VK instabilities are so dramatically different.

An interesting question we can ask is why the VK insta-
bility here does not break up the soliton, but instead causes
the soliton to engage in snakelike oscillations. To explain this
phenomenon, one has to go beyond the linear stability analy-
sis and develop a nonlinear theory. Pelinovsky et al. [41] did
this for the usual VK instability. By using adiabatic internal-
perturbation techniques, they explained the two evolution
scenarios induced by the usual VK instability (i.e., soliton
decay and amplitude oscillations). How to develop a nonlin-
ear theory for the present VK instability remains an open
question.

B. Solitons in the second bandgap

In this subsection, we examine defect solitons in the sec-
ond bandgap in the attractive defect. This family of defect
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FIG. 14. (Color online) Defect solitons and their stability in the first bandgap in the repulsive defect. (a) The power diagram; (b)
eigenvalues of the linearization operator £ for these solitons; (c)—(e) profiles of three defect solitons at w=1, 2, and 2.27 [marked by circles

in (a) and (b)], respectively.

solitons originates from the linear defect mode with u,
=4.6182 in the second bandgap. Their power and amplitude
diagrams are plotted in Figs. 9(a) and 9(b), and three repre-
sentative profiles with high, moderate, and low powers are
displayed in Figs. 9(c)-9(e). These solitons are antisymmet-
ric in x, and their profiles are oscillatory. When u is close to
1, the soliton’s profile is close to that of the linear defect
mode, and its amplitude and power are low. As u decreases
away from u,, the amplitude and power increase. When u
gets close to the edge point of the first Bloch band, the soli-
ton delocalizes, and its power approaches infinity. This be-
havior is analogous to that for defect solitons in the second
bandgap in a repulsive defect (see Fig. 3).

Now, we discuss the stability of this family of defect soli-
tons. From the analysis in Sec. III, we know that these soli-
tons at low powers are linearly stable. However, as their
powers increase (u decreases), an oscillatory instability ap-
pears at u=~4.28 [see Fig. 10(a)]. What happens here is that,
as u—4.28%, an internal mode approaches the edge of a
Bloch band. When u decreases below 4.28, two complex
eigenvalues bifurcate out of this edge point and generate os-
cillatory instabilities [see Figs. 10(b) and 10(c)]. After these
complex eigenvalues bifurcate out, they persist for all u
<4.28 in the second bandgap [see Fig. 10(a)]. We note that
the complex eigenvalues shown in Fig. 10(a) are only the
leading unstable eigenvalues. As the power increases further

(i.e., u decreases further), lesser unstable eigenvalues will
also appear.

Regarding the evolution of these defect solitons under
perturbations, we found that the linearly stable defect soli-
tons (at low powers) are indeed robust and can resist
random-noise perturbations. An example is shown in Fig.
11(b), where 10% random-noise perturbations are added to
the linearly stable soliton. Here, due to the perturbations,
alternating intensity oscillations in the two main peaks of the
soliton upon propagation are clearly visible, but these oscil-
lations are robust and they do not break up the soliton. But
linearly unstable defect solitons (at higher powers) always
break up under perturbations due to the oscillatory instabil-
ity. An example is shown in Fig. 11(a). Here after the
breakup, the solution evolves into snakelike oscillations
around the defect, which is reminiscent of similar oscilla-
tions in Figs. 8(a) and 8(c).

VI. OTHER TYPES OF DEFECT SOLITONS

In the above two sections, we comprehensively analyzed
defect solitons which bifurcate from linear defect modes in
the first and second bandgaps. It turns out that in addition to
these solitons, there are infinite families of other defect soli-
tons in every bandgap for any defect (some of them have
been reported in Ref. [29]). These defect solitons have mini-
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mal power thresholds and more complex profiles in general.
To demonstrate, we again choose the attractive and repulsive
defects in Fig. 1. For each defect and at two u values in the
first and second bandgaps, we numerically determined six
relatively simple defect solitons, and displayed them in Figs.
12 and 13, respectively. For the attractive defect, the soliton
in Fig. 12(a) is the one which bifurcates from the linear
defect mode in the first bandgap, and it has been studied in
detail in Sec. V A; the soliton in Fig. 12(d) is the one which
bifurcates from the linear defect mode in the second band-
gap, and it has been studied in Sec. V B. The other four
solitons in Fig. 12 are recent, and they do not bifurcate from
linear (infinitesimal) defect modes. Some of these recent de-
fect solitons [such as Figs. 12(b), 12(e), and 12(f)] can be
regarded as being pieced together by two uniform-lattice
solitons at the defect site. Hence they may be analyzed by a
nonlocal bifurcation technique developed in Ref. [50]. For
the repulsive defect, the soliton in Fig. 13(d) is the one which
bifurcates from the linear defect mode in the second band-
gap, and it has been studied in Sec. IV. The other five soli-
tons are recent, and they do not bifurcate from linear defect
modes. Of these five solitons, Fig. 13(a) is particularly inter-
esting. This soliton is entirely positive and single humped,
and it lies in the first bandgap. In some sense, it can be called
the “fundamental” soliton in this repulsive defect. The other
four solitons have more complicated profiles.

Stability of these types of defect solitons is an interesting
question. Since most of these solitons have more complex
profiles, they are expected to be less stable than those studied
earlier in this paper. The only exception is the soliton in Fig.
13(a), which has the simplest profile in the repulsive defect.
Because of its simplicity, we decide to analyze this branch of
solitons and their stability in more detail. The results are
displayed in Fig. 14, where Fig. 14(a) gives the power dia-
gram of this soliton branch, Fig. 14(b) gives the stability
diagram, and Figs. 14(c)-14(e) show three typical defect
solitons in this branch at parameters u=1, 2, and 2.27. It is
noted that Fig. 14(d) coincides with Fig. 13(a). From these
figures, we see that these solitons are all positive. They are
single humped when u<<2.15 and become multihumped
when u>2.15. In addition, P'(u) <0 when w<2.26, and
P’(u) >0 when p>2.26. Hence this branch of solitons has a
minimal power, which is 5.27 in dimensionless units. Re-
garding the stability of these solitons, even though P’(u)
<0 for all ©<2.26, it does not imply linear stability of
solitons in this interval, because operator £; does not always
have a single negative eigenvalue here, which is analogous
to Fig. 7. Indeed, Fig. 14(b) reveals that these solitons are
unstable in wide u intervals, intertwined with narrower
stable intervals. This phenomenon is similar to that in Fig.
7(b). When comparing defect solitons in the first bandgap for
repulsive and attractive defects [see Figs. 7(b) and 14(b)], we
observe that defect solitons in the repulsive case have nar-
rower stability intervals, thus are less stable than those in the
attractive defect. Using delta linear and nonlinear defects,

PHYSICAL REVIEW E 73, 026609 (2006)

Sukhorukov and Kivshar [29] found that defect solitons in
the first bandgap in a repulsive defect are all exponentially
VK unstable. Their results and ours differ here on two as-
pects: (i) P’'(w)>0 everywhere in their case (in our nota-
tions), while P'(u)<<0 almost everywhere in our case; (ii)
while the instability in their case is the usual VK instability
induced by P’(u)>0, in our case, the instability is induced
by £, having two negative eigenvalues—analogous to Fig. 7.

VII. SUMMARY AND DISCUSSION

Defect solitons and their stability in one-dimensional pho-
tonic lattices with focusing saturable nonlinearity have been
analyzed. It has been shown that defect solitons bifurcate out
from every infinitesimal linear defect mode. Low-power de-
fect solitons are linearly stable in lower bandgaps but un-
stable in higher bandgaps. At higher powers, defect solitons
become unstable in attractive defects, but can remain stable
in repulsive defects. In addition, for solitons in the first band-
gap, the instability is of VK type, but is different from the
previously-reported VK instability based on the sign of
P’(u). Lastly, it has been demonstrated that in each bandgap,
in addition to defect solitons which bifurcate from infinitesi-
mal linear defect modes, there is also an infinite number of
other defect solitons which can be stable in certain parameter
regimes. When compared to results by Sukhorukov and
Kivshar [29] where delta-function defects and nonlinearities
were used, we found that some results are similar, but many
others are different both qualitatively and quantitatively.
These differences are caused by different choices of defects
and nonlinearities, and our choices are more physically real-
istic.

One of the surprising results in this problem is that defect
solitons in the second bandgap in the repulsive defect are all
linearly stable, while defect solitons in the second bandgap
in the attractive defect are mostly unstable. Normally one
tends to expect just the opposite. It would be interesting to
check if the same conclusion holds for focusing Kerr nonlin-
earity as well. Another surprising result is that defect solitons
in the first bandgap in the attractive defect, which are all
positive and single humped, become unstable at high powers.
This is also anti-intuitive. To understand this phenomenon, it
would be helpful to study such solitons in a uniform lattice
as well as defect solitons with focusing Kerr nonlinearity.
These studies will clarify whether the instability found in
Fig. 7(b) is attributed to the defect, or to the saturable non-
linearity itself. These open questions are beyond the scope of
the present article, and they will be left for future studies.
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