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We introduce a dynamical model of a Bose-Einstein condensate based on the two-dimensional Gross-
Pitaevskii equation, in which the nonlinear coefficient is a function of radius. The model describes a situation
with spatial modulation of the negative atomic scattering length, via the Feshbach resonance controlled by a
properly shaped magnetic of optical field. We focus on the configuration with the nonlinear coefficient different
from zero in a circle or annulus, including the case of a narrow ring. Two-dimensional axisymmetric solitons
are found in a numerical form, and also by means of a variational approximation; for an infinitely narrow ring,
the soliton is found in an exact form �in the latter case, exact solitons are also found in a two-component
model�. A stability region for the solitons is identified by means of numerical and analytical methods. In
particular, if the nonlinearity is supported on the annulus, the upper stability border is determined by azimuthal
perturbations; the stability region disappears if the ratio of the inner and outer radii of the annulus exceeds a
critical value �0.47. The model gives rise to bistability, as the stationary solitons coexist with stable axisym-
metric breathers, whose stability region extends to higher values of the norm than that of the static solitons.
The collapse threshold strongly increases with the radius of the inner hole of the annulus. Vortex solitons are
found too, but they are unstable.
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I. INTRODUCTION

Matter-wave solitons have been created in Bose-Einstein
condensates �BECs� in various effectively one-dimensional
�1D� settings. First, these were dark solitons in repulsive
condensates �1�. Then, bright solitons were created in an at-
tractive BEC �lithium� �2�. This was followed by the making
of gap solitons in a repulsive rubidium condensate loaded in
a periodic potential, which was induced by the optical lattice
�OL�, i.e., interference pattern between two laser beams illu-
minating the medium �3�.

A challenge to the experiment is creation of 2D matter-
wave solitons. A natural problem in this case is the trend of
solitons in multidimensional attractive condensates to be un-
stable because of the possibility of collapse in this setting
�4�. In theoretical works, several approaches were proposed
to stabilize 2D solitons. One of them uses a full two-
dimensional OL �5�, or its low-dimensional �quasi-1D� coun-
terpart �6�, which can stabilize fundamental solitons. In ad-
dition, 2D lattices lend stability to vortical solitons �5�,
including higher-order vortices, and “supervortex” com-
plexes �7�; the latter ones are built as circular chains of com-
pact vortices, with global vorticity imprinted onto the chain.
Another theoretically elaborated approach relies upon the use
of a nonlocal anisotropic nonlinearity induced by the long-
range interactions between atoms with a magnetic momen-
tum �chromium�, polarized by an external field �8�.

An alternative mechanism proposed for the stabilization
of 2D matter-wave solitons is based on the Feshbach reso-
nance �FR�, which makes it possible to control the value of
the scattering length, i.e., as a matter of fact, an effective
nonlinear coefficient in the corresponding Gross-Pitaevskii
equation �GPE�, by means of an external magnetic field �9�.

Moreover, the FR may switch the sign of the nonlinearity �in
particular, the FR-induced switch from repulsion to weak
attraction was instrumental to the creation of bright solitons
in lithium �2��. Application of a low-frequency ac magnetic
field may provide for periodic alternation of the nonlinearity
sign in the GPE via the FR. It was predicted that the FR
technique based on the ac field gives rise to novel states in
the 1D geometry �10�, and can stabilize 2D solitons, even in
the absence of the external trap �11�. The same technique, if
applied in combination with a quasi-1D OL potential, may
also stabilize matter-wave solitons in the 3D geometry �12�.

It has been predicted �13�, and demonstrated in experi-
ment �14�, that the FR can also be induced by a properly
tuned optical field. Then, illuminating the condensate by two
counterpropagating coherent laser beams, one can build an
OL that will provide for periodic modulation of the nonlin-
earity coefficient along the respective spatial coordinate.
Solitons in the corresponding one-dimensional GPE with the
nonlinear OL were recently investigated in Ref. �15�, where
stability regions for static solitons and breathers were found
�motion of free solitons in the same model was recently stud-
ied in Ref. �16�, and rigorous proofs concerning the stability
of static solutions in this setting were reported in Ref. �17��.
The soliton dynamics in the 1D model with other configura-
tions of the spatial modulation of the nonlinearity coefficient
was studied in Ref. �18� �unlike Ref. �15�, the nonlinearity
coefficient did not change its sign in the models considered
in the latter works�. It is relevant to mention that, in addition
to the magnetic and optical fields, the strength of collisions
between atoms in an ultracold gas may also be controlled by
external dc electric field �19�.

Static spatial modulation of the nonlinearity through the
FR, controlled by a properly shaped external field, may be
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tried as another means for the stabilization of 2D solitons,
which is the subject of the present work. A natural form of an
axisymmetric OL in the 2D geometry corresponds to the
Bessel beam, i.e., a nondiffracting light signal in a bulk lin-
ear medium. In the case when the Bessel beam creates an
effective linear potential in the equation of the GPE type
with self-attraction, it has been shown that the corresponding
radial lattice can readily stabilize various types of 2D soli-
tons �20�. However, our results show that, within a broad
parameter region that we were able to explore, stabilization
of 2D solitons by means of a nonlinear Bessel lattice, i.e.,
within the framework of the GPE whose nonlinear coeffi-
cient is g�r�=g0Jn�ar�, where r is the radial coordinate, g0
and a are constants, and Jn is the Bessel function with n
=0,1 , . . ., appears to be impossible—stationary axisymmetric
soliton solutions can be easily constructed, but in simulations
they all suffer either decay or collapse.

Nevertheless, in this work we demonstrate that a simpler
shape of the radial modulation of the nonlinearity, in which it
takes a constant value, corresponding to self-attraction, in-
side a finite circle or annulus, and is zero �or corresponds to
self-repulsion� outside this region, is able to stabilize axi-
symmetric 2D solitons. In addition to that, we will demon-
strate that the model gives rise to bistability: the stationary
solitons coexist with stable breathers, that feature persistent
oscillations in the radial direction. In fact, the stability region
of the breathers is larger than that of the static solitons, ex-
tending to higher values of the norm �number of atoms in the
BEC�.

It should be said that, in the case of the nonlinearity con-
trolled by the optical beam through the FR mechanism, the
beam with the cross section in the form of a circle or annulus
is not divergence-free, unlike its Bessel-shaped counterpart.
However, this circumstance does not impede the physical
realization of the model, as an effectively 2D condensate can
be easily trapped between two blue-detuned light sheets,
which strongly repel the atoms, as demonstrated in the ex-
periment �21�. The thickness of the corresponding “pancake”
is a few microns, while its diameter is measured in hundreds
of microns �at least�, hence the diffraction of the light beam
within this range is completely negligible.

All the above was said about single-component BECs.
Binary ultracold Bose gases, in the form of a mixture of two
different hyperfine states of the same atomic species �ru-
bidium� �22,23�, as well as different species �potassium and
rubidium� �24�, have been created too. Various patterns and
their stability in binary BECs were investigated theoretically
�25–28�, including bright solitons �29,30�. The FR may be
used to control the interspecies scattering length in binary
condensates too �31�. A possibility to stabilize a 2D vectorial
�two-component� soliton by means of the FR in the low-
frequency ac magnetic field, similar to how is was predicted
for the single-component soliton �11�, was considered in Ref.
�32�.

The paper is organized as follows. In Sec. II, we formu-
late the model, and present numerical and analytical solu-
tions for static solitons. The analytical part includes a varia-
tional approximation for the solutions in the general case, an
exact solution for solitons supported by an infinitely narrow
annulus carrying the nonlinearity, and predictions for the sta-

bility against radial perturbations, based on the Vakhitov-
Kolokolov �VK� �33,34� criterion. Exact solutions are also
found for two-component solitons sustained by an infinitely
narrow nonlinearity ring in the model of a binary BEC. The
stability threshold for azimuthal perturbations �in the single-
component model� is determined by a solution of the corre-
sponding eigenvalue problem. An inference is that stability
borders in the model with the nonlinearity supported on the
circle are completely determined by radial perturbations,
while in the annular model the upper stability border �in
terms of the soliton’s norm� is controlled by azimuthal per-
turbations. No stable solitons are possible if the annulus is
relatively narrow, with the ratio of inner and outer radii ex-
ceeding a critical value �0.47. In Sec. III, we summarize
results of direct numerical simulations of the stability of fun-
damental stationary solutions, which precisely confirm the
existence of a well-defined stability region of the 2D solitons
in the model’s parameter space, predicted in Sec. II. The
bistability �coexistence of the stable stationary solitons and
breathers� and the extended stability region for the breathers
are also reported in Sec. III. In Sec. IV, we briefly consider
solitons with intrinsic vorticity, and conclude that all the vor-
tices are unstable �the vortex splits in two fundamental soli-
tons, each one then collapsing intrinsically�. The paper is
concluded by Sec. V.

II. STATIONARY SOLITONS

A. The model and numerical solutions

The GPE for the single-atom wave function � in the nor-
malized form is

i
��

�t
= −

1

2
�2� − g�r����2� , �1�

with t time, �2 the 2D Laplacian, and the nonlinearity coef-
ficient shaped, by means of the external magnetic or optical
field, as said above

g�r� = �1, � � r � R ,

0, r � � or r � R .
�2�

The number of atoms is determined by the norm of the wave
function

N = 2��
0

�

���r��2rdr . �3�

Using the scaling invariance of Eq. �1�, we set R=2, keeping
� as a free parameter. Note that the model without the inner
orifice, �=0, is a universal one, as it contains no parameters.

We also considered a model with the nonlinearity
switched to self-repulsion, i.e., g�r��0, in the regions of r
�� and r�R. However, we focus on the case with g=0 in
these regions, as such a case is least favorable for the exis-
tence of solitons, hence it provides for results which are most
relevant to the experimental realization of the scheme.

Stationary solutions for fundamental solitons are looked
for as �=��r�e−i�t, with a real chemical potential �, and a
real function � obeying the equation
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2�� + �� + r−1�� + 2g�r��3 = 0 �4�

�the prime stands for d /dr�. Equation �4� is to be solved with
the boundary conditions ���r=0�=0 and ��r= � �=0 �the
latter one implies that � must be negative�. The solution was
searched for numerically by selecting the value of ��r=0�
with which the boundary condition at r=� could be met.

Two examples of the solution are displayed in Fig. 1�a�,
one for �=0, i.e., the configuration with no inner “hole,” and
the other one with the “hole” corresponding to �=0.5; in the
latter case, the solution attains a maximum at r=�, having a
shallow minimum at r=0. Families of the soliton solutions
are characterized by dependences ��N�, which are displayed
in Fig. 1�b� for �=0 and two nonzero values of �. These
dependences predict a necessary stability condition as per the
VK criterion �33�, dN /d��0, i.e., parts of the solution fami-
lies beneath the turning points in Fig. 1�b� may be stable
�below, the turning point will be denoted as N=Ncr

�lower��. In
fact, the stability region exists due to the fact that the attrac-
tive nonlinearity acts in a finite region of space r�R.

In the absence of the inner orifice ��=0�, the soliton be-
comes narrow as � takes large negative values. In this case,
the medium seems nearly uniform for the soliton, hence it
approaches the shape of the well-known Townes soliton,
which is a universal weakly unstable localized solution of the
2D nonlinear Schrödinger �NLS� equation with the spatially
uniform self-focusing nonlinearity �34�. Accordingly, the
soliton’s norm approaches the value NTownes�5.85, which
plays a critical role in the radial dynamics, being equal to the
norm of the Townes soliton.

B. Variational approximation

The fundamental soliton solutions in the present model
can also be obtained by means of the variational approxima-
tion �see a review of the method in Ref. �35��. To this end,
we adopt the ansatz

� = A exp	−
r2

2w2
 , �5�

with an amplitude A and width w. The substitution of the
ansatz in norm �3� and the Lagrangian of Eq. �4�,

L = 2��
0

� �2��2 − 	d�

dr

2

+ g�r��4�rdr , �6�

yields N=�A2w2 �we use this relation to eliminate A in favor
of N�, and

L = 2�N −
N

w2 +
N2

2�w2�1 − e−2R2/w2� .

Then, the variational equations �L /�N=0 and �L /�w=0 pre-
dict the following relations between the norm, width and
chemical potential of the soliton:

2�

N
= 	1 − 2

�2

w2
e−2�2/w2
− 	1 − 2

R2

w2
e−2R2/w2
,

�w2 = 1 −
N

2��e−2�2/w2
− e−2R2/w2

�
. �7�

The ��N� dependence, predicted by Eq. �7�, is shown in Fig.
1�c� for several values of �. It is consistent with the numeri-
cal results displayed in Fig. 1�b�, although the variational
approximation predicts somewhat larger values of N.

C. The narrow-ring model

The simple ansatz �5� cannot predict the shape of the so-
lution with the local minimum at r=0, such as the one shown
in Fig. 1�a� for ��0. The minimum becomes deeper as the
nonlinearity-supporting annulus narrows, which corresponds
to �R−�� /R→0. As a limit form, one can take the GPE with
the 	-functional nonlinearity support

i
��

�t
= −

1

2
�2� − 	�r − R����2� �8�

�the coefficient in front of the 	 function is scaled to be 1, see
Eq. �2��. By final rescaling, one can again set R=2 in Eq. �8�,
as was done above in Eq. �1�, so as to cast Eq. �8� in a
parameter-free form. It is relevant to mention that a BEC
configuration in the form of a narrow ring was recently cre-
ated in the experiment by means of an accordingly shaped
magnetic trap �36�.

FIG. 1. �a� Examples of stable soliton solutions with �=0, �=−0.0399, and N=5.59 �solid curve� and �=0.5, �=−0.0648, and N
=6.721 �dashed curve�. �b� Chemical potential � vs norm N for soliton families found numerically with �=0, 0.2, and 0.5. For �=0, the
VK-stable portion of the solution, i.e., one with dN /d��0, is found in the interval Ncr

�lower��5.449�N�NTownes�5.85. �c� ��N� curves
predicted by the variational approximation for the same cases, �=0, 0.2, and 0.5.
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In the present case, the stationary wave function ��r�
obeys a linear equation

d2�

dr2 +
1

r

d�

dr
+ 2�� = 0, �9�

which must be solved separately for r�R and r�R. The
inner and outer solutions, one with ���r=0�=0 and the other
vanishing at r→�, are to be linked by the conditions of the
continuity of ��r� and jump of ���r� at r=R, which follows
from Eq. �8�:

���r = R + 0� − ���r = R − 0� = − 2���r = R��3. �10�

Appropriate solutions to Eq. �9� are

��r� = A�I0�
− 2�r�/I0�
− 2�R� , r � R ,

K0�
− 2�r�/K0�
− 2�R� , r � R ,
�11�

where I0 and K0 are the modified Bessel and Hankel func-
tions, A is a constant, and the continuity of ��r� at r=R is
provided automatically. The substitution of expressions �11�
in Eq. �10� yields

A2��� = �
−
�

2
�K1�z�

K0�z�
+

I1�z�
I0�z���z=
−2�R

. �12�

The norm �3� of the exact solution given by Eqs. �11� and
�12� can also be calculated in an explicit form

N��� = �
−
�

2
��K1�z�

K0�z�
+

I1�z�
I0�z���K1

2�z�
K0

2�z�
−

I1
2�z�

I0
2�z���z=
−2�R

.

�13�

Figures 2�a� and 2�b� display, respectively, an example of the
solution, and the ��N� dependence plotted as per the exact
expression �13�.

D. Two-component solitons in the narrow-ring model

A binary BEC containing two different hyperfine states of
one atomic species is described by a symmetric system of
nonlinearly coupled GPEs �25–32�. It is natural to assume
that the spatial modulation of the scattering length acts in the
same way on the interaction in both components and be-
tween them. In particular, in the case of the nonlinearity
concentrated at the narrow ring, the normalized coupled
GPEs take the form �see Eq. �8��

i
��1

�t
= −

1

2
�2�1 − 	�r − R����1�2 + 
��2�2��1, �14�

i
��2

�t
= −

1

2
�2�2 − 	�r − R����2�2 + 
��1�2��2, �15�

where, in the physically relevant situation, the “inter/intra”
ratio of the scattering lengths is slightly larger than unity
�22,25�, 
=1+�, with 0���1 �the fact that 
−1 is positive
and small has important implications for the existence and
stability of 1D �27� and 2D �28� dynamical patterns in the
binary BEC, in the form of domain walls that separate the
two components�.

A stationary vectorial-soliton solution to Eqs. �14� and
�15� is looked for in the form of Eq. �11�, with, generally,
different chemical potentials �1 and �2 and different ampli-
tudes A1 and A2 of wave functions �1,2=�1,2�r�e−i�1,2t. Then,
straightforward consideration yields

A1,2
2 =


A2��2,1� − A2��1,2�

2 − 1

, �16�

where A2��� is given by Eq. �12�.
An essential condition is that both values A1,2

2 given by
Eqs. �16� must be positive. With regard to the fact that �
�
−1 is small, it is easy to see that this condition is met if

���1−�2 is small too:

�
�� � �A2��̄�/��A2��̄���� , �17�

where �̄���1+�2� /2, and the prime stands for the deriva-
tive with respect to �̄. Expressions �16� then take the form

An
2 �

1

2
�A2��̄� + �− 1�n�A2��̄���


�

�
� . �18�

Note that, although the interval �17� of values of the
chemical-potential difference, in which the vectorial soliton
can be found, is narrow, within this interval the asymmetry
of the soliton, which is measured by ratio A1

2 /A2
2, taken as per

Eqs. �18�, is not restricted.

E. Stability diagram for stationary solitons

Figure 2�b� shows the existence of solutions with
dN /d��0 in the model with the radial 	 function, which
may be stable according to the VK criterion. However, it can
only guarantee the stability against radial perturbations that
do not break the axial symmetry of the solutions. On the
other hand, it is well known that axisymmetric ring-shaped
states may be easily subject to instability against azimuthal
perturbations �see, e.g., Ref. �37��.

To study the stability against angular modulations in the
general case �with g�x� taken as per Eq. �2��, including the
	-functional limit, as in Eq. �8�, we take a perturbed solution
as

��r,�,t� = e−i�t���r� + 	�+�r�e−i�t+im� + 	�−�r�ei�*t−im�� ,

�19�

where � is the angular variable, m is an integer perturbation
index, � is a perturbation eigenfrequency, with * standing for

FIG. 2. �a� An example of the solution of Eq. �8�. �b� The ��N�
dependence for the 	-functional model, according to Eq. �13�.
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the complex conjugation �� may be complex �37��, and
	�±�r� are components of the respective eigenfunction. In
particular, the instability threshold may correspond to �=0,
then the eigenfunction has 	�+=	�−�	�0�r�, and the sub-
stitution of expression �19� in Eq. �8� and subsequent linear-
ization lead to an equation for the zero mode,

�� +
1

2
	 d2

dr2 +
1

r

d

dr
−

m2

r2 
 + 3g�r����r��2�	�0 = 0.

�20�

The instability threshold is achieved when real �, found as
an eigenvalue of Eq. �20�, coincides with the actual value of
the chemical potential of the unperturbed solution ��r�. This
way, the threshold was identified for the lowest azimuthal
perturbation mode, with m=1 �in direct simulations pre-
sented in the next section, instability was observed solely
against the azimuthal modulations with m=1�.

The result of the analysis is summarized in Fig. 3, in the
form of a stability diagram in the �� ,N� parameter plane. The
upper dotted border is the critical curve for the azimuthal
instability with m=1, found as described above, while the
lower dashed curve is the existence and stability border for
the soliton solutions, which is identified as a set of turning
points of the ��N� curves in Fig. 1. Soliton solutions satis-
fying the VK criterion, dN /d��0, exist above the lower
border. Below the upper border, they are stable against the
m=1 azimuthal disturbances, i.e., the solitons are expected to
be completely stable between the two curves. This expecta-
tion was verified by direct simulations, see the next section.

Note that the border of the azimuthal instability in Fig. 3
is located, for �=0, at a value of N which is identical to
NTownes�5.85, i.e., in the case of �=0 �no inner orifice�, the
thresholds for the collapse in the radial direction, and for the
breakup of the axial symmetry in the azimuthal direction, are
identical. The coincidence of the two thresholds for �=0 can
be explained. Indeed, differentiation of Eq. �4� in r shows
that, for given ��r�, the function ���r� solves the following
linear equation:

�2� +
d2

dr2 +
1

r

d

dr
−

1

r2 + 6g�r����r��2��� = − 2g��r����r��3.

�21�

If g�=0, Eq. �21� exactly coincides with Eq. �20� for m=1,
hence the function ���r� may be identified as the correspond-
ing zero mode. Of course, when g is a function of x defined
by Eq. �2�, which means g��x�=	�r−R�, the term on the
right-hand side of Eq. �21� does not allow ���x� to be the
zero mode; nevertheless, in the limit of N→NTownes, the soli-
ton shrinks to a size much smaller than R, hence ���R��3

becomes vanishingly small, along with the abovementioned
term. Thus, in the limit of N=NTownes, the function ���r�
provides for a solution to Eq. �20� with m=1, making N
=NTownes the threshold of instability to the azimuthal pertur-
bations with m=1.

A notable feature of the stability diagram in Fig. 3 is that
the lower and upper stability borders meet and close down
the stability region at �=�max�0.95, which means that the
nonlinearity-carrying annulus with the ratio of the inner and
outer radii exceeding the critical value �max/R�0.47, cannot
support stable solitons. This conclusion implies that solitons
cannot be stable either in model �8� with the radial 	 func-
tion. Indeed, detailed consideration of that model reveals the
region of the azimuthal stability at N�11.0 and �
�−0.0116, which entirely belongs to the upper branch of the
��N� curve in Fig. 2�b�, with dN /d��0, i.e., the region is
VK unstable.

III. DIRECT SIMULATIONS

To check the predictions for the stability of the solitons,
and examine the evolution of unstable ones, we have per-
formed direct 2D simulations by dint of the split-step Fourier
method, employing a basis composed of 512�512 modes.
The size of the integration domain was L�L=60�60, with
the center of the circle or annulus set at point �x ,y�
= �L /2 ,L /2�, and the time step 
t=0.005.

The simulations have confirmed the stability of the soli-
tons in the region between the lower and upper borders in
Fig. 3, and instability outside of this region. Figure 4�a� dis-
plays an example of the time evolution of ���x ,L /2�� �i.e.,
the profile of the cross section through the central point
along the x axis� in a perturbed stable soliton, for �=0. On
the other hand, Figs. 4�b� and 4�c� demonstrate that �for the
same case of �=0� unstable solitons suffer collapse.

However, unstable solitons �ones belonging to the upper,
VK unstable, part of the ��N� curve in Fig. 1�b�, with
dN /d��0� whose norm is taken below a critical value
Ncr

�upper��5.99 �for �=0� which is higher than the norm
NTownes�5.85 of the Townes soliton in the two-dimensional
NLS equation, neither collapse nor decay into radiation �in
the NLS equation, a pulse with N�NTownes is bound to decay
in the 2D uniform space�. Instead, the unstable soliton rear-
ranges itself into a stable breather. Figures 5�a� and 5�b�
display an example of the evolution of breathers. In the
simulations, the breathers remain stable indefinitely long,
their oscillations getting more regular as N decreases. The

FIG. 3. The stability diagram for the soliton solutions. In the
region between the two borders, the stationary solitons are stable—
simultaneously according to the VK criterion, i.e., against radial
perturbations �above the lower border� and against azimuthal modu-
lations �below the upper border�.
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amplitude of the oscillations, which we define as the root-
mean square of the variation of the soliton’s amplitude
A�t���u�x=y=L /2 , t�� decreases with N, and it vanishes at
another critical value Ncr

�lower��5.449. Up to the numerical
accuracy, the latter one is precisely the smallest value of N at
which the stationary solitons exist for �=0, see Fig. 1�b�.
Thus, N=Ncr

�lower� is not only the point of the merger of the
VK-stable and VK-unstable branches of the solutions, but
also the one at which the breathers merge into the static
solitons.

We stress that the existence of the stable axisymmetric
breathers up to Ncr

�upper��5.99 does not contradict the fact that
the symmetry-breaking azimuthal instability occurs, for �
=0, at N�NTownes�5.85, as explained above. Indeed, the
latter pertains to the angular instability of the static solitons,
but not breathers.

A noteworthy consequence of these results is the bistabil-
ity: in the entire interval of values of the norm Ncr

�lower�

�5.449�N�NTownes�5.85, where stable stationary soli-
tons are found �for �=0�, they coexist with breathers. On the
other hand, in the adjacent interval 5.85�N�Ncr

�upper�

�5.99, only stable breathers are possible �and no stable ob-
jects exist for N�5.99�.

Stable breathers and bistability were found for ��0 as
well. We note that stable breathers were also found in the

model based on the one-dimensional GPE with a nonlinear
OL �i.e., the nonlinearity coefficient modulated in space as
cos�kx�� �15�. In the latter model, bistability was observed
too, as the breathers exist at the same values of the norm at
which stable stationary solitons are found.

As said above, all the solitons which are stable against
collapse in the model with �=0, are stable too against the
azimuthal perturbations. Actual instability against the azi-
muthal mode �19� with m=1 occurs at ��0. To study the
azimuthal instability in direct simulations, we used an initial
condition in the form of a stationary soliton subjected to a
weak angular deformation. Figure 6 displays a typical ex-
ample of the development of the azimuthal instability for �
=0.55. As a result, the soliton does not split into fragments,
which is a generic result of the azimuthal instability of
vortex-ring solitons in uniform media �36�, but rather shifts
from the central point �x ,y�= �30,30�, to a position centered
at �x ,y���29,30�. Because the norm of the soliton exceeds
NTownes, it then develops intrinsic collapse at the new posi-
tion, where the hole does not essentially affect its dynamics.
The shift of the soliton off the center and subsequent collapse
were found to be a generic outcome of the development of
the azimuthal instability. This feature can be easily explained
by the fact obvious in Fig. 3: all the solitons which are sub-
ject to the azimuthal instability have N�NTownes, hence they

FIG. 4. �a� The evolution of ���x ,L /2�� �central cross section� in a stable soliton for �=0, �=−0.189, and N=5.62. �b� An example of
collapse of an unstable soliton, for �=0, �=−0.0179, and N=6.175. �c� The time dependence of the field amplitude, i.e., maximum value of
���x ,y��, for the same case as in �b�.

FIG. 5. �a� The time evolution of the cross-section profile ���x ,L /2�� of a breather, for �=0, �=−0.0399, and N=5.59. The initial
amplitude of the soliton is A�0�=0.6. �b� Evolution of the amplitude of the breathing soliton for the same case. �c� The amplitude of intrinsic
oscillations of the breather as a function of A�0�.
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should collapse after being displaced away from the hole.
As said above, direct simulations corroborate the stability

of the stationary solitons in the region between the two bor-
ders in Fig. 3. We illustrate this conclusion in Fig. 7, which
displays the time evolution of the field amplitude �maximum
value of ���x ,y��� for �=0.2 and three different values of the
norm. The first soliton, with N=5.702, belongs to the stabil-
ity region in Fig. 3, and it is seen to be stable indeed. Two
other solitons, with N=5.994 and N=6.01, are azimuthally
unstable, which eventually leads to the collapse �after the
spontaneous off-center shift, as shown in Fig. 6�. Note that,
as N=5.994 is close to the border of the azimuthal instability,
the respective instability development time is large.

IV. VORTEX SOLITONS

In addition to the fundamental solitons considered above,
Eq. �1� also gives rise to vortex solitons, in the form of �
=�S�r�e−i�t+iS�, with integer vorticity S and real function
��r� satisfying the equation �see Eq. �4��

�S� + r−1�S� − S2r−2�S + 2g�r��S
3 + 2��S = 0. �22�

In particular, in the model with the radial 	 function, see Eq.
�8�, the vortex solution can be found in an exact form, see
Eqs. �11� and �12�:

�S�r� = A�IS�
− 2�r�/IS�
− 2�R� , r � R ,

KS�
− 2�r�/KS�
− 2�R� , r � R ,
�

A2 =
1

2

−

�

2
�� IS+1�x� + IS−1�x�

IS�x�

+
KS+1�x� + KS−1�x�

KS�x� ��
x=
−2�R

.

The norm of this solution can also be calculated in an ana-
lytical form.

An example of a vortex soliton, and the dependence ��N�
for these solutions, are displayed in Figs. 8�a� and 8�b�, for
�=0 and S=1. The figures show that a part of the solution
family has dN /d��0, hence it is stable against radial per-
turbations, pursuant to the VK criterion.

Comparing Fig. 8�b� to Fig. 1�b�, one observes that the
norm of the vortices is much larger than the norm of the
fundamental solitons, which suggest that the vortex soliton
may break up into a set of fundamental ones �as said above,
this is a typical outcome of the development of azimuthal
instability of vortex solitons in uniform media �36��. Indeed,
further analysis demonstrates that the vortex solitons with
S=1 are unstable against azimuthal disturbances with m=2
�see Eq. �19��. An example, displayed in Fig. 9 for �=0,
shows that the instability splits the vortex into a set of two
zero-vorticity solitons, each then collapsing intrinsically, as
its norm exceeds the critical value NTownes�5.85. Before the
collapse, the soliton pair rotates in the counterclockwise di-
rection. No example of a stable vortex soliton was found in
the model.

V. CONCLUSION

The purpose of the work was to investigate the two-
dimensional Gross-Pitaevskii equation in which the attrac-

FIG. 6. Snapshots of contour maps of ���x ,y�� for an azimuth-
ally unstable soliton, taken at t=5 �a�, t=100 �b�, and t=122 �c�. In
this case, �=0.55, �=−0.0782, and N=7.055.

FIG. 7. The field amplitude vs time for weakly perturbed soli-
tons with �=0.2 and �a� N=5.702, �=−0.0758, �b� N=5.994, �
=−0.164, and �c� N=6.01, �=−0.169.

FIG. 8. �a� A typical example of profile ��r� for the vortex
soliton with �=0, S=1, and N=23.9, �=−1.33. �b� The ��N� de-
pendence for the vortex-soliton family with �=0 and S=1.

FIG. 9. Instability of vortex solitons is illustrated by a set of
three snapshots of the contour map of ���x ,y�� for a vortex with S
=1, �=0, N=23.9, and �=−1.33, taken at t=50 �a�, 85 �b�, and 90
�c�.
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tive nonlinearity is limited to a finite region in the form of a
circle or annulus, including the case of a narrow ring. In
Bose-Einstein condensates trapped between a pair of blue-
detuned light sheets, this configuration can be implemented
through the Feshbach resonance by means of a properly con-
figured dc magnetic, optical or electric field which controls
the scattering length of collisions between atoms. Using nu-
merical and analytical methods, we have found a stability
region for axisymmetric fundamental �zero vorticity� solitons
in the model, which is impossible in the case of the spatially
uniform nonlinearity. It is noteworthy that the stability bor-
ders of the solitons in the model with the nonlinearity sup-
ported on the circle are completely determined by radial per-
turbations, while in the annular model the upper stability
border is set by azimuthal modulations. The stability is lim-
ited to relatively broad annuli, with the ratio of the inner and
outer radii smaller than a critical value �max/R�0.47 �un-
stable solitons supported by the infinitely narrow ring were
found in an exact form, including such solitons in the two-
component model�. Moreover, the model gives rise to bista-
bility, as the stationary solitons coexist with stable axisym-
metric breathers. The stability region of the breathers
extends, in terms of their norm, to values exceeding the criti-
cal value corresponding to the Townes soliton. The collapse

threshold strongly increases with the radius of the inner hole.
Vortex solitons were constructed too, but they are unstable.
Essentially the same results were obtained also for a model
in which, outside of the circle or annulus, the nonlinearity is
not zero but rather repulsive �that case is not explicitly con-
sidered in the paper, since the configuration with the zero
nonlinearity is the most challenging one, as concerns the
stability of solitons�. The results reported in this work sug-
gest a straightforward possibility to create stable two-
dimensional matter-wave solitons in Bose-Einstein conden-
sates.
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