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Adiabatic passage of light in coupled optical waveguides with a curved axis is theoretically investigated and
shown to bear a close connection with coherent population transfer among quantum states of atoms and
molecules. In particular, the optical analog of stimulated Raman adiabatic passage can be realized in a three-
waveguide optical directional coupler.
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INTRODUCTION

Owing to the strong similarity between quantum mechan-
ics and wave optics, light propagation in photonic structures
has provided on many occasions a useful and easily acces-
sible laboratory tool to investigate several coherent quantum
effects that may be more difficult to observe or investigate in
atomic, molecular, or condensed-matter systems due to, e.g.,
unavoidable dephasing effects or fast temporal dynamics.
Examples of optical realizations of coherent quantum effects
include optical Bloch oscillations �1–3� and optical dynamic
localization �4,5� in arrayed waveguides, adiabatic stabiliza-
tion, and wave packet dichotomy of light in periodically
curved waveguides �6,7�, quantum tunneling enhancement
and suppression in optical directional couplers �8,9�, and
Landau-Zener dynamics in coupled waveguides �10�. An im-
portant phenomenon of coherent temporal evolution encoun-
tered in quantum systems is that of coherent population
transfer among discrete states of atoms or molecules by use
of partially overlapped optical laser pulses, which has found
many applications in molecular dynamics and spectroscopy,
chemical reaction dynamics, quantum optics, and atom op-
tics �for a recent review on this subject see, e.g., �11� and
references therein�. The simplest case is that of a three-state
system and stimulated Raman adiabatic passage �STIRAP�,
which is a remarkable example of counterintuitive physics
�11–13�. In the STIRAP a Stokes pulse, driving the transition
between the initially unpopulated levels 2 and 3, coherently
prepares the system and precedes a partially overlapped
pump pulse, which drives the transition between the initially
populated level 1 and the intermediate level 2. Population
transfer from level 1 to level 3 is achieved by adiabatic pas-
sage of an instantaneous dressed state, the population placed
in the intermediate state 2 during the adiabatic transfer being
small or even negligible. The main interest on the STIRAP
stems from its capability of providing excitation between
states of the same parity, for which electric dipole transitions
are forbidden, by an intermediate state; in addition the coun-
terintuitive scheme, where the Stokes pulse precedes the
pump pulse, does not populate the intermediate level, and it
is therefore insensitive to any possible decay of the interme-
diate state.

In this paper an optical realization of coherent adiabatic
passage of light is theoretically proposed using coupled
waveguides with a bent axis, in which light propagation

along different waveguides exactly mimics the coherent tem-
poral population dynamics of the STIRAP.

THE MODEL

The starting point of the analysis is provided by a stan-
dard model of beam propagation at wavelength �=2� /k in
an optical coupler, made of a chain of N waveguides written
along the Z direction and lying in the �X ,Z� plane �Fig. 1�a��.
The waveguides are assumed to be single mode and of dif-
ferent design �Fig. 1�b�� so that the propagation constants of
the fundamental waveguide modes of the various
waveguides are not degenerate. The axis of the waveguides
is assumed to be straight in the first and last sections of the
waveguides, with an intermediate section in which the axis is
bent along the propagation direction Z with a bending profile
X0�Z� which is assumed to vary slowly over a distance of
the order of �. Typically, we assume that the bending profile
is a biharmonic �or polyharmonic� function with a smooth
envelope that goes to zero connecting the initial and
final straight waveguide sections �Fig. 1�a��. Without loss of
generality, we further assume that the field is strongly
localized in the vertical Y direction by a planar waveguiding
structure, so that beam dynamics can be effectively reduced
to a two-dimensional problem �14�. For a weak refractive
index change of the waveguide channels from the substrate

FIG. 1. �a� The schematic of a waveguide coupler made of a
chain of waveguides with a bent axis. �b� The refractive index pro-
file n�x�−ns of the coupler with three waveguides m, m+1, and m
+2. �c� The quantum-mechanical equivalence between bending-
induced waveguide coupling and coherent population transfer. The
transfer between �m−1�, �m�, and �m+1� states is induced by axis
bending harmonic components �m �see Eq. �7� in the text�.
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refractive index ns, the electric field can be written as
E�X ,Z , t�=��X ,Z�exp�iknsZ− i�t�+c.c., where �=kc0 and
the envelope ��X ,Z� satisfies the scalar and paraxial wave
equation �see, e.g., �6,9,15��

i �
��

�Z
= −

�2

2ns

�2�

�X2 + V„X − X0�Z�…� , �1�

where ��� / �2��, V�X���ns
2−n2�X�� / �2ns��ns−n�X�,

and n�X� is the refractive index profile of the coupler when
the waveguides are straight �Fig. 1�b��. It was previously
shown �6� that, after the Kramers-Henneberger transforma-

tion x=X−X0�Z�, z=Z, ��x ,z�=��x ,z�exp�−i� Ẋ0x /ns

− i�ns /2� �	0
zd�Ẋ0

2����, where the dot indicates the derivative
with respect to z, Eq. �1� yields the following wave equation
for the envelope ��x ,z�

i �
��

�z
= −

�2

2ns

�2�

�x2 + V�x�� − qE�z�x� , �2�

where we have set

qE�z� � − nsẌ0�z� . �3�

After the formal substitution z→ t, ns→m, and �→h, Eq. �2�
describes the semiclassical quantum dynamics, in the electric
dipole approximation, of a particle of mass m and charge q in
the potential V�x� subjected to an external electric field E�z�,
which is related to the waveguide axis bending through Eq.
�3�. Note that the field E�z� is polychromatic with the same
harmonic content of the bending profile X0�z�.

COUPLED MODE EQUATIONS

In order to highlight the close connection between beam
dynamics along the curved optical coupler and coherent
population transfer in quantum systems, it is worth deriving
a set of coupled mode equations for the amplitudes of
waveguide modes �16�. To this aim, let us indicate by
H0�−�2 / �2ns��x

2+V�x� the Hamiltonian operator of Eq. �2�
in absence of bending, and by wn�x� and ��n the eigenfunc-
tions �also called supermodes of the structure �16�� and cor-
responding eigenvalues of H0, with the normalization condi-
tion 
wn �wm�=	nm. As discussed in the Appendix, in the case
where the waveguides are weakly coupled and their indi-
vidual fundamental modes are not degenerate, the super-
modes wn�x� and corresponding eigenvalues ��n are close to
the eigenmodes un�x� and corresponding propagation
constants 
n of the single nth waveguide of the chain.
To study the effect of waveguide axis bending perturbation
H�=−qE�z�x on mode dynamics, we assume that bending-
induced coupling into radiation modes is small, so that the
envelope ��x ,z� can be expanded as a superposition of su-
permodes wn�x� with coefficients that depend on z, namely

��x,z� = �
n

an�z�wn�x�exp�− i�nz� . �4�

The evolution equations for the amplitudes an�z� induced by
the perturbation H� can be derived from Eq. �2� by a stan-

dard mode projection technique and read explicitly

i � ȧn = − �
m

am�z��n,mqE�z�exp�i��n − �m�z� , �5�

where the dot denotes the derivative with respect to z and
where we have set

�n,m � 
wn�x�wm� =� dxwn
*�x�xwm�x� . �6�

Note that, since the supermode frequencies �n are not degen-
erate, for small values of the force qE �a condition required
to avoid large bending-induced radiation losses�, we can ne-
glect in Eq. �5� the rapidly varying terms �rotating-wave ap-
proximation�; in addition, since the coefficients �n,m rapidly
decay to zero as �m−n� increases due to mode displacement,
we may assume �n,m
0 for �n−m � �1 �nearest-neighbor
approximation�. Under such conditions, Eq. �5� take the sim-
plified form �17�

iȧn = 1
2 ��n

*an−1 + �n+1an+1� , �7�

where �n=−�2�n−1,n / � �qE�z�exp�−i��n−�n−1�z� and the
overline denotes a spatial average. The form of such equa-
tions is analogous to the Hamiltonian equations of the STI-
RAP processes in multilevel quantum systems involving co-
herent multiphoton excitation �11�, �n playing the role of the
Rabi frequencies of the near-resonant exciting fields �Fig.
1�c��.

ADIABATIC LIGHT PASSAGE

The simplest case of adiabatic light passage, which pro-
vides the optical analog of the STIRAP in a three level quan-
tum system �Fig. 1�c��, is that of three waveguides with a
biharmonic bending axis profile of the form

X0�z� = Ap�z�cos���2 − �1�z� + As�z�cos���3 − �2�z� , �8�

where the slowly varying envelopes Ap and As simulate the
pulse shapes of pump and Stokes fields. In this case, Eq. �7�
read explicitly

i
d

dt�a1

a2

a3
� =

1

2� 0 �p 0

�p
* 0 �s

0 �s
* 0

��a1

a2

a3
� ,

where �p�z��−�ns�12Ap�z�� / ����2−�1�2� and �s�z��
−�ns�23As�z�� / ����3−�2�2�. The dynamics of the STIRAP,
which has been extensively studied in many works �we refer
the reader to �11� and references quoted therein�, requires the
Stokes pulse �s to precede the pump pulse �p, allowing in
the adiabatic limit an almost complete transition of the sys-
tem from the initial state a= �1,0 ,0�, corresponding in the
optical system to initial excitation of the waveguide 1, into
the final state a= �0,0 ,1�, corresponding to the light coming
out from waveguide 3, with small excitation of the interme-
diate waveguide 2. Such a dynamical behavior is based upon
adiabatic following of an instantaneous dressed state that
passes continuously from state a= �1,0 ,0� to state
a= �0,0 ,1� �11�. In the adiabatic limit, the dynamics is not
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appreciably influenced by the specific shapes of pump and
Stokes pulses.

The optical realization of the STIRAP provides an inter-
esting and counterintuitive technique to couple light from
waveguide 1 into waveguide 3 through an intermediate
waveguide 2, which is however weakly excited during the
light transfer process. Such a light transfer mechanism may
be referred to as adiabatic light passage in analogy to the
equivalent quantum mechanical process in three-state sys-
tems.

NUMERICAL RESULTS

We checked the occurrence of adiabatic light passage and
the STIRAP in a three-waveguide coupler with a biharmonic
bending axis profile by a direct numerical integration of the
scalar wave equation �1� using a pseudospectral split-step
beam propagation technique, and compared the numerical
results with those predicted by the coupled-mode equation
analysis. Equation �1� has been solved on a domain with a
finite extension in the transverse x direction and assuming
absorbing boundary conditions to account for bending-
induced radiation losses �for details see �6��. The refractive
index profile of each waveguide forming the coupler has
been assumed to be of the form �18� n�x�=ns+
n�erf��x
+w� /Dx�−erf��x−w� /Dx�� / �2 erf�w /Dx��, where 2w and Dx

are the channel width and the lateral diffusion length, respec-
tively. The separation between adjacent waveguides is a. The
nondegeneracy of waveguide modes is obtained by assuming
different values for the index change 
n �19�. Parameter val-
ues have been chosen for typical lithium-niobate waveguides
excited at �=1.5 �m. The index profile of the coupler used
in our numerical simulations is shown in Fig. 2�a�, whereas
Fig. 2�b� depicts the profiles of the three supermodes wn�x�
of the waveguide chain, calculated by a direct numerical
computation of eigenmodes and eigenvalues of H0, together
with the mode profiles of the individual waveguides. Note
that, as expected from the variational analysis presented in
the Appendix, the profiles of the supermodes are well ap-
proximated by the fundamental modes of each individual
waveguide of the chain. Figure 2�c� shows the biharmonic
bending profile of the waveguide axis, which is obtained by
assuming a Gaussian shape Ap�z�=Ap0 exp�−�z−L /2
+z0�2 /�2� and As�z�=As0 exp�−�z−L /2−z0�2 /�2� for the
slowly-varying pump and Stokes field envelopes, where L is
the total waveguide length, z0 determines the overlap fraction
of the two fields, and 2� is the width of the two envelopes.

The spatial periods of the two harmonics forming the bi-
harmonic bending profile turn out to be 2� / ��2−�1 �

800 �m and 2� / ��3−�2 � 
310 �m for the pump and
Stokes fields, respectively. Note that the maximum excursion
of transverse axis displacement from straightness has been
chosen less than the waveguide width 2w in order to keep
radiation losses at a small level. Figure 3 shows a gray-scale
plot of beam propagation along the coupler, in the �x ,z�
plane, as obtained when the waveguide on the right hand side
�guide number 1� is initially excited in its fundamental mode,
together with the input and output intensity beam profiles
�Fig. 3�b�� and total beam power contained in the integration

domain �Fig. 3�c��. Note that, according to the STIRAP
model, a good adiabatic light transfer from waveguide 1 to
waveguide 3 is obtained, with small excitation of the inter-
mediate waveguide 2 and with small radiation losses �less
than 10%, see Fig. 3�c��. Figure 4�a� depicts the numerically
computed fraction of total beam power carried in the funda-
mental modes of the three waveguides, showing the adiabatic
passage mediated by the intermediate waveguide. Figures
4�b� and 4�c� show the corresponding behavior as obtained
by a numerical integration of the coupled-mode equation �5�
and the STIRAP equation �7�, respectively.

FIG. 2. �Color online� �a� The refractive index profile of a
L�25-mm-long three-waveguide coupler used in numerical
simulations. The refractive index change for the waveguides are

n1=0.0173, 
n2=0.02, and 
n3=0.0266. The other parameter
values are ns=2.14, w=1 �m, a=6 �m, and Dx=0.5 �m−1. �b� The
amplitude profiles of supermodes wn�x� of the three-waveguide cou-
pler �solid curves� and corresponding profiles of each individual
waveguide mode un�x� �dotted curves�. �c� The biharmonic axis
bending profile of the waveguides with Gaussian envelopes for pa-
rameter values As0=0.46 �m, Ap0=0.83 �m, z0=360 �m, and
�=5380 �m. The insets show the two harmonic components cor-
responding to pump and Stokes pulses �the spatial period of the two
components are 
800 �m and 
310 �m, respectively�.

ADIABATIC PASSAGE OF LIGHT IN COUPLED… PHYSICAL REVIEW E 73, 026607 �2006�

026607-3



Note that, in the case of Fig. 4�c�, the low-amplitude fast
oscillations observed in the curves of Figs. 4�a� and 4�b� are
absent, which is due to the rotating-wave approximation used
in deriving Eq. �7� from Eq. �5�. The reasonably good agree-
ment of the curves in Fig. 4�c�, obtained from the STIRAP
model �7�, with those depicted in Figs. 4�a� and 4�b� proves
that the basic mechanism underlying light transfer in the cou-
pler is adiabatic passage indeed.

CONCLUSIONS

It has been theoretically shown that the phenomenon of
coherent population transfer and the STIRAP in multistate
quantum systems can be elegantly realized in curved optical
waveguide couplers, with a biharmonic bending profile of
the waveguide axis which simulates the effect of pump and
Stokes pulses. Adiabatic light passage has been confirmed by
a direct numerical integration of the wave equation in a three
waveguide coupler. The present analysis provides a remark-
able optical analogy of a counterintuitive quantum phenom-
enon and may stimulate an experimental observation of an
optical STIRAP in a waveguide-based system.

APPENDIX: SUPERMODES OF A CHAIN OF
WAVEGUIDES

For a waveguide structure composed by weakly interact-
ing single-mode and nondegenerate waveguides, the super-
modes wn�x� and corresponding propagation constants ��n

of the structure, defined as the eigenmodes and eigenvalues
of the Hamiltonian H0, can be perturbatively constructed
from the fundamental waveguide modes un�x� and propaga-
tion constants 
n of individual waveguides using a varia-
tional technique. To this aim, let us note that Eq. �2�, in
absence of the external force �qE=0�, can be derived from
the variational principle 		dtdxL=0 with the Lagrangian
density

L =
�2

2ns
��x�2 +

i�

2
���t

* − �*�t� + V�x����2. �A1�

Indicating by un�x� the fundamental mode of the nth
waveguide of the coupler and assuming weak waveguide
coupling, we may make the Ansatz ��x , t�=�ncn�z�un�x�,
where the evolution equations for the mode amplitudes
cn�z� are given by the Eulero-Lagrange equations
��Lred /�cn�−d /dt��Lred /�ċn�=0 for the reduced Lagrangian
Lred=	dxL.

After some straightforward algebra one obtains the fol-
lowing set of coupled-mode equations:

FIG. 3. �a� The gray-scale plot of numerically computed beam
evolution along the coupler, showing adiabatic light passage from
waveguide 1 to waveguide 3. �b� The intensity beam profiles at the
input �dashed curve� and output �solid curve� planes of the coupler.
�c� The total beam power 	���2dx, normalized to its input value,
contained in the transverse 60-�m-wide integration window.

FIG. 4. �Color online� The fractional beam power �am�z��2 ver-
sus propagation distance localized in the three waveguides as ob-
tained �a� by numerical simulations of the wave equation, �b� by
numerical solutions of the coupled-mode equation �5�, and �c� by
numerical solutions of the STIRAP equations �7�. In �a� the frac-
tional beam power is calculated by mode projection according to
�am�2= �	dxum

* �x���x ,z��2 / �	dx ���x ,z��2.
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i � ċ = �−1
c , �A2�

where c is the column vector of mode amplitudes cn, and the
z-independent Hermitian matrices � and 
 are given by

�n,m =� dxun
*um,


n,m =� dxun
*�−

�2

2ns

d2um

dx2 + Vum� . �A3�

If ��x , t� is a supermode of the waveguide chain with
propagation constant ��m, one should have
c�z�= c̄�m� exp�−i��m�. From Eq. �A2� one then finds �20�

��mc̄�m� = �−1
c̄�m�, �A4�

i.e., the amplitudes c̄�m� are the eigenvectors of the
matrix �−1
 and ��m are the corresponding eigenvalues.
The supermode profile wm�x� is then obtained as a superpo-
sition of individual waveguide modes un�x� according to
wm�x�=�nc̄n

�m�un�x�. Note that, since we assume that the
waveguides are weakly coupled, the matrices � and 
 are
almost diagonal, with �n,n=1 �normalization condition�, and

n,n almost coincident with the propagation constant 
n of
the fundamental mode of the nth waveguide in the chain.
Since the propagation constants 
n of the individual
waveguides are assumed to be nondegenerate, the matrix
�−1
 has simple eigenvalues, and at leading order
��m

m, c̄n

�m�
	m,n, and wm�x�
um�x�.
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