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The equilibrium states and low-frequency waves in rotating nonuniform self-gravitating fluids are studied.
The effect of a central object is included. Two-dimensional static configurations accounting for self-gravity,
external gravity, and nonuniform rotation are considered for three models connecting the pressure with the
mass density: thermodynamic equilibrium, polytropic pressure, and constant mass density. Explicit analytical
solutions for equilibrium have been found in some cases. The low-frequency waves arising due to the vertical
and horizontal fluid inhomogeneities are considered in the linear and nonlinear regimes. The relationship
between the background pressure and mass density is supposed to be arbitrary in the wave analysis. It is shown
that the waves considered can be unstable in the cases of polytropic pressure and constant mass density. The
additional nonlinear term proportional to the product of the pressure and mass density perturbations, which is
usually omitted, is kept in our nonlinear equations. There have been found conditions for this term to be
important. Stationary nonlinear wave equations having solutions in the form of coherent vortex structures are
obtained in a general form. The importance of involving real static configurations in the consideration of wave
perturbations is emphasized.
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I. INTRODUCTION

An investigation of nonlinear dynamics of rotating geo-
physical and astrophysical fluids has great importance for
understanding the creation of nonlinear structures of various
scale sizes in our environment. Rotating objects are typical
in the Universe: planets and their atmospheres, giant molecu-
lar and interstellar clouds, galaxies and clusters of galaxies
�1–4�. In rotating systems, there may exist various complex
phenomena, such as atmospheric and ocean vortices, eddies,
the Jovian Great Red Spot, and Venusian “hot spots” �5–13�.
Coherent vortices may be formed in rotating self-gravitating
objects with extended mass distribution �14–17�. Laboratory
experiments with a rotating fluid help to better understand
the natural phenomena �18,19�. Enhanced zonal flows in a
rotating fluid have been observed in laboratory experiments
�20–22� and numerical simulations �22,23�. A theoretical
consideration of large scale zonal flow generation by low-
frequency �in comparison with the Coriolis frequency�
propagating wave modes in nonuniform rotating fluids has
been carried out in Refs. �24,25�.

The low-frequency waves and nonlinear wave structures
in nonuniform rotating fluids may depend on the background
gradients of pressure, mass density, Coriolis frequency, and
so on. Therefore, it is important to know the static back-
ground configurations. For nonrotating self-gravitating
charged fluids this problem has been, in particular, consid-
ered in Ref. �26� for the case of Cartesian one-dimensional
symmetry. The equilibrium of rotating self-gravitating fluids
depends also on the rotation frequency and the presence of a
central mass. The study of two- and three-dimensional equi-
libriums and perturbations of such fluids is more adequate to
real situations.

In the present paper we consider static configurations and
low-frequency waves in rotating nonuniform self-gravitating
fluids. The possible existence of a central object is also in-
cluded. We take into account the nonuniformity of the azi-
muthal mass flow. The full system of the equations for a
self-gravitating neutral fluid including the equation for the
pressure is used. Thus, the relationship between the equilib-
rium pressure and mass density is arbitrary in our model.
Two-dimensional static configurations accounting for self-
gravity, external gravity, and nonuniform rotation are consid-
ered for three models connecting the pressure with mass den-
sity: thermodynamic equilibrium, polytropic pressure, and
constant mass density. The low-frequency waves arising due
to the vertical and horizontal fluid inhomogeneity are consid-
ered in the linear and nonlinear regimes. A self-consistent
relationship between the pressure and mass density distur-
bances is used. We keep an additional nonlinear term propor-
tional to the product of pressure and mass density perturba-
tions, which is usually omitted, and show when this term is
important for the evolution of perturbations. The equations
describing the nonlinear steady states are obtained in a gen-
eral form. These equations have solutions in the form of
coherent vortex structures.

Our paper is organized as follows. In Sec. II we introduce
the basic equations and study the various two-dimensional
static configurations of a rotating gravitating fluid �one case
is a three-dimensional one�. The linear and nonlinear stages
for the waves arising due to the vertical �along the rotation
axis� inhomogeneity are considered in Sec. III with neglect
of rotation. In Sec. IV the same procedure is carried out in
the geostrophic approximation for waves arising due to hori-
zontal inhomogeneity. The solutions of the stationary nonlin-
ear equations are briefly discussed in Sec. V. In Sec. VI the
results obtained are summarized.
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II. BASIC EQUATIONS: EQUILIBRIUM
CONFIGURATIONS

We start with the following set of equations in the rotating
reference frame:

�v

�t
+ v · �v = 2v � �0 −

�p

�
− �� − �U + ��0 + ��2v ,

�1�

the momentum equation,

��

�t
+ � · �v = 0, �2�

the continuity equation,

�p

�t
+ v · �p + �p � · v = 0, �3�

the equation for the pressure, and

�2� = 4�G� , �4�

the Poisson equation.
Here v is the fluid velocity, � is the mass density, p is the

pressure, �0=z	0, 	0 is some angular frequency of the dif-
ferential fluid rotation �see below�, the unit vector z is di-
rected along the vertical rotation axis z, � is the self-gravity
potential, U=−GM /R is the gravity potential of the central
object having mass M, R= �r�

2 +z2�1/2, �0= �1/2�	0
2r�

2 is the
potential of the centrifugal force, the index � marks the
direction across the z axis, r� is the distance from the rota-
tion axis, z is the coordinate from the symmetry horizontal
plane, � is the kinematic viscosity, � is the adiabatic con-
stant, and G is the gravitational constant. We use the cylin-
drical coordinate system.

Let us first consider the background stationary states.
Suppose that the stationary fluid velocity v0 �the index 0 here
and below denotes the equilibrium value� is directed along
the azimuthal direction and depends on the radial coordinate
�the differential rotation�: v0= i
v0
�r� �the index � on r�

here and below is omitted�, where i
 is the unit vector along
the azimuthal direction �
 is the azimuthal angle�. Let v0
�r0�
be zero. Then 	0r0=V0�r0�, where V0�r� is the fluid velocity
in the rest reference frame. Taking into account the shear
velocity v0 and neglecting the small viscosity effect on the
background state, we obtain the stationary momentum equa-
tion �1� in the form

�p0

�0
= − ��0 − �U + 	2�r�r , �5�

where 	�r�=	0+v0
�r� /r=V0�r� /r. Let us apply the opera-
tor �· to Eq. �5� and use Eq. �4� for the equilibrium values.
The result is

� ·
�p0

�0
= − � j

2 − �2U + � · 	2�r�r , �6�

where � j = �4�G�0�1/2 is the Jeans frequency �27�. For con-
venience we have retained the second term on the right-hand
side of Eq. �6�, which is equal to zero for R�0. We have one

equation �6� and two variables p0 and �0. Therefore, it is
necessary to set some additional equations of state. Below
we consider three cases.

A. Thermodynamic equilibrium

Suppose that the temperature T0 along the system is con-
stant. Then we obtain from Eq. �6� �or from Eqs. �4� and �5��
the following equation in dimensionless form:

��2�0 = − exp��0 + 
� . �7�

Here �0=−�0 /cs0
2 =ln��0 /�00�−
, 
=cs0

−2W, W=−U
+�dr 	2�r�r, r=rDr�, rD=cs0 /� j0, cs0= �p0 /�0�1/2 is the
sound velocity, � j0= �4�G�00�1/2, and �00 is a constant.
Equation �7� at 
=0 coincides with the corresponding equa-
tion in Ref. �26� in the limit B0=0 �B0 is the magnetic field�.

The right-hand side of Eq. �7� is different from zero, if
� j�0. Thus, the dependence of the value �0 on coordinates
arises due to the self-gravity. When � j =0 the solution for �0
is �0=0, i.e., �0=�00e


.
We derive now the two-dimensional axisymmetric solu-

tion of Eq. �7� in the particular case when �2�0 /�z�2

����
2�0. We neglect here the dependence of 
 �or U� on the

coordinate z, considering the region r2�z2 and supposing
that � j0

2 �	k
2 or 3� �Rc /r�3��c /�00�, where 	k= �GM /r3�1/2

is the Kepler frequency, and Rc and �c are the radius and the
mass density of the central object, respectively. The last two
inequalities are obtained from Eq. �5�, and denote that the
vertical stratification is determined by self-gravity. These in-
equalities are �not� needed, if the central object is �not�
present. Then, the radial inhomogeneity enters into Eq. �7�
parametrically. We find the solution of Eq. �7� as

�0 = − 2 ln cosh � ,

where �=��z ,r�= �z /�2rD�e
/2. The solution for the fluid
mass density has the form

�0�z,r� = �00
e


cosh2 �
. �8�

The solution �8� may be applied in the limit � j→0 ��→0�
�see above�. In the case 
=0 this solution coincides with the
one-dimensional solution for �0 obtained in Ref. �26�. For
finite � j we can estimate from �8� the thickness of the layer
�z from the condition 
−2���z�=−1. Thus, �z=2−1/2rD�1
+
�e−
/2. We see that for 
�1 the thickness is �z�rD, and
the fluid layer becomes flat along the z axis for 
�1 �we
assume 
�0�. The condition justifying the neglect of the
transverse operator in Eq. �7� for axisymmetric solutions and
finite � j has for the whole object �z��z� the following
form: 3rD

−2� �1+
���
 /r�r+�2
 /�r2+ �1/2���
 /�r�2�= �1
+
�� �the bars �¯� here and below denote the absolute
value�.

If the condition ��0 /�r��W /�r is satisfied �see Eq. �5��,
we can find the axisymmetric solution of Eq. �7�, which is a
periodic one in the radial direction. In the region where one
may ignore the curvature effect, we obtain an equation which
has the form of one of the equations for coherent vortex
structures �28�. In this case the solution of Eq. �7� for �0 has
the form
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�0�z,r� = �00	cosh
kz

�2rD

+�1 −
1

k2 cos
kr

�2rD

−2

,

�9a�

where k�1 is an arbitrary constant. Such a solution can take
place, in general, if a central mass is absent, or in regions
where a fluid moves almost exactly with the Keplerian ve-
locity.

Equation �7� allows also a three-dimensional nonaxisym-
metric solution, which is elongated in the radial direction and
periodic in the azimuthal direction �so-called spokes�. Ne-
glecting the radial part of the operator ��2 in Eq. �7�, we find

�0�z,y,r� = �00e

	cosh k� +�1 −

1

k2 cos k�
−2

, �9b�

where �=��y ,r�= �y /�2rD�e
/2 �y=r�
−
0�, where 
0 is
some azimuthal angle�. The conditions for neglecting the ra-
dial part in the operator ��2 in addition to that given above
can be written in the form 2� ��1/2��1+
���
 /�r�2−��kyrD

and 5�e
/2��
 /�r�2k2y2. To obtain these inequalities we
have used �as above� the equality 2k���z�=1+
. These con-
ditions can be satisfied for a narrow band in the azimuthal
direction at �
 /�r�0. Note that the density wave structures
described by the formulas �9a� and �9b� seem to be similar to
the standing density waves seen by Cassini in Saturn’s rings
�29�.

B. Polytropic pressure

Now we take the relationship between the pressure and
mass density in the form p0=C�0

�0, where �0�1 is the adia-
batic constant for the static state and C is a constant. Then
Eq. �6� may be written as

��2�0
�0−1 = − �0 + ��2
�0

, �10�

where �0=�0 /�00, r=rD�0
r�, rD�0

=cs�0
/� j0, cs�0

= ��0 / ��0

−1��1/2cs0, cs0= �p00/�00�1/2, and p00=C�00
�0. Here the value


�0
is 
�0

=cs�0

−2 W.
Equation �10� in the one-dimensional case �in the z direc-

tion� and with W=0 has been investigated numerically in
Ref. �26�. It was obtained that for �0�1 a self-gravitating
fluid has the finite extent zmax. However, if �0=2, i.e., T0
��0, and ��0��W when the self-gravity dominates �in this
case the last term on the right-hand side of Eq. �10� can be
neglected �see Eq. �5���, we can find the exact two-
dimensional axisymmetric analytical solutions of Eq. �10�
for finite extent in the z direction:

�0�z,r� = �00J0	�1 − k2 r

rD�0


cos
kz

rD�0

�11�

for k�1, and

�0�z,r� = �00K0	�k2 − 1
r

rD�0


cos
kz

rD�0

�12�

for k�1. Here J0 and K0 are the zero-order Bessel functions
of the first and second kind, respectively. We see from Eqs.

�11� and �12� that when k�1 we obtain a cylindrical object,
for k→1 we have a disk, and for k�1 or �1 the form of the
fluid object is close to a ball. Under the conditions mentioned
above, Eq. �10� has also a solution decreasing exponentially
along the z axis,

�0�z,r� = �00J0	�1 + k2 r

rD�0


exp	−
k�z�
rD�0


 ,

where k�0.
In the opposite case ��0��W, when the effect of the

central object and the rotation play the main role, the solu-
tion of Eq. �10� has the approximate form

�0�z,r� � �00�1 + 
�0
− cs�0

−2 �0�1/��0−1�,

where the potential �0�cs�0

2 �1+
�0
� and is determined by

the equation �2�0=� j0
2 �1+
�0

�1/��0−1�.

C. Constant mass density

Here we suppose that the mass density of the object is
constant: �0=�00. This model may be appropriate for a dense
fluid with a sufficiently large temperature inhomogeneity. In
this case the exact solution of Eq. �5� for the pressure �tem-
perature� accounting for Eq. �4� is

p0�z,r� = p00�1 − k
z2

rD
2 +

1

2
	k −

1

2

 r2

rD
2 + 

 , �13�

where k�0 is an arbitrary constant. The object may have
finite sizes �and, in particular, a disk form�. In this case the
boundary of the object is found from the equation
p0�z ,r ,k�=0. Note that temperature stratification analogous
to the solution �13� at � j0=U=0 and 	=const was used in
Ref. �12� for the Venusian atmosphere.

III. NONLINEAR WAVES DUE TO VERTICAL
INHOMOGENEITY

A. General equations and conditions of consideration

A thin �in the vertical z direction� extended layer �disk�
has typical inhomogeneity length along the z axis, Lz
= �� ln �0 /�z�−1, much smaller than that in the horizontal di-
rection, L�= �� ln �0 /�r�: Lz�L�. In Sec. II we have found
some possible static configurations, which can have the disk
form �see expressions �8� and �11�–�13� in the corresponding
limits�. If the vertical scale size of the object is determined
by the self-gravity, and the central object �if it is present�
does not play a role �recall that the corresponding condition
is � j0

2 �−U /r2 �r2�z2��, the value Lz for the isothermal
model is Lz= �rD /�2�e−
/2 coth �. If ��1 and 
�1 we have
Lz�rD. In the case of the disk configuration �11� or �12�
�k→1� Lz=rD�cot�z /rD��. If z /rD�1 we obtain Lz�rD. And
for the disk solution �13� �k→1/2, 
�1� it is Lz�rD for the
coordinate z�rD. The transverse inhomogeneity length L�

depends also on the model used. For thermal equilibrium we
have L�= ��1−� tanh ���
 /�r�−1. In the case �0=2 �the solu-
tions �11� and �12�� it is L��rD�1−k2�−1/2� ��
 /�r�−1 �as
long as ��0 /�r��W /�r�. Here we adopt, for estimation,
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J0,1�K0,1�1. When the mass density is constant we obtain
for the case k=1/2 that L����
 /�r�−1 �z�rD, 
�1�. In
rough form the condition Lz�L� for the cases given above
may be written as rD��
 /�r��1. Note that the atmospheres
of planets, as well as rotating disks in polar regions �12�,
may be considered as thin layers.

In this section we consider disturbances with the fre-
quency proportional to the vertical fluid inhomogeneity. As
long as the latter is sufficiently large for thin layers �disks�,
we adopt here the perturbation frequency � to be larger
than the rotation frequency 	�r� �more exactly, �2

� �1/r3���r2	�2 /�r�. Thus, these waves are internal �acous-
tic� gravity waves involving the self-gravity. Note that the
Earth’s rotation for acoustic gravity waves in the atmosphere
has been taken into account in Ref. �30�. In the following,
the relationship between the background pressure and mass
density is arbitrary. The perturbations are supposed to have a
small but finite amplitude: p�� ,��= p0��0 ,�0�+�p��� ,���,
where the values with the index � are the perturbations, and
p0��0 ,�0���p��� ,���. Fluid motion in the waves under
consideration is almost incompressible, i.e., � ·�v�0, where
�v is the velocity perturbation �� ·�v is small, but finite�.
Therefore, we may neglect in Eqs. �2� and �3� the nonlineari-
ties proportional to � ·�v and keep only the convective non-
linearities. In other words, the condition �v ·�����p�
�����p�� ·�v is supposed to be satisfied. As an example,
we consider two-dimensional perturbations in the vertical
and radial directions elongated upon the azimuth. We neglect
the influence of the curvature effect on perturbations, consid-
ering the regions that are further from the rotation axis than
the radial wavelength of perturbations. Due to the weak com-
pressibility we may introduce the stream function �: �vx
��� /�z and �vz�−�� /�x �for convenience we have substi-
tuted r by x�. Then, Eqs. �2� and �3� for �� and �p take the
form

���

�t
+ ��0,�� + �0 � · �v + ���,�� = 0, �14�

��p

�t
+ �p0,�� + �p0 � · �v + ��p,�� = 0. �15�

Here the curly brackets denote

�a,b� =
�a

�x

�b

�z
−

�a

�z

�b

�x
.

From the momentum equation �1� we can obtain the equa-
tion for the vorticity �2�. Differentiating the x component of
Eq. �1� over z, the z component over x, subtracting the ob-
tained equations one from the other, and using the stream
function � and the condition �0���, we find

	 �

�t
− ��2
�2� = � 1

�0
,�p� + �p0,

��

�0
2� + ��,�2��

+ ��p,
��

�0
2� , �16�

where �2=�2 /�x2+�2 /�z2. We keep the nonlinear term pro-

portional to ��p ,���. Below we show that in a self-
gravitating fluid this term for the waves under consideration
can have the same order of magnitude as the ordinary term
�� ,�2��. Differentiating further the x component of Eq. �1�
over x, the z component over z, and summing up the obtained
equations, we derive the last desirable equation

	 �

�t
− ��2
 � · �v + 2	 �2�

�x�z

2

− 2
�2�

�x2

�2�

�z2

= − � ·
1

�0
� �p + � ·

��

�0
2 � p0 − � j

2��

�0
, �17�

where � j = �4�G�0�1/2.
The system of Eqs. �14�–�17� is a closed system of non-

linear equations describing the internal gravity waves in a
self-gravitating fluid with an arbitrary relationship between
the background pressure and mass density. Below we con-
sider the linear and nonlinear stages of these waves.

B. Linear stage

We can find from Eqs. �14�–�17� in the linear approxima-
tion the frequency of oscillations �. We consider the short
wavelength perturbations, for which the conditions k�L�

�kzLz�1 are satisfied, where k= �k� ,kz� is the wave vector
of oscillations. Accomplishing the Fourier transformation,
we obtain ���+ i�k2�=�b

2k�
2 /k2, where k2=k�

2 +kz
2 and

�b
2 =

�cs
2��0/�z − �p0/�z��k2�p0/�z − � j

2��0/�z�
�0

2�k2cs
2 − � j

2�
. �18�

Here cs= ��p0 /�0�1/2 is the sound speed. The frequency �b is
the generalization of the Brunt-Väisälä frequency for a self-
gravitating fluid. The background gradients of the pressure
and mass density can be found from the solutions obtained in
Sec. II. If we put � j =0, �p0 /�z=−g�0, and T0=const, where
g is the gravitational acceleration in the external field, we
obtain for �b the well-known expression �b= ��−1�1/2g /cs.
According to the condition kz�1/Lz the sound frequency kcs
is larger than the Jeans frequency � j for Lz�rD. Therefore,
the formula �18� describes qualitatively the influence of self-
gravity on the frequency of perturbations for wave numbers
kz ��k�� up to kz min�� j /cs. We see from Eq. �18� that the
waves can be unstable, if �p0 /�z�cs

2��0 /�z. This inequality
is satisfied, for example, for the polytropic pressure, if �0
��, and for the case ��0 /�z=0 �see also Refs. �30,31�,
where the same waves are considered in the Earth’s atmo-
sphere�. Note that the real frequency �b is approximately
equal, �b�cs /Lz�� j, for self-gravitating objects in the z
direction.

Let us compare the nonlinear terms in Eq. �16�. In the
local approximation �kzLz�1� and for k2cs

2�� j
2 we have

from Eqs. �14� and �17� that �p�cs
2�� �the inelastic regime�.

In this case the first nonlinear term on the right-hand side of
Eq. �16� is larger than the second one. But when kcs→� j we
have �p�cs

2��, and both nonlinear terms have the same or-
der of magnitude. Thus, in the last case the additional non-
linear term influences the evolution of perturbations. Note,
however, that the global perturbations with k�Lz

−1 require
special consideration.
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C. Stationary nonlinear stage

Let us consider Eqs. �14�–�17� �under the same conditions
as those in Sec. III B� for stationary nonlinear waves travel-
ing with the velocity u along the x axis. All perturbations
depend on variables x−ut and z. Thus, � /�t=−u� /�x. In the
limiting case k2cs

2�� j
2 we may put �p�0. Then, neglecting

the viscous effect, we obtain from Eqs. �14�–�16�

��� − d0�z�,� − uz� = 0, �19�

�� − uz,�2�� + �p0,
��

�0
2� = 0, �20�

where d0�z�=�dz �0� ln p0
1/� /�z−�0. From Eq. �19� we have

��=d0�z�+ f��−uz�, where f��� is an arbitrary function.
Substituting the last equality in Eq. �20�, we find the solution
for the vorticity �2�

�2� = g0�z�
df�� − uz�
d�� − uz�

+ F�� − uz� , �21�

where g0�z�=�dz �0
−2�p0 /�z, and F��� is an arbitrary func-

tion. Below we discuss briefly some possible solutions of Eq.
�21�.

IV. NONLINEAR WAVES DUE TO HORIZONTAL
INHOMOGENEITY

A. General equations and conditions of consideration

In the previous section perturbed fluid motion was con-
sidered in the vertical plane. Here we suppose that the per-
turbed velocity is mainly in the horizontal plane. We study
low-frequency perturbations having frequency proportional
to the horizontal inhomogeneity of fluid. We assume the
wave frequency to be smaller than the typical rotation fre-
quency. Thus, we consider here the geostrophic approxima-
tion. As above, fluid motion is weakly compressible for low-
frequency perturbations. For the transverse velocity we may
introduce the stream function �: �vx��� /�y, �vy �−�� /�x,
where x �y� is the radial �azimuthal� coordinate �the curva-
ture effect for perturbations is neglected�. However, we take
also into account the vertical motion. It will be seen below
that the perturbations under consideration are flutelike ones
along the z axis. In the momentum equation �1� for the per-
turbed velocity �v the presence of the background shear ve-
locity v0
�r� produces some terms due to the Reynolds stress
term v ·�v. These terms may be combined with the Coriolis
term �v��0. As a result, we may substitute 	0 by 	�r� for
the radial projection of Eq. �1�, and by �1/2r���r2	� /�r for
the azimuthal projection. Let it be �vz /�v��Lz /L�. Under
this condition we may only take into account the horizontal
derivatives for �0 and p0 in Eqs. �2� and �3�. Keeping in these
equations only convective nonlinearities and supposing that
�v� ·����vz� /�z, we obtain for the evolution of �� and �p
Eqs. �14� and �15�, where z must be substituted by y in the
Poisson brackets, and � /�t by � /�t�=� /�t+v0
� /�y.

The equation for the vorticity ��
2 �, derived from Eq. �1�

in the same way as Eq. �16�, has the form

	 �

�t�
− ��2
��

2 � = 2�	,�� + 2	�� · �v + � 1

�0
,�p�

+ �p0,
��

�0
2� + ��,��

2 �� + ��p,
��

�0
2� .

�22�

For simplicity, the rotation frequency in Eq. �22� is taken the
same for the x and y components of Eq. �1� and equal to
	�r�. The equation for the vertical velocity �vz is

	 �

�t�
− ��2
�vz = −

��p

�0�z
−

���

�z
+ ��,�vz� . �23�

In this equation we do not take into account the vertical
inhomogeneity of the medium. It is possible for a cylindrical
geometry or for disks in the equatorial region �the condition
kzLz�p�cs

2�� is also sufficient�.
The last equation closing the system is found in the same

manner as in Eq. �17�. In the geostrophic approximation,
when the Coriolis force is larger than the inertial and viscous
forces, we have

2�� · 	��� = − �� ·
1

�0
���p − ��

2 �� . �24�

For these perturbations ���p� ���p0 /�0���.
The system of Eqs. �14�, �15�, and �22�–�24� together with

Eq. �4� represents a closed system for waves arising due to
the horizontal inhomogeneity and the rotation of the object,
and having a finite z dependence. The linear and stationary
nonlinear stages are considered below.

B. Linear stage

In the local approximation k��p0��0� / p0��0��r the lin-
earized system of equations under consideration results in
the following dispersion relation:

�� + i�k�
2 +

4	2��

k�
2 cs

2 − � j
2 −

4	2

�� + i�k�
2

kz
2

k�
2

= 2c + 2	
a + b

k�
2 cs

2 − � j
2 −

ab

���k�
2 cs

2 − � j
2�

. �25�

Here ��=�−kyv0
, a=kyax−kxay, b=kybx−kxby, k�
2 c

=ky�	 /�x−kx�	 /�y, where �0a=cs
2���0−��p0, �0b

=−��p0+ �� j
2 /k�

2 ����0. In Eq. �25� the condition 4	2

���2 is taken into account. We see from Eq. �25� that for
kz�0 the contribution of the vertical movement to the dis-
persion relation can be significant. It follows from Eqs. �23�
and �24� that �vz /�v��2	kz /�k� �here and below we omit
the prime�. The contribution of the vertical velocity to the
convective nonlinearities may be neglected, if k�

2

� �2	 /��kz
2. Thus, the perturbations under consideration

have short wavelengths in the horizontal direction �k�
2 �kz

2�
as long as kz�0 for finite objects. Having in mind that for
self-gravitating disks kz min�Lz

−1�rD
−1, we obtain k�

2 cs
2�� j

2.
Note that the solutions of Eq. �25� ��c, a+b describe
waves of the Rossby type �5�.
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Equation �25� at kz=0 and a=0 has been obtained in Ref.
�25�. In this case Eq. �25� is of the first order over �. How-
ever, in the general case a�0, so this equation has two
branches of oscillations �for kz

2� ��2 /4	2�k�
2 or �=0�.

Omitting the terms proportional to kz, �, and supposing that
k�

2 cs
2�4	2, we find the solution arising due to the last term

on the right-hand side of Eq. �25�: �2=−ab /k�
2 cs

2. This solu-
tion is unstable, if ��p0�cs

2���0. In order of magnitude
����cs /L�. Thus, this solution is analogous to that consid-
ered in Sec. III. The obtained solution satisfies the assump-
tions given above accounting for the finite kz. However, the
ordinary solutions connected with the first and second terms
on the right-hand side of Eq. �25� do not satisfy the condition
for neglecting the term proportional to kz for disk configura-
tions.

In Ref. �25� the relationship between �p and �� has been
used in the form �p�cs

2��. However, such a connection is
only satisfied in particular cases. It follows from the corre-
sponding linear equations that

�p � cs
2��

2	� − a� j
2/k�

2 cs
2

2	� − a

�in Ref. �25� a=0�. Using the solutions for � from Eq. �25�
�kz=�=c=0�, we find this relation in the whole spectrum
over k� �for � j �	 we consider k�cs�� j�. In the case � j
�	 we have �p�cs

2�� for k�cs�� j and �p�cs
2�� for

k�cs�� j. If � j �	, then �p�cs
2�� for k�cs�	 and �p

�cs
2�� for k�cs�	. We can also compare two nonlinear

terms on the right-hand side of Eq. �22�, using the linear
connections �p and �� with �. In the case � j �	 we find
that �� ,��

2 ��� �����p ,����0
−2 for k�cs� ���� j, and when

� j �	 we obtain �� ,��
2 ��� �� , � ���p ,����0

−2 for k�cs

� �� , � �� j
2 /	 and k�cs� �� , � �	.

C. Stationary nonlinear stage

Suppose that all background parameters depend on the
coordinate x only. As above, we consider here stationary
nonlinear waves traveling along the y direction with velocity
u. The vertical velocity and viscosity are not taken into ac-
count. In the case k�

2 cs
2�� j

2 we find from Eqs. �14�, �15�,
�22�, and �24� that

��� − h0�x�,� + ux� = 0, �26�

�� + ux,��
2 � − 2	 + q0�x�� + �p0 − 2	�0�,

��

�0
2� = 0,

�27�

where the function h0�x� is determined by the equation

dh0

dx
= �0

d

dx
ln�p0

1/�/�0� + 2	�0cs
−2u ,

and the function q0�x� is equal to q0�x�=�dx�2	 /�0�
��dh0 /dx�. From Eq. �26� we have ��=h0�x�+ f��+ux�,
where f��� is an arbitrary function. Substituting �� into Eq.
�27�, we obtain the following equation for the stream func-
tion:

��
2 � = 2	�x� + s0�x� + w0�x�

df�� + ux�
d�� + ux�

+ F�� + ux� ,

�28�

where F��� is an arbitrary function. The functions s0�x� and
w0�x� are determined by the equations

ds0

dx
= −

4	

�0
2

d�0

dx
h0,

dw0

dx
=

1

�0
2

dp0

dx
+

2	u

�0
.

Note that the last nonlinear term in Eq. �22� must be taken
into account �see the second curly brackets in Eq. �27��. The
opposite case k�

2 cs
2�� j

2 we do not consider because k��kz
or k�cs�� j here.

V. SOLUTIONS OF EQS. (21) and (28)

Equations �21� and �28� have a general form. Choosing
the concrete functions f and F, one can obtain solutions in
the form of various vortices: dipoles, tripoles, vortex chains.
These solutions are well-known in the literature �see, for
example, Refs. �32,33��, and, therefore, we do not discuss
them here. The choice of the arbitrary functions imposes
rigid restrictions on the background state �32�. As a rule, the
vortex chains are considered to be transverse to the back-
ground gradients. However, the vortex chains are also pos-
sible along the inhomogeneity. Such an example has been
investigated numerically in Ref. �34�.

VI. DISCUSSION AND CONCLUSION

In the present paper we have considered the equilibrium
and perturbed states of a rotating nonuniform self-gravitating
fluid. A central object has also been included. Two-
dimensional static configurations have been studied in cases
of thermodynamic equilibrium, polytropic pressure, and con-
stant mass density. Configurations have been found in the
form of a disk, cylinder, ball, radial wave structure, and azi-
muthal spokes �three-dimensional case� depending on the pa-
rameters of the system.

The disk and ball configurations are typical in the Uni-
verse: protoplanetary disks, galaxies, stars, and so on. The
solutions for equilibrium obtained in the present paper can be
relevant, for example, for protoplanetary disks, some types
of spiral galaxies, and ball star clusters. If a central mass is
present, the solution �8� is not appropriate in the regions of
the inner and outer radial boundaries of the disk, where the
conditions of applicability can be violated. Equation �5� is
solved, usually, by using the self-consistent field iterative
method �see, for example, Ref. �35��. We believe that ana-
lytical solutions describing some limited cases are of interest
and importance. Note also that the thin structures described
by the solutions �9a� and �9b� seem to be similar to the stand-
ing density waves seen by Cassini in Saturn’s rings �29�.

Linear and stationary nonlinear stages of the waves with
frequencies proportional to vertical �neglecting the rotation
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frequency� and horizontal �in the geostrophic approximation�
inhomogeneities have been studied. Both these waves can be
unstable in the cases of polytropic pressure and constant
mass density. We have taken into account the additional non-
linear term ��p ,���, which is usually neglected. By using the
linear connections between �p and ��, the spectral ranges
over k where this term is important have been found.

The stationary nonlinear equations describing the horizon-
tal and vertical tubes have been obtained here in a general
form. These equations have vortexlike solutions under a con-
crete choice of the arbitrary functions. The additional non-
linear term must be taken into account for the considered
stationary nonlinear waves in the geostrophic approximation.
Our stationary equations �21� and �28� are similar to those
known in the literature �e.g., Refs. �32–34��. Such equations
describe vortices observed in experiments. Some experimen-
tal evidence for fluids and plasmas can be found, for ex-

ample, in Refs. �36,37�. At the present time vortices have
been investigated numerically in stratified protoplanetary
disks �38�.

The results obtained in the present paper relate to real
situations existing in experiments and the environment. For
example, in the framework of Eq. �25� the well-known wave
solutions connected with the first and second terms on the
right-hand side of this equation do not satisfy the condition
for neglecting the contribution of the vertical movement �the
term proportional to kz� for disk configurations. Thus, taking
into account the real background states is of great importance
in the analysis of perturbations.

ACKNOWLEDGMENT

I thank Professor J. Vranješ for useful discussions.

�1� H. Scheffler and H. Elsässer, Physics of the Galaxy and the
Interstellar Medium �Springer-Verlag, Berlin, 1982�.

�2� J. Pedlosky, Geophysical Fluid Dynamics �Springer, New
York, 1987�.

�3� L. Spitzer, Physical Processes in the Interstellar Medium
�Wiley, New York, 1998�.

�4� V. Krishan, Astrophysical Plasmas and Fluids �Kluwer Aca-
demic, Dordrecht, 1999�.

�5� C. G. Rossby, Q. J. R. Meteorol. Soc. 66, 68 �1940�.
�6� A. Hasegawa, Adv. Phys. 1, 234 �1985�.
�7� V. Petviashvili and O. Pokhotelov, Solitary Waves in Plasmas

and in the Atmosphere �Gordon and Breach, Philadelphia,
1992�.

�8� R. D. Pingree and B. Le Cann, J. Geophys. Res. 97, 14353
�1992�.

�9� D. H. Fairfield et al., J. Geophys. Res. 103, 103 �1998�.
�10� P. S. Markus, T. Kundu, and C. Lee, Phys. Plasmas 7, 1630

�2000�.
�11� W. Munk, L. Armi, K. Fisher, and F. Zachariasen, Proc. R.

Soc. London, Ser. A 456, 1217 �2000�.
�12� V. P. Goncharov, V. M. Gryanik, and V. I. Pavlov, Phys. Rev. E

66, 066304 �2002�.
�13� J. Vranješ and S. Poedts, Phys. Rev. Lett. 89, 131102 �2002�.
�14� D. Jovanovič and J. Vranješ, Phys. Scr. 42, 463 �1990�.
�15� V. V. Dolotin and A. M. Fridman, Zh. Eksp. Teor. Fiz. 99, 3

�1991� �Sov. Phys. JETP 72, 1 �1991��.
�16� P. K. Shukla and L. Stenflo, Astron. Astrophys. 300, 933

�1995�.
�17� J. Vranješ, Astron. Astrophys. 351, 1190 �1999�.
�18� G. J. F. van Heijst and R. C. Kloosterziel, Nature �London�

338, 569 �1989�.

�19� E. N. Snezhkin and M. V. Nezlin, Rossby Vortices, Spiral
Structures, Solitons: Astrophysics and Plasma Physics in Shal-
low Water Experiments �Springer-Verlag, Berlin, 1994�.

�20� A. C. de Verdiere, J. Fluid Mech. 94, 39 �1979�.
�21� A. D. McEwan, R. O. R. Y. Thompson, and R. A. Plumb, J.

Fluid Mech. 99, 655 �1980�.
�22� J. Aubert, S. Jung, and H. L. Swinney, Geophys. Res. Lett. 29,

1876 �2002�.
�23� T. Soomere, Phys. Rev. Lett. 75, 2440 �1995�.
�24� P. K. Shukla and L. Stenflo, Phys. Lett. A 307, 154 �2003�.
�25� P. K. Shukla and L. Stenflo, Phys. Lett. A 308, 280 �2003�.
�26� F. Verheest and V. M. Čadež, Phys. Rev. E 66, 056404 �2002�.
�27� J. H. Jeans, Astronomy and Cosmology �Cambridge University

Press, Cambridge, U.K., 1929�.
�28� J. T. Stuart, J. Fluid Mech. 29, 417 �1967�.
�29� http://antwrp.gsfc.nasa.gov/apod/ap040705.html
�30� L. Stenflo, Phys. Scr. 43, 599 �1991�.
�31� L. Stenflo, Phys. Fluids 30, 3297 �1987�.
�32� D. Jovanovič, L. Stenflo, and P. K. Shukla, Nonlinear Pro-

cesses Geophys. 9, 333 �2002�.
�33� J. Vranješ, M. Y. Tanaka, M. Kono, and S. Poedts, Phys. Rev.

E 67, 026410 �2003�.
�34� A. K. Nekrasov and S. L. Shalimov, Cosmic Res. 40, 517

�2002�.
�35� S. Fromang, S. A. Balbus, C. Terquem, and J.-P. De Villiers,

Astrophys. J. 616, 364 �2004�.
�36� Z. Kizner and R. Khvoles, Phys. Rev. E 70, 016307 �2004�.
�37� A. Okamoto et al., IEEE Trans. Plasma Sci. 33, 452 �2005�.
�38� J. A. Barranco and P. S. Marcus, Astrophys. J. 623, 1157

�2005�.

STATIC CONFIGURATIONS AND NONLINEAR WAVES¼ PHYSICAL REVIEW E 73, 026310 �2006�

026310-7


