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We study a stiff quasiperiodic orbit of the electromagnetic two-body problem of Dirac’s electrodynamics of
point charges. The delay equations of motion are expanded about circular orbits to obtain the variational
equations up to nonlinear terms. The three-frequency orbit involves two harmonic modes of the variational
dynamics with a period of the order of the time for light to travel the interparticle distance. In the atomic
magnitude, these harmonic modes have a frequency that is fast compared with the circular rotation. The
quasiperiodic orbit has three frequencies: the frequency of circular rotation �slow� and the two fast frequencies
of two mutually orthogonal harmonic modes. Poynting’s theorem gives a mechanism for a beat of the mutually
orthogonal fast modes to cancel the radiation of the unperturbed circular motion by interference. The nonra-
diation condition for this destructive interference is that the two fast frequencies beat at the circular frequency.
The resonant orbits have magnitudes in qualitative and quantitative agreement with quantum electrodynamics
�QED�, as follows: �i� the orbital angular momenta are integer multiples of Planck’s constant to a good
approximation, �ii� the orbital frequencies agree with a corresponding emission line of QED within a few
percent on average, �iii� the orbital frequencies are given by a difference of two linear eigenvalues, viz., the
frequencies of the mutually orthogonal fast modes, and �iv� the angular momentum of gyration of the varia-
tional motion about a resonant circular orbit is of the order of Planck’s constant.
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I. INTRODUCTION

We study a stiff quasicircular orbit of the electromagnetic
two-body problem of Dirac’s electrodynamics with retarded-
only fields �1�, a dynamics with implicitly defined delay. The
motivation is to understand this complex dynamics described
by the delay equations for particle separations in the atomic
magnitude �2�. We give an economical method to derive the
variational equations of dynamics about circular orbits up to
nonlinear terms. The particular harmonic solutions of the
variational dynamics, with a period of the order of the time
for light to travel the interparticle distance, are henceforth
called the ping-pong �PP� modes. For atomic orbits, the fre-
quency of the PP modes turns out to be much faster than the
orbital frequency. These modes introduce a fast �stiff� time
scale in the dynamics and are physically important for the
particles to have the option to avoid radiating energy away.
The PP modes for vibration along the orbital plane turn out
to have almost the same frequency of PP modes for vibra-
tions normal to the orbital plane, a remarkable quasidegen-
eracy that naturally produces beats with a frequency of the
order of the orbital frequency. The quasiperiodic orbits of
hydrogen have three frequencies: the slow frequency of the
circular orbit plus the two fast frequencies corresponding to a
planar PP mode and a perpendicular PP mode, as illustrated
in Fig. 1. This special combination appears in a mechanism
suggested by Poynting’s theorem to cancel the radiation of
the slow circular motion by interference with a beat oscilla-
tion of the two mutually orthogonal PP modes. We investi-
gate the conditions for the nonlinear variational equations to

accept such fast gyrating solutions about the circular orbit—
i.e., the PP oscillations. After the fast dynamics is estab-
lished, Poynting’s theorem gives a necessary resonance con-
dition to avoid radiative losses; viz., the two mutually
orthogonal PP modes must beat at the orbital frequency. This
resonance condition turns out to be satisfied precisely in the
atomic magnitude. The fast gyration defines an angular mo-
mentum vector of the order of the orbital angular momentum
of the unperturbed circular orbit. We stress that the point
charges are not spinning about themselves, but rather gyrat-
ing about a guiding center that is moving along a slow cir-
cular orbit, as illustrated in Fig. 1. The stiff three-frequency
orbits share several magnitudes with those of the hydrogen
atom of quantum electrodynamics �QED� �3�, with reason-
able precision and qualitative detail. The circular frequency
of a resonant orbit agrees with the corresponding line of
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FIG. 1. Guiding-center circular orbit �dark lines� and particle
trajectories gyrating about the guiding center �grey lines� for a
three-frequency orbit near resonance. Illustrated is also the beat of
the electron’s gyration radius at about the orbital frequency. Draw-
ing not to scale; the beat of the protonic gyration radius is not
illustrated. Arbitrary units.

PHYSICAL REVIEW E 73, 026221 �2006�

1539-3755/2006/73�2�/026221�17�/$23.00 ©2006 The American Physical Society026221-1

http://dx.doi.org/10.1103/PhysRevE.73.026221


QED within a few percent average deviation. There is also a
large body of qualitative agreement with QED: �i� the reso-
nant orbits have orbital angular momenta that are approxi-
mate integer multiples of a basic angular momentum �this
basic angular momentum agrees well with Planck’s con-
stant�, �ii� the angular momentum of gyration of the varia-
tional motion about the circular orbit is of the order of
Planck’s constant �this angular momentum of gyration is a
vector that rotates at the orbital frequency�, and �iii� the emit-
ted frequency is given by a difference of two linear
eigenvalues—i.e., the frequencies of the PP modes—
analogously to the Rydberg-Ritz principle of QED.

The equations of motion of Dirac’s electrodynamics of
point charges �1� are briefly discussed in Appendix A. After
Dirac’s 1938 work �1�, an early study of Eliezer �4–7� re-
vealed the surprising result that an electron moving in an
attractive Coulomb field can never fall into the center of
force by radiating energy �henceforth called Eliezer’s theo-
rem�. It was subsequently found that only scattering states
are possible in any tridimensional motion with self-
interaction in a Coulomb field �6,7�. Eliezer’s theorem
strongly suggests that a finite mass for the proton is essential
for a physically meaningful dynamics in the electromagnetic
two-body problem. When the proton has an infinite mass,
there is an inertial frame where it rests at all times, and in
this frame the protonic field on the electron is simply a Cou-
lomb field—i.e., the dynamics of Eliezer’s theorem. On the
other hand, if the proton has a finite mass, such inertial frame
does not exist and the equations of motion involve delay,
because of the finite speed of light. A finite mass for the
proton is what brings delay into the electromagnetic two-
body dynamics, with its associated ping-pong phenomenon.
The infinite-mass limit is a singular limit, because the equa-
tions of motion pass from delay equations to ordinary differ-
ential equations. This work is an attempt to put together what
is lost in this singular limit where the PP modes disappear.
We stress that the circular orbit is not an exact solution of the
full equations of motion, so that we are not doing Lyapunov
stability, but rather constructing particular solutions of the
nonlinear variational equations—i.e., the three-frequency or-
bit.

The road map for this paper is as follows. In Appendix A
we review the electrodynamics of point charges in a gener-
alized setting that includes Dirac’s theory as a special case
and give the equations of motion of point charges in an in-
tuitive form. A nonspecialist reader should start reading the
paper from Appendix A. In Sec. II we define the PP modes
and the quantities of the circular orbit, to be used as an
approximate solution in Secs. III–V. In Sec. III we outline
our economical method to derive the variational equations, a
method that expands the implicit light-cone condition and
uses the action formalism. In Sec. IV we derive the linear-
ized variational equations and study the PP modes of tangent
dynamics for vibrations along the orbital plane. This deriva-
tion is laborious and makes full use of our economical
method plus the use of a symbolic manipulations software.
We derive the linearized variational equations in the gener-
alized electromagnetic setting of Appendix A, to compare
with previously known results, but we stress that in Sec. V
we use only Dirac’s electrodynamics, the physically interest-

ing special case. In Sec. V we give an application of Dirac’s
electrodynamics to atomic physics by discussing the exis-
tence of a three-frequency orbit involving mutually orthogo-
nal PP oscillations of finite amplitude—i.e., a particular so-
lution of the variational equations. We investigate the
mechanism to cancel the radiation of the circular orbit by
interference with a beat of two mutually orthogonal PP
modes, a mechanism that starts to operate immediately after
the PP dynamics is established. We discuss the necessary
resonance condition of Poynting’s theorem to avoid
radiation—i.e., that the PP modes beat at the orbital fre-
quency. We study the resonant orbits that are stabilized by
this mechanism and compare their magnitudes with the mag-
nitudes of QED. In this section we also give a second deri-
vation of Poynting’s resonance condition. This derivation av-
erages the angular momentum of gyration over the fast
timescale, yielding a vector rotating at a slow frequency. The
rotating angular momentum produces a gyroscopic torque on
the slow dynamics and introduces the same resonance con-
dition of Poynting’s theorem. In Appendix B we derive the
tangent dynamics for oscillations perpendicular to the orbital
plane, analogously to what is done in Sec. IV for the planar
variational equations. These two derivations can be given
separately up to the linear order, but the z and xy variational
equations are otherwise coupled at higher order. The exis-
tence of fast harmonic solutions of finite amplitude is dis-
cussed in Appendix C. In Appendix C we also give a third
derivation of the resonance condition, a derivation based on
the detailed balance of the guiding-center dynamics. Last, in
Sec. VI we put the conclusions and discussion.

II. CIRCULAR ORBIT

Our perturbation scheme takes the circular orbit as a first
approximation. We use the index i=1 to indicate quantities
of the electron and i=2 for the proton, with masses m1 and
m2, respectively. We henceforth use a unit system where the
speed of light is c�1, the electronic charge is e1=−e2�−1,
and the mass of the electron is m1�1. In our unit system, the
mass of the proton is given by m2=1824, approximately. The
circular orbit is illustrated in Fig. 2; the particles move in
concentric circles and in diametral opposition at the same
time of the inertial frame. The details of the familiar Cou-
lombian circular orbit will be given now. The constant angu-
lar velocity is indicated by �, the interparticle distance of the
light cone is rb, and the angle that one particle turns while
the light emanating from the other particle reaches it is �
��rb. The delay angle � is the natural independent param-
eter of the circular orbit, which turns out to be small for
orbits of the atomic magnitude, ��10−2. For small �, the
interparticle distance of the light cone, rb, is O��2� close to
the interparticle distance at the same time of the inertial
frame, r0. Because of this O��2� approximation, the familiar
Coulombian formulas with rb replaced by r0 yield the
leading-order formulas in powers of �. For example, the or-
bital frequency, Kepler’s law, is given to leading-order in �
by

� = ��3 + ¯ , �1�

where ��m1m2 / �m1+m2� is the reduced mass �here and
henceforth�. In our unit system, �= �1824/1825��1 for hy-
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drogen. The interparticle distance of the light cone, rb, is
constant along the circular orbit and given, to leading order,
by

rb =
1

��2 + ¯ . �2�

Using the radial equation of motion for the Coulombian or-
bit, one finds that the angular momentum of the circular orbit
is given, to leading order in �, by

lz =
1

�
+ ¯ . �3�

The units of lz in Eq. �3� are e2 /c, just that we are using a
unit system where e2=c=1. For orbits of the atomic magni-
tude, lz as defined by Eq. �3� is of the order of the inverse of
the fine-structure constant, �−1=137.036. Each particle trav-
els a circular orbit with radius and scalar velocity defined by

r1 � b1rb,

r2 � b2rb, �4�

and

v1 = �r1 = �b1,

v2 = �r2 = �b2, �5�

for the electron and for the proton, respectively. For consis-
tency with the definition of rb as the exact interparticle dis-
tance of the light cone, the definition of b1 and b2 must

include an O��2� term: b1��1+g�2�m2 / �m1+m2� and b2

��1+g�2�m1 / �m1+m2�. Evaluating the interparticle distance
of the light cone and equating it to rb yields

rb
2 = rb

2�b1
2 + b2

2 + 2b1b2cos���� . �6�

Formula �6� becomes Eq. �3.1� of Ref. �8� after use of Eq.
�5�. Expanding Eq. �6� for small � yields g�0.5� / �m1

+m2�. The ratio �b1 /b2�= �m2 /m1� is the Coulombian ratio,
and the radii defined by Eq. �4� are O��2� near the Coulom-
bian radii. We henceforth call this the Coulombian circular
orbit. As discussed in Appendix C, for Dirac’s electrodynam-
ics the circular orbit is only an approximate solution. Since
we are doing perturbation, it suffices to use the above-
defined Coulombian orbit as an approximate solution and let
the perturbation scheme take care of the correction. In the
action-at-a-distance theory �8,9�, it turns out that the circular
orbit is an exact orbit of the two-body problem. The action-
at-distance electrodynamics is a special setting described by
the equations of Appendix A with �=−1/2 and is used here
only to cross-check the method of Sec. III.

The intuitive picture of a PP oscillation is a ping-pong
game—i.e., the particles throwing a ball back and forth at the
finite speed c=1—as a means to communicate changes in
position. The PP modes have a period of the order of rb /c,
where rb is given by Eq. �2�. The order of magnitude of the
PP frequency is

wPP �
2�

rb/c
= 2���2, �7�

where we used that c=1 in our unit system. To compare the
PP frequency with the Coulombian orbital frequency �1�, it is
useful to express the PP frequency �7� as

wPP � 2���2 �
�	�
�

� , �8�

where �	� is a number of the order of 2�. For atomic orbits,
��10−2, the PP frequency wPP is larger than � by three
orders of magnitude. We henceforth define the generalized
frequency of a ping-pong normal mode by 	� /�, so that a
purely imaginary 	 defines a harmonic oscillation and the
eventual real part of 	 defines a damping or a runaway. For
small �, the bouncing time for light to travel back and forth
the interparticle distance is approximately 2rb /c, so that the
phase shift of the fast oscillation during the bouncing time is

�� Im��	� /�� ,rb /c�. This phase shift evaluates to 
�
=2Im�	� if we use c=1 and �rb=�, and we shall see that it
must be an integer multiple of 2� for the ping-pong solutions
of Sec. V and of Appendix C.

III. VARIATIONAL EXPANSION ABOUT A CIRCULAR
ORBIT

The variational equations are obtained by substituting a
circular orbit plus a perturbation into the equations of motion
of Appendix A—e.g., Eq. �A4�—and expanding in powers of
the perturbation. Since these are complex equations, even
after using a convenient coordinate system this derivation is

FIG. 2. Coulombian circular orbit with particles in diametral
opposition at the same time of the inertial frame �open circles�. Also
indicated is the retarded position of both particles �solid circles� and
the angle traveled during the light-cone time. Drawing not to scale.
The circular orbit of the proton and the retardation angle have an
exaggerated magnitude for illustrative purposes. Arbitrary units.
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long. Our method uses the fact that these equations of motion
are almost the Euler-Lagrange equations of a suitable La-
grangian, with the addition of the self-interaction force. After
the variational equations of the Lagrangian sector are de-
rived, we add in the variation of the terms due to the self-
interaction. Readers should consult Appendix A for a brief
review of the equations of motion of point charges and defi-
nition of terms such as the Lorentz force, the Lorentz-Dirac
self-force, and the action integral. In this section we outline
the procedure of substituting a circular orbit plus a perturba-
tion into action �A11� of Appendix A and expanding the
action up to a desired order. Minimization of this truncated
action plus the expansion of the kinetic action yields the
Lorentz sector of the variational equations. Since we perform
the algebraic computations with a symbolic manipulations
software, it is equally easy to derive the variational equations
in a generalized electromagnetic setting that contains Dirac’s
electrodynamics as a special case, as explained in Appendix
A. The calculation in the generalized setting has some inter-
est of its own and provides a useful cross-check with other
known calculations �2,11�. The generalized setting of Appen-
dix A has an arbitrary constant � in the Green’s function, and
we stress that � will be set to zero in our application of Sec.
V: i.e., we study the hydrogen orbit in Dirac’s electrodynam-
ics with retarded-only fields �1�, a fundamental physical
theory. A reader not interested in this generality can assume
�=0 throughout the whole paper.

The variational equations for planar perturbations of cir-
cular orbits decuple from the equation for transverse pertur-
bations up to linear order. It is convenient to write these
planar variational equations using complex gyroscopic coor-
dinates rotating at the frequency � of the unperturbed circu-
lar orbit. The coordinates �xk ,yk� of each particle are defined
by two complex gyroscopic coordinates �k and 
k as

uj � xk + iyk � rbexp�i�t��dk + 2�k� ,

uj
* � xk − iyk � rbexp�− i�t��dk + 2
k� , �9�

where k=1 for electron and k=2 for proton and the real
quantities d1�b1 and d2�−b2 are defined in Eqs. �4�. Be-
cause xk and yk are real, we must have �k �
k

*, but to obtain
the variational equations it suffices to treat �k and 
k as in-
dependent variables in Lagrangian �A12�. Two quantities ap-
pear so often in the calculations that it is useful to name
them: �i� The numerator of Lagrangian �A12�, evaluated
along the circular orbit, is constant and given by

C � 1 + b1b2�2cos��� , �10�

having the same value for both retarded and advanced inter-
actions, and �ii� the denominator of Lagrangian �A12�, evalu-
ated along the circular orbit and divided by rb, is constant
and defined by S as follows:

S � 1 + b1b2� sin��� , �11�

having also the same value for both retarded and advanced
interactions. For the stiff limit of Secs. IV and V we shall
ignore the O��2� corrections and set C =S=1. Here we derive
the electron’s equations of motion only �j=1 in Eq. �9��. The
equation for the proton is completely symmetric and can be

obtained by interchanging indices 1 and 2. Notice that the
exchange operation on the d�s is d1Û−d2. This is because
d1=b1 is defined positive while d2=−b2 is defined negative,
so that at the same time the particles are in diametral oppo-
sition along the unperturbed circular orbit, as illustrated in
Fig. 2.

The velocity of the electron at its time t1 is calculated
with Eq. �9� as

u̇1 � v1x + iv1y � � exp�i�t1��id1 + 2i��1 − i�̇1� ,

u̇1
* � v1x − iv1y � � exp�− i�t1��− id1 − 2i�
1 + i
̇1�� .

�12�

The velocity of the proton at time t2 can be obtained by
interchanging indices 1 and 2 in Eq. �12�, as explained
above. Using the c= ±1 convention explained above Eq.
�A13� of Appendix A, the quantities of particle 2 appearing
in Lagrangian �A12� are evaluated at a time t2= t2c, of the
light cone with the position of particle 1 at time t1. The
implicit light-cone condition must be expanded and solved
by iteration, and for that it is convenient to define in each
case the excess-lag function �c by

t2c � t1 +
rb

c
+

�c

�
. �13�

If the perturbation is zero, then �+=�−=0 and the dynamics
is along the original circular orbit, where the light-cone lag is
the constant rb for the advanced case and −rb for the retarded
case. We henceforth measure the evolution with the scaled-
time parameter ���t1. The implicit definition of �c by the
light-cone condition involves the position of particle 2 at
either the advanced time t2+ or the retarded time t2−, as de-
fined by Eq. �9�,

u2�� + c� + �c� � rbexp�i�t2c��d2 + 2�2�� + c� + �c�� ,

u2
*�� + c� + �c� � rbexp�− i�t2c��d2 + 2
2�� + c� + �c�� ,

�14�

as well as the velocity of particle 2 at the advanced or re-
tarded position:

u̇2�� + c� + �c� � i� exp�i�t2c��d2 + ��2 − i�̇2�

+ 2�c��̇2 − �̈2�� ,

u̇2
*�� + c� + �c� � − i� exp�− i�t2c��d2 + �
2 + i
̇2�

+ 2�c�
̇2 + 
̈2�� . �15�

To obtain the linearized variational equations we expand
the equations of motion to first order in �k and 
k, which are
the Euler-Lagrange equations of the quadratic expansion of
action �A11� in �k and 
k. We must therefore carry all expan-
sions up to the second order in the �
 coordinates. For ex-
ample, the position of particle 2 is determined up to the
second order by expanding the arguments of �2 and 
2 of Eq.
�14� in a Taylor series about the unperturbed light-cone for
one order only as
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u2�� + c� + �c� � rbexp�i�t2c�	d2 + 2��2�� + c��

+ �c�̇2�� + c���
 ,

u2
*�� + c� + �c� � rbexp�− i�t2c�	d2 + 2�
2�� + c��

+ �c
̇2�� + c���
 . �16�

In the following we find that �c is linear in � and 
 to leading
order, so that the next term in expansion �16� would be a
third order term, not needed for the linear variational equa-
tions. We henceforth indicate quantities of particle 2 evalu-
ated at the unperturbed light cone by a subindex c—e.g.,
�2c��2��+c�� and 
2c�
2��+c��. Notice that the small pa-
rameter of expansion is the size of � and 
, and we hence-
forth expand any quantity evaluated on the light cone in a
Taylor series about the unperturbed light-cone, up to the or-
der needed. For quasicircular orbits this method yields varia-
tional equations with a fixed delay. We stress that one should
never expand the arguments in powers of �; such an expan-
sion yields ordinary differential equations and looses the PP
modes. The perturbed light cone is expressed implicitly by
the distance from the advanced or retarded position of par-
ticle 2 to the present position of particle 1, described in gy-
roscopic coordinates by the modulus of the complex number

u � u1��� − u2�� + c� + �c� , �17�

where c=1 describes the advanced light cone and c=−1 de-
scribes the retarded light cone. Using Eq. �16� to calculate u
up to second order yields

u = rbexp�i�t2c�	Dc
* + 2�exp�− ic� − i�c��1���

− �2c − �c�̇2c�
 ,

u* = rbexp�− i�t2c�	Dc + 2�exp�ic� + i�c�
1���

− 
2c − �c
̇2c�
 , �18�

where we defined the following complex function of �c:

Dc � b2 + b1exp�ic� + i�c� . �19�

At �c=0 �the unperturbed circular orbit�, Dc has a unitary
modulus, expressing the unperturbed light-cone condition
�6�. The right-hand side of Eq. �18� is a quadratic form times
exp�i�t2c�, and in the action it appears multiplied by a coun-
terrotating term—i.e., a quadratic form times
exp�−i�t2c�—so that the product is independent of t2c. Be-
cause of this rotational symmetry of action �A11�, the fol-
lowing quadratic Gauge simplification can be applied di-
rectly to any quadratic rotating form. One can integrate by
parts a quadratic term of the quantity—e.g., Eq. �18�—and
disregard the boundary term. This gauge simplification yields
a correct action up to the second order. For example, inte-

grating by parts the quadratic terms in �̇2c and 
̇2c on the
right-hand side of Eq. �18� and disregarding the quadratic
gauge yields

u = rbexp�i�t2c�	Dc
* + 2��1 − i�c�exp�− ic���1���

− �1 − �̇c��2c�
 ,

u* = rbexp�− i�t2c�	Dc + 2��1 + i�c�exp�ic��
1���

− �1 − �̇c�
2c�
 , �20�

where we have also expanded exp�i�c� up to linear order in
�c, enough to give the correct quadratic action. Analogously,
the velocity of particle 2 has the following expansion up to a
quadratic gauge:

u̇2�� + c� + �c� � i� exp�i�t2c��d2 + 2��2c − i�̇2c��1 − �̇c�� ,

u̇2
*�� + c� + �c� � − i� exp�− i�t2c�

��d2 + 2�
2c + i
̇2c��1 − �̇c�� . �21�

Using the above quantities, the numerator of Lagrangian
�A12� can be calculated as

h2 = �1 − v1 · v2c� = �1 −
1

2
u̇1u̇2

* −
1

2
u̇1

*u̇2� , �22�

and the denominator of Lagrangian �A12� can be calculated
as

h4 = r12c�1 +
n12c · v2c

c
� = rb�1 + �� +

uu̇2
*

2c
+

u*u̇2

2c
. �23�

In Eq. �23� we have introduced the scaled delay function �
by

�c � c�� , �24�

where the subindex under � is omitted for simplicity of no-
tation. To relate � to the 
� perturbations we expand the
implicit light-cone condition of the perturbed orbit up to qua-
dratic order:

uu* = 
x2�t1 +
rb

c
+ �c� − x1�t1�
2

= c2�t2c − t1�2 = �rb +
�

�c
�2

. �25�

The light-cone condition �25� is most simply expressed in
terms of the scaled � defined in Eq. �24�. This expansion of
Eq. �25� up to second order yields

C�2 + 2S� = 2��b1
1 − b2
2� + �b1�1 − b2�2��

+ 2��b2
1 − b1�2�exp�ic��

+ �b2�1 − b1
2�exp�− ic���

+ 4�
1�1 − 
1�2exp�ic�� − 
2�1exp�− ic���

− 2��b2�
̇2 + �̇2� + b1
̇2exp�− ic��

+ b1�̇2exp�ic��� . �26�

The solution to Eq. �26� up to first order in the 
� coordi-
nates is

S��1� � ��b1
1 − b2
2� + �b1�1 − b2�2�

+ �b2
1 − b1
2�exp�ic��

+ �b2�1 − b1�2�exp�− ic��� . �27�
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Last, as a check for the above calculations, in the follow-
ing we derive the equations of motion for the circular orbit of
the action-at-a-distance theory �8�. The Lagrangian of action
�A11� for �=−1/2 is L��L++L−� /2, and its expansion up to
first order is

L̃ = 1 − 	��2�S − 1�S + C2��b1 + b2cos����

+ S�� sin��� − �2cos����b2

��1 + 
1�

CS2 , �28�

where the tilde indicates that L was scaled by its value along

the unperturbed circular orbit, L̃�rbS L /C. Scaling the ki-
netic Lagrangian with the same factor, and expanding to first
order yields

T̃1 =
− rbm1S

C�1
+

rb�2m1�1Sb1

C
��1 + 
1� , �29�

where �1�1/�1−v1
2 and v1 is given by Eq. �5�. The effec-

tive Lagrangian for particle 1 up to the linear order is

L̃ef f
�1� � T̃1 + L̃ . �30�

Lagrangian �30� is a linear functional of 
1, independent of


̇1, so that the Euler-Lagrange equation for 
1 is simply

�L̃ef f
�1� /�
1=0—i.e.,

m1b1rb�1�2S3 = �C2 + �2S�S − 1���b1 + b2cos����

+ S�� sin��� − �2cos����b2. �31�

This is Eq. 3.2 of Ref. �8�, and the equation for �1 is the
same condition by symmetry �this is actually the reason why
the circular orbit is a solution �13��. The equation for particle
2 is obtained by interchanging indices 1 and 2 in Eq. �31�,
which yields Eq. 3.3 of Ref. �8�. In the next section we
expand the action to second order to determine the linearized
variational equations.

IV. LINEARIZED VARIATIONAL EQUATIONS

In this section we obtain the linear-order terms of the
variational equations. For this we carry the expansion of the
prior section to the quadratic order. The next term of expan-
sion �29� of the kinetic Lagrangian of particle 1, calculated
with Eq. �12�, is

T̃1 = −
rbSm1

C�1
+

rb�2m1�1Sb1

C
��1 + 
1�

+
Srb�2m1�1

2C
��1

2�
1 + i
̇1 + �1 − i�̇1�2

− �
1 + i
̇1 − �1 + i�̇1�2� + ¯ . �32�

Disregarding the constant term, this kinetic Lagrangian of
particle 1 has a quadratic form defined by two coefficients

T̃1 =
rb�2m1�1Sb1

C
��1 + 
1� + M1��̇1
̇1 + i��1
̇1 − 
1�̇1�

+ �1
1� +
�2G1

2
�
1

2 + �1
2 − 
̇1

2 − �̇1
2� , �33�

where M1��1+�1
2�m1�1rb�2S /C and G1���1

2−1�m1�1�2S /
C. We also need the solution of Eq. �26� to second order,
�=��1�+��2�, where ��1� is given by Eq. �27� and ��2� is
calculated by iteration to be

S��2� = ��ib2
1 − ib1�2 − b1�̇2�exp�ic��

+ ��ib1
2 − ib2�1 − b1
̇2�exp�− ic��

− �b2�
̇2 + �̇2� −
1

2
C���1��2

+ 2�
1�1 − 
1�2exp�ic�� − 
2�1exp�− ic��� .

�34�

Next we expand the numerator and denominator of Lagrang-
ian �A12�, Eqs. �22� and �23�, up to the quadratic order. We
also need the following quantities expanded up to second
order: �i� the particle separation of the light cone, Eq. �18�;
�ii� the velocity of particle 1, Eq. �12�; and �iii� the velocity
of particle 2 at time t2c, Eq. �21�. This quadratic form can be
greatly simplified by adding suitable gauge terms to it �es-
sentially integration by parts�, which yields the following
normalized Lagrangian for particle 1:

Lc = −
i

2
B21��1
̇1 − 
1�̇1� + U11
1�1 +

1

2
N11
1

2 +
1

2
N11

* �1
2

+ Rc
1
2c + Rc
*�1�2c + Pc
1�2c + Pc

*�1
2c

+
Yc

2
�
1
̇2c − 
2c
̇1� +

Yc
*

2
��1�̇2c − �2c�̇1�

+
�c

2
�
1�̇2c − �2c
̇1� +

�c
*

2
��1
̇1 − 
2�̇1� +

Tc

2

̇1
̇2c

+
Tc

*

2
�̇1�̇2c +

Ec

2

̇1�̇2c +

Ec
*

2
�̇1
̇2c. �35�

In Eq. �35� the coordinates of particle 2 appear evaluated in
either the retarded or the advanced unperturbed light cone, as
indicated by the subindex c. The coefficient of each normal-
form binary is a function of m1, m2, and � and is obtained by
a gauge-invariant combination of derivatives; e.g., the coef-
ficient B21 is the same in both retarded and advanced inter-
actions and given by

B21 = i� �2Lc

��1 � 
̇1

−
�2Lc

�
1 � �̇1
� . �36�

The coefficients were evaluated with a symbolic manipula-
tion software, starting directly from the effective Lagrangian
and taking the necessary derivatives �in this way we avoid
mistakes�. The explicit functional dependences are not given
here for brevity, but were checked at the various limits: Biot-
Savart field, Coulomb interaction, Darwin interaction, etc.
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The effective Lagrangian for particle 1 is composed of the
partial Lagrangians �A12�, evaluated at the advanced and the
retarded light cones, as in Eq. �A11�, plus the kinetic La-
grangian

Lef f
�1� = T1 − �L+ + �1 + ��L−. �37�

The linearized Euler-Lagrange equation of Lagrangian �37�
respect to 
1 is a linear function of the coordinates 
1, �1,

2+, �2+, 
2−, and �2−, as well as of their first and second
derivatives:

l1
�
1,�1,
2+,�2+,
2−,�2−�

= − ��N11 + �2G�
1 + �2G
̈1� + �M1��̈1 + 2i�̇1 − �1�

− U11�1 − iB21�̇1� − �R+
*
2+ + R−

*
2−�

− �Y+
̇2+ + Y−
̇2−� + �T+
̈2+ + T−
̈2−�

− �P+�2+ + P−�2−� − ��+�̇2+ + �−�̇2−�

+ �E+�̈2+ + E−�̈2−� . �38�

The Euler-Lagrange equation of Lagrangian �37� with re-
spect to �1, 
2, and �2 yields three more linear equations,
which together with Eq. �38� form a system of four linear
delay equations.

In the following we explain how to include self-
interaction into Eq. �38�. The Euler-Lagrange equation of the
kinetic energy �33� with respect to 
1 can be expressed as

�1 + �1
2�m1�1�S/C�rb

3�2��̈1 + 2i�̇1 − �1�

= rb
2�S/C�

d

dt
�m1�1rbu̇1� , �39�

where we replaced �2 by rb
2�2 into the definition of M1 given

below Eq. �33�. On the second line of Eq. �39� we recognize
the variation of the complex momentum, m1�1rbu̇1= p1x
+ ip1y, multiplied by the factor rb

2�S /C�. The variation of mo-
mentum is the force, so that to account for self-interaction
we add to Eq. �38� the x component of force �A14� multi-
plied by the factor rb

2�S /C�, plus i times the y component of
force �A14� multiplied by rb

2�S /C�—i.e.,

rb
2�S/C�

2

3
�1 + 2��rb

d3u1

dt3 �
2�3

3
�1 + 2��u�1, �40�

where the overdots represent derivatives with respect to
scaled time ���t. Using Eq. �40� with u1 given by Eq. �9�
and expanding up to the linear order yields the order-0 of-
fensive force �C4� plus the linearization of the self-force in
gyroscopic coordinates. The offensive force �C4� is the non-
homogeneous term of the variational equation and shall be
dealt with in Appendix C. In this section we discard it and
keep only the linear part of the variational equations. Notice
that Eq. �39� came out naturally in the form of variation of
momentum multiplied by rb

2. This instructive normalization
suggests that we scale the equations of motion with the un-
perturbed Coulombian attraction, 1 /rb

2—i.e., that we scale
forces with the size of the unperturbed attraction. This nor-
malization is useful when discussing orders of magnitude,

and it is used in Appendix C to discuss estimates with an
intuition about physical orders of magnitude.

The linear variational equations for 
1, �1, 
2, and �2 form
a set of four linear delay equations, a system that can be
solved in general by Laplace transform �14�. In the following
we focus on the planar normal-mode solutions to this linear
system, with a fast ping-pong frequency 	xy� /�, a definition
motivated by Eq. �8�. The complex number 	xy is so far
arbitrary, but a harmonic oscillation is defined by an imagi-
nary 	xy. In the following we substitute 
1=A exp�	xy�t /
��, �1=B exp�	xy�t /��, 
2=C exp�	xy�t /��, and �2=D
�exp�	xy�t /�� into the linearized equations and assume �
small and �	xy� of order 1 or larger, as discussed below Eq.
�8�. This yields four homogeneous linear equations for A, B,
C, and D, and a nontrivial solution exists only if the deter-
minant vanishes. Using a symbolic manipulations software
this determinant evaluates to

1 −
2�1 + 2���2	xy

3
+

�1 + 2���4	xy
2

9
−

2

27

�

M
�1 + 2��3�6	xy

3

+ ¯ +
��4

M
�1 +

7

	xy
2 +

5

	xy
4 ���1 + 2��sinh�2	xy�

− 2�1 + 2� + 2�2�cosh2�	xy�� − 2
��4

M
� 1

	xy
+

5

	xy
3 �

��2�1 + 2��cosh2�	xy� − �1 + 2� + 2�2�sinh�2	xy�� = 0,

�41�

where M �m1+m2. In our unit system, the total mass of
hydrogen is M =1825. For Dirac’s retarded-only electrody-
namics, Eq. �41� with �=0, we obtain the following planar
normal-mode condition for ping-pong modes �the stiff limit�:

�1 +
2

	xy
+

7

	xy
2 +

10

	xy
3 −

5

	xy
4 + ¯ ����4

M
�exp�− 2	xy�

= 1 −
2

3
�2	xy +

1

9
�4	xy

2 + ¯ . �42�

Comparing Eq. �42� with Eq. �B19� of Appendix B, we find
that they agree up to terms of order �1/	� and ��2	�, a
quasidegeneracy phenomenon that exists only in three cases:
�i� �=0, Dirac’s theory with retarded-only interactions; �ii�
�=−1, a nonphysical advanced-only interactions theory; and
�iii� �=−1/2, the dissipative Fokker theory of Ref. �2� and
the action-at-a-distance electrodynamics �11�. This discrimi-
nating degeneracy is an interesting curiosity, and in this pa-
per we disregard the two other dynamics that exhibit the
quasidegeneracy phenomenon: �ii� and �iii�. In the next sec-
tion we study a three-frequency orbit of hydrogen in Dirac’s
electrodynamics with retarded-only fields ��=0�, the physi-
cally sound choice to describe hydrogen in nature.

V. THREE-FREQUENCY ORBIT

As discussed in Sec. IV, in Dirac’s electrodynamics there
is a remarkable quasidegeneracy of the perpendicular and
planar tangent dynamics. In the large-�	� limit, both Eq. �42�
and Eq. �B19� of Appendix B reduce to
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���4

M
�exp�− 2	� = 1, �43�

henceforth called the degenerate stiff limit. The value of
�� /M� for hydrogen in Eq. �43� is a small factor of about
�1/1825�. Equation �43� requires that 	 have a negative real
part given by Re�	��−��−ln��M /��4�. For the atomic
magnitude �−1�137.036, the value of � is about ��15.0.
On the other hand, the imaginary part of 	 can be an arbi-
trary multiple of �, so that the general solution to Eq. �43� is

	 = − � + �qi , �44�

where i��−1 and q is an arbitrary integer. Notice that the
real part of 	 is always negative, so that the tangent dynam-
ics about the circular orbit is stable in the stiff limit. The
unfolding of the degeneracy comes with the terms of order
1 /	2 and �4	2, as found in Eq. �42� and Eq. �B19� of Ap-
pendix B. The exact roots of Eqs. �42� and �B19� near the
limiting root �44� are defined, respectively, by

	xy��� � − �xy + �qi + i�1,

	z��� � − �z + �qi + i�2, �45�

where �1��� and �2��� are real O��� numbers. The three-
frequency orbit is formed from an initial circular orbit as
follows: �i� Initially, the self-force �C4� dissipates energy,
essentially the radiation of the circular orbit. Some of the
radiated energy is absorbed directly by the PP oscillations.
The slow guiding-center circular motion may also lose radius
to account for some of the energy loss, spiraling in for a
small number of turns. �ii� After the PP modes absorb enough
energy, their amplitudes grow and the PP oscillations become
neutrally stable, which is illustrated in Fig. 1. As discussed in
Appendix C, at a finite PP amplitude, a harmonic solution to
the nonlinear variational equations exists—i.e., the �’s of
Eq. �45� vanish—so that the 	’s become purely imaginary.
This balancing is achieved at relatively small amplitudes—
i.e., near the circular orbit. And �iii� The radiation of the PP
modes starts to interfere with the orbital radiation if the orbit
is a resonant one. In the following we discuss a surprisingly
simple stabilization mechanism that operates after the fast
harmonic oscillations are established near the guiding-center
orbit.

We henceforth assume that the three-frequency orbit of
Fig. 1 is defined by the following combination of a planar PP
mode and a perpendicular PP mode:

xk + iyk � rbexp�i�t��dk + 2
k
*� ,

xk − iyk � rbexp�− i�t��dk
* + 2
k� ,

zk � rbZk, �46�

with


k =
Rk

xy

2
exp���qi + i�1

���t/�� ,

Zk = Re	Rk
zexp���qi + i�2

���t/��
 , �47�

where Rk
xy and Rk

z are, respectively, the amplitude of the pla-
nar PP mode and the amplitude of the perpendicular PP mode
�k=1 for the electron and k=2 for the proton�. Notice that we
chose the same q for the two perpendicular oscillations of
Eq. �47�, so that q cancels and the difference between the
frequencies of Eq. �47� defines a beat in a slow time scale.
The far-electric field of the electron, at a far distance r�, is
obtained by exchanging indices and disregarding the first
term on the right-hand side of Eq. �A6�,

E1 = −
n � �n � a1−�
�1 − n · v1−�3r�

+
n � �v1− � a1−�
�1 − n · v1−�3r�

, �48�

where we multiplied Eq. �A6� by �1 to account for the elec-
tronic charge. In Eq. �48� , the unit vector n points from the
retarded position of the electron to the observation point at
infinity, while v1− and a1− are, respectively, the Cartesian
velocity and acceleration of the electron �particle 1�. The
Poynting flux is proportional to �E1�2, so that the common
denominator �1−n ·v1−�3 on the right-hand side of Eq. �48�
can be factored off �E1� and is henceforth ignored. For the
radiation of a circular orbit of atomic magnitude, the second
term on the right-hand side of Eq. �48� is small and can be
disregarded. This is the dipole approximation of atomic
physics, valid when the interparticle distance is smaller than
the radiated wavelength. This approximation is not valid for
the three-frequency orbit of Fig. 1 because of the short wave-
length of the PP modes. For the far field of the three-
frequency orbit of Fig. 1, the second term on the right-hand
side of Eq. �48� must be kept and is henceforth called the
spin-radiation field. Because of this quadratic spin-radiation
field, the vector product of the mutually orthogonal PP
modes �46� beats at a slow frequency �cosine times cosine
averages to cosine of the difference�. The spin-radiation field
of the electron, EPP, averaged over the fast time scale and
assuming �R1

z � ��R1
xy � ��1in Eq. �47�, has the amplitude

�EPP� =
��2�1

2�3q3

r�

cos��1 +
��2

� − �1
��

�
��t� . �49�

The oscillation of Eq. �49� is determined by the frequency
difference �beat� of the mutually orthogonal PP modes of
orbit �47�,


wPP � �1 +
��2

� − �1
��

�
�� . �50�

Because of the quasidegeneracy property, �2
� and �1

� are O���
quantities, so that 
wPP in Eq. �50� defines a beat of the
order of the guiding-center frequency �. The first term of the
right-hand side of Eq. �48�, averaged over the fast time scale,
yields the usual dipole field Ed of the unperturbed circular
motion, with magnitude

�Ed� =
��4

r�

cos��t� . �51�

Poynting’s theorem gives a necessary condition for EPP to
destruct Ed by interference; viz., both fields must oscillate at
the same frequency. This yields the resonance condition
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� = 
wPP. �52�

Notice that at resonance, the three-frequency orbit defined by
Eqs. �46� and �47� has only two independent frequencies
�16�, because of relation �52� between its frequencies. In the
gyroscopic coordinates �47�, the resonant orbit has only one
frequency, and in Appendix C such resonant orbit is called a
harmonic solution. Use of Eq. �52� with Eq. �50� yields

�2
� − �1

� = 0. �53�

In the following we approximate �1
� and �2

�, respectively, by
the �1 and �2 of the linear problem, as defined by Eq. �45�,
assuming that essentially the real parts of the linear eigen-
values �45� are modified by the finite-amplitude correction
�C3�, while the imaginary parts acquire only a small correc-
tion. According to this approximation, we expand the small
correction in powers of � and take the first term

�2 − �1 � �2
� − �1

� + p� + ¯ . �54�

This approximation is justified in Appendix C and the linear
coefficient p should depend on the radius of gyration, �1
�1/�q. Condition Eq. �53� together with Eqs. �50� and �1�
gives � as

� = ��2��2 − �1� + �1 − p��3 + ¯ , �55�

a Rydberg-Ritz-like formula. The resonant frequency � is
expressed by an eigenvalue difference in another way: the
exact difference between the frequencies of the orthogonal
PP modes, Eq. �52�. The PP frequencies should be rigorous
linear eigenvalues of the tangent dynamics of the three-
frequency orbit, but here we consider only the neighborhood
of the circular orbit, and keep to approximation �55�.

We henceforth set p=1 into Eq. �54� as a qualitative ap-
proximation, yielding

�1 − �2 + � = 0, �56�

which has the solutions listed in Table I. The root searching
problem of Eq. �56� is well posed, and for each integer q
there is a single solution � to Eqs. �56�, �42�, and �B19�; i.e.,
� is quantized by the integer q. According to QED, circular
Bohr orbits have maximal angular momenta and a radiative
selection rule �
l= ±1� restricts the decay from level k+1 to
level k only; i.e., circular orbits emit the first line of each
spectroscopic series �Lyman, Balmer, Ritz-Paschen, Brack-
ett, etc.�, the fourth column of Table I. We have solved Eq.
�56� together with Eqs. �42� and �B19� using a Newton
method in the complex 	 plane. The numerically calculated
angular momenta �−1 are given in Table I, along with the
orbital frequency in atomic units �1373�� /�=1373�2��2

−�1� and the QED first frequency of each spectroscopic se-
ries.

Table I illustrates the fact that a resonance among PP
modes predicts magnitudes precisely in the atomic scale, as
first discovered in Ref. �2�. In Ref. �2� we had to jump the
integer q by 20 units for a complete quantitative and quali-
tative agreement with the Bohr atom. The qualitative agree-
ment achieved by Table I is superior in this respect, but the
correspondence is still not perfect for q�7, after which q
increases one by one, in qualitative agreement with QED.
The angular momenta in the second row of Table I should be
compared with the QED values—i.e., �−1=137.036k. In
Table II we give the anomalous roots for q�7. Notice that
the angular momenta are still of the order of Planck’s con-
stant, but the orbital frequencies do not correspond to any
line of hydrogen. Since the approximation at Eq. �54� uses an
expansion in �, we should expect it to fail for the largest
values of �, as it did.

In the following we give a second derivation of Poynt-
ing’s resonance condition �52�. The angular momentum of

TABLE I. Quantum number k of the QED transition k+1→k, numerically calculated angular momenta
lz=�−1 in units of e2 /c, orbital frequencies in atomic units �137��3=1373�2��2−�1�, the corresponding kth
circular line of QED in atomic units, wQED��1/2��1/k2−1/ �k+1�2�, and the integer q of Eqs. �45� and �47�.

k lz=�−1 1373�2��2−�1� wQED q

1 185.99 3.996�10−1 3.750�10−1 7

2 307.63 8.831�10−2 6.944�10−2 9

3 475.08 2.398�10−2 2.430�10−2 11

4 577.99 1.331�10−2 1.125�10−2 12

5 694.77 7.667�10−3 6.111�10−3 13

6 826.22 4.558�10−3 3.685�10−3 14

7 973.12 2.790�10−3 2.406�10−3 15

8 1136.27 1.752�10−3 1.640�10−3 16

9 1316.44 1.127�10−3 1.173�10−3 17

10 1514.40 7.403�10−4 8.678�10−4 18

11 1730.93 4.958�10−4 6.600�10−4 19

12 1966.77 3.379�10−4 5.136�10−4 20

13 2222.70 2.341�10−4 4.076�10−4 21
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gyration along the orbital plane, calculated with Eq. �47� and
averaged over the fast time scale is

lx + ily = �rb
2�R1

xy��R1
z �

�q�

�
b1exp�i��2

� − �1
� + ���t/��

=
�q

�2 �R1
xy��R1

z �exp�i��2
� − �1

� + ���t/�� , �57�

where we used Eqs. �1� and �2�. The angular momentum
vector of Eq. �57� rotates at the same frequency 
wPP of Eq.
�50�, the ping-pong beat. Since angular momentum carries
inertia, its rotation produces a gyroscopic torque on the orbit,
so that the guiding-center motion should display an oscilla-
tion at the frequency 
wPP of Eq. �50�. The derivation of Eq.
�57� assumed that the guiding-center orbit is a circular orbit
of frequency �; therefore, we must have �=
wPP. In Ap-
pendix C we give a third derivation of resonance �52� by
averaging the electronic spin-radiation field over the fast
time scale. The resonance is needed for the averaged spin-
radiation field to rotate at the guiding-center frequency, so
that it can participate in the guiding-center dynamics.

VI. CONCLUSIONS AND DISCUSSION

We stress that the QED condition that � be of the order of
the fine-structure constant was never used in the calculations.
The PP frequencies were calculated for arbitrary �, and it
was the resonance condition of Poynting’s theorem alone, a
nonradiation condition, that calculated � in the atomic re-
gion. The quasidegeneracy phenomenon was already found
in Ref. �2�, and we expect it to be a universal property of
electromagnetic dynamics with delay, as follows. The correc-
tions to the limiting form �43� are controlled by powers of
1 /	 and �2	, so that the resonance condition essentially
poses a relation �2	�1/	, which yields ��c / �	 � =c / ��q�,
in agreement with Table I, with Ref. �2�, and with the Bohr
atom of QED �3�. The finite-amplitude corrections discussed
in Appendix C introduce again powers of ��1/ �	�, so that
the qualitative behavior should persist.

In Ref. �17� we argued that a stable orbit should emit at a
neutrally stable frequency of its tangent dynamics. The
physical process near the stable orbit is that the two terms on
the right-hand side of Eq. �48� do not compensate exactly, so
that there is a net radiation at the resonant frequency. More-

over, the guiding motion of the three-frequency orbit is not
exactly a Coulombian circular orbit, because the perturbative
scheme should correct the Coulombian approximation sig-
nificantly, especially for the first states, where sup���
�1/�q is larger. The orbital frequencies of Table I are only
an approximation to the emitted frequencies, an approxima-
tion that should be worse for the low values of q, again in
agreement with QED. More generally, according to Kurtz-
weil’s small delays do not matter theorem �18�, small-� or-
bits should be solutions of a limiting ordinary differential
equation obtained by setting all delays to zero. This theorem
yields that the limiting orbits should be the Coulombian or-
bits. In agreement with this, the gyration radius of Eq. �C8�
is a smaller fraction of the orbital radius for larger values of
q, the sup���→1/�q limit of Appendix C. We call this limit
the Kurtzweil correspondence limit.

For � in the atomic magnitude, there is a nontrivial stabi-
lization mechanism involving PP modes, a mechanism that
selects discrete orbits by a resonance. The ping-pong modes
form a channel that can interfere and absorb the energy ra-
diated by the orbital motion, a dynamics that involves a reso-
nance between fast and slow time scales. A multiscale solu-
tion, without assuming that the guiding-center motion is
circular, is still to be worked out. The multiscale solution
involves a general guiding-center slow motion plus a fast PP
gyration of small amplitude. After the fast dynamics is bal-
anced locally, the multiscale method should yield differential
equations for the guiding-center orbit by a Fredholm alterna-
tive �19–21�. Qualitatively, we expect the guiding-center
equations of motion to accept richer orbits than illustrated in
Figs. 1 and 3. The other possible orbital topologies are �i�
gyration plane perpendicular to the normal connecting the
particles, a dumbbell-like spinning, �ii� fast gyration re-

TABLE II. Numerically calculated angular momenta lz=�−1 in
units of e2 /c, orbital frequencies in atomic units �137��3

=1373�2��2−�1�, and the values of the integer q of Eqs. �45� and
�47�.

lz=�−1 1373�2��2−�1� q

93.26 3.16 1

51.06 1.93 2

57.26 1.36 3

76.14 5.82 4

103.92 2.29 5

140.37 0.929 6

FIG. 3. Perturbed guiding-center orbit, with particles no longer
in diametral opposition at the same time. Positions at the same time
are the solid circles; the angular distance at the same time is ��
−��. At the retarded position of the proton �open circle�, the aver-
aged force F12 is perpendicular to the guiding-center velocity of the
proton. At resonance, the averaged force F12 rotates at the guiding-
center frequency. Protonic orbit and self-force have an exaggerated
magnitude for illustrative purposes. Arbitrary units.
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stricted to the orbital plane, and �iii� nonplanar guiding-
center motion, like a p orbital. The intuition about the dy-
namics should follow the general guidelines learned from
analyzing the circular-guiding-center three-frequency orbits
of Figs. 1 and 3, as summarized in the following. For a
resonant orbit, the electronic spin-radiation force, averaged
over the fast timescale, yields an O�1� slowly rotating force
at the proton that perturbs the protonic equilibrium position
along the guiding-center orbit. The protonic attraction can-
cels the electronic self-interaction, so that the guiding-center
motion does not dissipate �any guiding-center motion�. The
averaging of the electronic spin-radiation force involves a
resonance, and this is the reason for discrete orbits from the
perspective of the equations of motion for the guiding center.
We derived the resonance condition in three different ways
here: �i� In Sec. V we derived the resonance condition using
Poynting’s theorem; �ii� still in Sec. V, we derived the same
resonance condition using general arguments about the gyro-
scopic torque; and last �iii� in Appendix C, we derived the
resonance condition from the detailed balancing of the
guiding-center dynamics.

In the process of emission, the sharp line is emitted when
the dynamics is approaching the stable orbit, as discussed in
Ref. �17�. This long time scale is to be compared with the
time of spontaneous decay of QED for hydrogen: about 106

orbital periods or 10−10 seconds. On the other hand, the dy-
namics has a fast time scale, the frequency of the PP modes,
of about �q /��1000 times the orbital frequency. This fast
frequency is about 1020 Hz and resonates with the x-ray fre-
quencies used in the Compton effect �22�, an interesting co-
incidence. The ping-pong frequencies of hydrogen have the
magnitude of the zitterbewegung frequency of Dirac’s rela-
tivistic version of Schroedinger’s equation �23�. In modern
Aharonov-Bohm experiments �24�, the ballistic electron
passes at a manometric distance from the electrons inside the
solenoid, such that the PP frequencies, which fall as 1 /r, can
be even at x rays. The magnetic field interacts with the PP
oscillations of the solenoid electrons, which in turn influ-
ences the ballistic electron. This fact that electrons can play
ping-pong-at-a-distance with frequencies up to x-ray sug-
gests the need of an x-ray shielding for the solenoid of the
Aharonov-Bohm experiments—e.g., a layer of lead.

The three-frequency orbit solves several conundrums of
the hydrogen atom, paradoxes that were created by guessing
that the equations of classical electrodynamics would accept
nonstiff planetarylike orbits at every scale. The ping-pong
phenomenon is a nontrivial feature that is not present in the
ordinary differential equations of planetary dynamics. The
qualitative agreements with QED are listed in the following:
�i� The resonant orbits are quantized by integers that appear
naturally because of the delay, and the orbital frequencies
agree reasonably with the Bohr circular lines. �ii� The angu-
lar momenta of the resonant orbits turn out to be approxi-
mate integer multiples of Planck’s constant. �iii� The emitted
frequencies are given by a difference of two eigenvalues of a
linear operator, the frequencies of the PP modes, analogously
to the Rydberg-Ritz combinatorial principle of QED. �iv�
The averaged angular momentum of gyration is of the order
of the electronic spin angular momentum of QED �26,27�.
The approximation for the gyration angular momentum is
not satisfactory yet, though.

We exhibited a new orbit of the hydrogen atom of Dirac’s
electrodynamics of point charges with retarded-only fields.
The Lyapunov stability of this orbit should be further inves-
tigated. Because we are dealing with a physical theory, the
equations should be sufficiently robust to allow some kind of
numerical integration �28�. The stability of the three-
frequency orbit poses a linear set of delay equations, a dy-
namical system that needs an initial function as the initial
condition, just like Schrödinger’s equation. It would be in-
teresting to learn if this linear operator has a self-adjoint
Fredholm alternative �19,20�, like Schrödinger’s equation
does. The frequency of PP modes is proportional to the in-
verse of the interparticle distance, which turns out to be pro-
portional to the electrostatic potential energy �an accidental
analogy, because these are different phenomena�. The poten-
tial energy is thought to be the reason why the 1/r appears in
Schrödinger’s equation, and it is interesting to notice that a
linearized equation for PP modes has the same generic form.
The ping-pong modes appear universally in electromagnetic
many-body dynamics because of the delay, a phenomenon
that has been so far overlooked. The interference mechanism
of Poynting’s theorem can produce orbits that do not radiate,
if a resonance is satisfied. This resonance turns out to be
satisfied precisely in the atomic magnitude, a surprise that
makes this dynamics interesting for theoretical physics. We
hope that our preliminary findings serve to motivate and
guide further studies of this dynamics, and there is much to
be settled yet.

ACKNOWLEDGMENTS

I thank Savio B. Rodrigues, Guilherme Leal Ferreira, J. C.
Egues, Clodoaldo Ragazzo, and Antonio de Toledo Pizza for
discussions, Reginaldo Napolitano for discussions and for
reading the manuscript, and the many discussions with Luigi
Galgani, Andrea Carati, Massimo Marino, Antonio Politi, Al-
lan Lichtenberg, and Stefano Ruffo.

APPENDIX A: ELECTRODYNAMICS OF POINT
CHARGES

In 1947 Eliezer generalized Dirac’s covariant subtraction
of infinities �10�. In this generalized electrodynamics of point
charges �10�, the field produced by the point charge is sup-
posed to be the retarded field plus an intrinsic free field G:

F�
� = F�,ret

� + G�
� . �A1�

The self-free-field G used by Eliezer in Ref. �10� is finite
along the particle’s trajectory and vanishes when the particle
is at rest,

G�
� = ��F�,ret

� − F�,avd
� � , �A2�

where � is a constant �10�. This generalized electromagnetic
setting is henceforth called the Eliezer setting �ES�. In
Eliezer’s theory, the electron and the proton of a hydrogen
atom, of charges −1 and +1, respectively, have the following
equations of motion �10�:
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m1�̇�1 =
2

3
�1 + 2����̈�1 − ���̇1��2��1�

− �F�1,in
� + �1 + ��F�2,ret

� − �F�2,adv
� ���1,

m2�̇�2 =
2

3
�1 + 2����̈�2 − ���̇2��2��2�

+ �F�2,in
� + �1 + ��F�1,ret

� − �F�1,adv
� ���2,

�A3�

where the ��i stand for the four components ��=1,2 ,3 ,4�
of the Minkowski velocity of particle i, double ventricle bars
stand for the Minkowski norm scalar product and the over-
dots indicate derivatives respect to the proper time of each
particle. Equation �A3� includes an external field F�,in

� pro-
duced by the other charges of the universe at each particle’s
trajectory, which vanishes for the isolated electromagnetic
two-body problem. The first term on the right-hand side of
Eq. �A3� is the sourceless combination of half of the retarded
Lienard-Wiechert self-potential minus half of the advanced
Lienard-Wiechert self-potential, all multiplied by �1+2��
and evaluated at the particle itself �10�. This term generalizes
Dirac’s self-interaction force �1�. The last two terms on the
right-hand side of the first line of Eq. �A3� define the inter-
action with the retarded Lienard-Wiechert potential of the
proton at the electronic position, F�2,ret

� , and the interaction
with the advanced Lienard-Wiechert potential of the proton
at the electronic position, F�2,adv

� . The ES has four interesting
limits: �i� �=0 is Dirac’s electrodynamics with retarded-only
fields �1�, �ii� �=−1 is a nonphysical theory with advanced-
only interactions, �iii� �=−1/2 is the action-at-a-distance
electrodynamics �29� �notice that the self-interaction van-
ishes�, and �iv� the limit when � tends to −1/2 from above is
the dissipative Fokker setting of Ref. �2�, with a charge
renormalization controlled by �1+2��.

For the nonspecialist reader, in the following we write the
equations of motion of Dirac’s electrodynamics, �=0, in the
intuitive form of physics textbooks. For the isolated hydro-
gen atom, the spatial component of the electronic equation of
motion, the first line of Eq. �A3�, multiplied by �1− �v1�2,
yields

m1
d

dt1
� v1

�1 − �v1�2
� = F1 − E2 − v1 � B2, �A4�

where v1 is the Cartesian electronic velocity �12,25�. The
equation for the proton is obtained exchanging the indices in
Eq. �A4� and multiplying the last two terms on the right-hand
side of Eq. �A4� by −1, to account for the positive protonic
charge. The first term on the right-hand side of Eq. �A4� is
the force F1 of the electronic fields on the point electron
itself and is called the Lorentz-Dirac self-force,

F1 =
2

3
�1

2	ȧ1 + �1
2�v1 · ȧ1�v1 + 3�2�v1 · a1�

��a1 + �1
2�v1 · a1�v1�
 , �A5�

where �1�1/�1− �v1�2 and a1 and ȧ1 stand for the Cartesian
electronic acceleration and time derivative of the Cartesian

electronic acceleration, respectively �cf. p. 116 of Ref. �25��.
In Eq. �A5� a dot between two Cartesian vectors indicates
scalar product and a dot over a vector indicates a derivative
respect to laboratory time t1. The second term on the right-
hand side of Eq. �A4� is the electric force—i.e., the elec-
tronic charge e=−1 times the electric field of the proton act-
ing on the electron, E2. In our unit system with c=1, the
retarded electric field of the proton, of charge +1, is given by
the Lienard-Wiechert formula �15�

E2 =
n12b − v2b

�2b
2 �1 − n12b · v2b�3r12b

2 +
n12b � ��n12b − v2b� � a2b�

�1 − n12b · v2b�3r12b
,

�A6�

where v2b and a2b are, respectively, the Cartesian velocity
and Cartesian acceleration of the proton at the retarded time
t2b and �2b�1/�1− �v2b�2. In Eq. �A6�, the unit vector n12b
connects the retarded protonic position to the present elec-
tronic position and r12b is the interparticle distance along the
retarded light-cone. The advanced fields are obtained by re-
placing v2b by −v2b in Eq. �A6� and are not used here, since
we deal we Dirac’s retarded-only theory. The third term on
the right-hand side of Eq. �A4� is the magnetic force—i.e.,
the electronic charge times the vector product of the elec-
tronic velocity v1 by the magnetic field of the proton B2. The
retarded magnetic field of the proton is given by the Lienard-
Wiechert formula �15�

B2 = n12b � E2. �A7�

For the advanced magnetic field, formula �A7� includes a
minus sign, so that the Poynting flux E2�B2 calculated with
the purely advanced fields of an unperturbed circular orbit is
an incoming energy flux. The combination −�E2+v1�B2� is
usually called the Lorentz force, not to be confused with the
Lorentz-Dirac self-force �A5�. The electric and magnetic
fields �A6� and �A7� depend on the retarded position, veloc-
ity, and acceleration of the proton, and this is where delay
enters in the dynamics. Equation �A5� can be rearranged as

F1 =
2

3
�1

2U1	ȧ1 + 3�1
2�v1 · a1�a1
 , �A8�

where we introduced the dyadic matrix U1� I+�1
2v1v1

t , a
nonsingular matrix whose inverse is U1

−1= I−v1v1
t . The left-

hand side of Eq. �A4�—i.e., the variation of the
momentum—can be expressed using U1 as

m1
d

dt1
� v1

�1 − �v1�2
� = m1�1U1a1. �A9�

Using Eqs. �A8� and �A9�, the equation of motion �A4� can
be expressed as

m1a1 =
2

3
�1	ȧ1 + 3�1

2�v1 · a1�a1
 − �1 − �v1�2U1
−1

��E2 + v1 � B2� , �A10�

where E2 and B2 are the electric and magnetic fields of the
proton, respectively, and we have canceled the invertible ma-
trix U1 and a power of �1. Equation �A10� has a familiar
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Newtonian-like form, but it is still the full relativistic equa-
tion. In the low-velocity limit, the first term of the right-hand
side of Eq. �A10� reduces to the third derivative of the posi-
tion multiplied by 2/3, which is called the Abraham-Lorentz-
Dirac self-force.

There exists an action formalism for the Lorentz-force
sector of Eq. �A4�—i.e., Eq. �A4� without the first term on
the right-hand side. We give a general action including the
parameter � solely for the calculations and cross-checking of
Secs. III and IV. A reader interested only in Dirac’s theory
can set �=0. This general action, involving the instantaneous
position and velocity of particle 1, is composed of a kinetic
term plus the electromagnetic action

� = − �� �1 − v1 · v2a�
r12a�1 + n12a · v2a�

dt1

+ �1 + �� � �1 − v1 · v2b�
r12b�1 − n12b · v2b�

dt1. �A11�

In Eq. �A11�, v1 stands for the Cartesian velocity of particle
1 at time t1, while v2a and v2b stand for the Cartesian veloci-
ties of particle 2, respectively, at the advanced time t2a and at
the retarded time t2b. The vector n12a in Eq. �A11� is a unit
vector connecting the advanced position of particle 2 to the
position of particle 1 at its present time t1, while unit vector
n12b connects the retarded position of particle 2 to the present
position of particle 1 at time t1. Still in Eq. �A11�, r12a and
r12b indicate the interparticle distance along the advanced
and retarded light cones, respectively. To derive the equa-
tions of motion of particle 1, one needs to add the usual
kinetic action to Eq. �A11�, K1�−�m1

�1− �v1�2dt1 �the inte-
gral of the kinetic Lagrangian�. In Ref. �12� it is shown that
formal minimization of the sum of action �A11� with the
kinetic action yields the equations of motion of particle 1
suffering the electromagnetic fields of particle 2—i.e., Eq.
�A4� without the self-interaction term. Each integrand of the
right-hand side of Eq. �A11� is a familiar electromagnetic
Lagrangian

Lc �
�1 − v1 · v2c�

r12c�1 + �n12 · v2c�/c�
� − �Vc − v1 · Ac� , �A12�

where Vc and Ac are the Lienard-Wiechert scalar potential
and the Lienard-Wiechert vector potential, respectively. We
introduced the quantity c= ±1 in Eq. �A12� to indicate if the
interaction is along the advanced or retarded light cone.
Equation �A12� with c=1 indicates that particle 2 is in the
future, while c=−1 indicates that particle 2 is in the past. The
quantities of particle 2 in Eq. �A12� are to be evaluated at the
time t2c defined implicitly by

t2c = t1 +
r12c

c
, �A13�

where r12+ is the distance along the advanced light cone and
r12− is the distance along the retarded light cone. According
to Eq. �A13�, the time lag along the advanced light cone is
r12+ and the time lag along the retarded light cone is −r12−.

The shortest way to obtain the equations of motion of
Dirac’s electrodynamics in any given coordinate system is to

start from the Euler-Lagrange equations of action �A11� plus
the relativistic kinetic action. This yields the dynamics with-
out self-interaction of each particle suffering the electromag-
netic fields of the other particle. The self-force can be added
to the Euler-Lagrange equations, watching carefully for the
correct multiplicative factor. The stiff limit of PP modes is
determined by the largest-order derivative appearing in the
linearized equations of motion. In this limit, the contribution
of the self-interaction to the linearized dynamics about a cir-
cular orbit is given by the Abraham-Lorentz-Dirac self-force

Frad =
2

3
�1 + 2��ȧ . �A14�

The contribution of the other nonlinear terms, which become
important at a finite distance from the circular orbit, is dis-
cussed in Appendix C. The electrodynamics of point charges
is discussed at length in Refs. �10,25�, while the Lienard-
Wiechert potentials, Lienard-Wiechert fields, Poynting’s
theorem, and the physics of electrodynamics are found in
numerous textbooks—e.g., Refs. �12,15�.

APPENDIX B: VARIATIONAL EQUATIONS ALONG THE ẑ
DIRECTION

In this appendix we derive the linearized variational equa-
tions for displacements perpendicular to the orbital plane,
henceforth called the ẑ direction. Since zk=0 is an exact so-
lution of the equations, in this appendix we perform a
Lyapunov stability analysis. The variational dynamics along
the z direction is uncoupled from the planar variational equa-
tions up to the linear order. In the same way of Sec. IV, we
expand to second order the implicit light-cone condition, Eq.
�25�, and action �A11�. The Cartesian coordinates of a trans-
versely perturbed circular orbit are defined as

xk + iyk � rbdkexp�i�t� ,

xk − iyk � rbdk
*exp�− i�t� ,

zk � rbZk, �B1�

where k=1 for the electron and k=2 for the proton, Zk is the
transverse perturbation, d1�b1 and d2�−b2 are defined in
Eq. �4�, and � is the orbital frequency �1�. In the following
we calculate the delay function �c of Eq. �13� by expanding
the light-cone time t2c about the constant lag rb up to the
second order in Z1 and Z2. The distance r12c in Eq. �A13� is
evaluated from the position of particle 1 at time t1 to the
position �B1� of particle 2 at time t2c. Using t2c defined by
Eq. �A13� and orbit �B1�, this implicit distance r12c= �t2− t1�
evaluates to

r12c
2 � rb

2�1 + ��2 = rb
2�b1

2 + b2
2 + 2b1b2cos�� + �c��

+ rb
2�Z1 − Z2c�2, �B2�

where we expressed �c in terms of the scaled function � of
Eq. �24�. The Z variations decuple from the planar variations
because powers of Z always appear squared, so that there is
no mixed linear term of Z times a linear perturbation of the
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planar coordinate in Eq. �B2�. Expanding Eq. �B2� up to
second order and rearranging yields

�2 + 2S� = �Z1 − Z2c�2. �B3�

Equation �B3� is a quadratic equation for �, and the regular
solution is given up to second order by

� =
1

2S
�Z1 − Z2c�2. �B4�

The coordinate Z2 appears evaluated at the advanced and
retarded time in Eq. �B4�, and to obtain the action up to
quadratic terms it is sufficient to keep the first term Z2��1

+c�+�� �Z2��1+c���Z2c. Using �B1� to calculate the nu-
merator of Lagrangian �A12� yields

�1 − v1 · v2c� = 1 + �2cos�� + c��b1b2 − �2Ż1Ż2c

� C − �2�S − 1�� − �2Ż1Ż2c, �B5�

while the denominator of Lagrangian �A12� evaluates to

r12c�1 +
n12c · v2c

c
� = rb�1 + � + �cb1b2sin��c + �c�

+ �c�Z1 − Z2c�Ż2c� . �B6�

Notice that the quadratic term Z2cŻ2c on the right-hand side
of Eq. �B6� can be dropped because it represents an exact
gauge that does not affect the Euler-Lagrange equations. We
also expand the argument of the sine function of the right-
hand side of Eq. �B6� until the linear term in �c, so that the
quadratic approximation to Eq. �B6� is

r12c�1 +
n12c · v2c

c
� � rb�S + C� + �cZ1Ż2c� , �B7�

where the equivalence sign � henceforth means equivalent
up to a gauge term of second order. Even if a quadratic gauge
term appears in the denominator, in an expansion up to qua-
dratic order it would still produce a gauge and therefore it
can be dropped directly from the denominator. The Lagrang-
ian of action �A11� expanded up to second order is

L� � � C

rbS
���1 + ���1 − �2CS2Ż1Ż2− −

C2S

2
�Z1 − Z2−�2

+ �C2SZ1Ż2−�− ��1 − �2CS2Ż1Ż2+ −
C2S

2
�Z1 − Z2+�2

− �C2SZ1Ż2+�� . �B8�

We henceforth disregard O��2� corrections and substitute C
=S=1 in the coefficients of Lagrangian �B8�. Last, we need
the kinetic Lagrangian along orbit �B1� as

T1 = − m1
�1 − v1

2 = −
m1

�1

�1 − �1
2�2Ż1

2, �B9�

where the overdot means a derivative with respect to the
scaled time �, �1

−1��1−v1
2, and we have used that �rb=�.

Equation �B9� expanded up to second order is

T1 = � 1

rb
��− rbm1

�1
+

�1

2
Ż1

2 + ¯ � , �B10�

where �1�rb
3m1�1�2. Using Eqs. �1� and �2�, we obtain �1

=m1 /�=M /m2. The equation of motion for particle 1, with-
out the self-interaction term, is the Euler-Lagrange equation
of the quadratic Lagrangian

Lef f
�1� = T1 + L�. �B11�

The Lagrangian sector of the equation for Z1 is

�1Z̈1 = − �Z1 − �1 + ��Z2− + �Z2+� + ���Ż2+ + �1 + ��Ż2−�

+ �2��Z̈2+ − �1 + ��Z̈2−� . �B12�

Notice that the left-hand side of Eq. �B12� can be written as

�1Z̈1 = rb
3m1�1�2Z̈1 = rb

2dpz

dt
, �B13�

which is the force along the z direction multiplied by rb
2. As

explained above Eq. �40�, to account for self-interaction we
must add to Eq. �B12� the Abraham-Lorentz-Dirac self-force
�A14� multiplied by rb

2:

rb
2Frad =

2

3
�1 + 2���3Z�1. �B14�

The full linearized variational equation for Z1 is

�1Z̈1 =
2

3
�1 + 2���3Z�1 − �Z1 + �Z2+ − �1 + ��Z2−�

+ ���Ż2+ + �1 + ��Ż2−� + �2��Z̈2+ − �1 + ��Z̈2−� .

�B15�

The linearized equation for Z2 is obtained by interchanging
Z1 by Z2 and �1 by �2 in Eq. �B15�. �Comparing Eq. �B15� to
Eq. �30� of Ref. �2� we find that Eqs. �29� and �30� of Ref.

�2� are both missing a �3 factor in front of the Z�1 term, which
is a typo. After Eq. �30�, the other equations of Ref. �2� have
the self-interaction included correctly�.

A ping-pong normal mode is obtained by substituting Z1
=A exp�	z�t /�� and Z2=B exp�	z�t /�� into Eq. �B15� and
the corresponding linearized equation for the proton equa-
tions. Again we use a general 	z, but a harmonic solution
needs a purely imaginary 	z. Setting the determinant to zero,

�1 +
M	z

2

m2�2 −
2

3
�1 + 2��	z

3 G��,	z�

G��,	z� 1 +
M	z

2

m1�2 −
2

3
�1 + 2��	z

3� = 0,

�B16�

where G�� ,	z���1− �1+2��	z−	z
2�cosh�	z�− ��1+2��−	z

− �1+2��	z
2�sinh�	z�. The stiff-limit is when �	z� is large, and

we should keep in mind that the hyperbolic functions in
G�� ,	z� can acquire a large magnitude �11�. Multiplying de-
terminant �B16� by ��4 / �M	z

4� we obtain
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1 −
2

3
�1 + 2���2	z +

4

9

�

M
�4	z

2

−
��4

M ��1 −
1

	z
2 +

�1 + 2��
	z

�cosh�	z�

− � 1

	z
+ �1 + 2���1 −

1

	z
2��sinh�	z��2

= 0,

�B17�

up to small O��2� terms. The stiff-mode condition defined by
Eq. �B17� with �=−1/2 is Eq. �33� of Ref. �2�—i.e.,

1 −
2

3
�2	z +

4�

9M
�4	z

2 −
��4

M
��1 −

1

	z
2�cosh2�	z�

−
1

	z
sinh�2	z��2

= 0. �B18�

In Ref. �2� there is another typo in passing from Eq. �33� to
Eq. �34�; Eq. �34� is missing a bracket that should start after
the ���4 /M� factor and close at the end of Eq. �34�. The stiff
limit in Dirac’s theory with retarded-only fields ��=0� is

1 −
2

3
�2	z +

4�

9M
�4	z

2 −
��4

M
�1 + exp�− 2	z��

��1 +
2

	z
−

1

	z
2 −

1

	z
3 +

1

	z
4� = 0, �B19�

and the appearance of the negative exponential is related to
the retardation only. Comparing Eq. �B17� to Eq. �41� we
find that the quasidegeneracy phenomenon exists only for �i�
�=0, i.e., Dirac’s theory; �ii� �=−1, a nonphysical advance-
only case; and �iii� �=−1/2, the action-at-a-distance electro-
dynamics �29� and the dissipative Fokker dynamics of Ref.
�2�.

APPENDIX C: THE PING-PONG SOLUTIONS

In this appendix we discuss the existence of a harmonic
orbit such as given by Eq. �47� and illustrated in Figs. 1 and
3. In the following we show that an orbit such as Eq. �47�
exists in the limit where �k�sup��Rk

z � , �Rk
xy � �→1/ �	�, a limit

where the stiff gyration approaches the speed of light. In this
limit, the dominant field of the particle is the far-electric
field, Eq. �48�. The near-electric field is the first term on the
right-hand side of Eq. �A6�, which vanishes because �k
→�. The far-magnetic interaction is the next-to-leading term
in size and is disregarded in the following. We also disregard
the self-interaction, Eq. �A5�, because its contribution to the
force normal to the velocity is smaller. The equation of mo-
tion for the proton is obtained by exchanging indices in Eq.
�A10�, and the leading fast dynamics normal to the fast ve-
locity is

m2a2 = − �1 − �v2�2U2
−1�n � ��n � v̇1−� − �v1− � v̇1−��

�1 − n · v1−�3r21b
� ,

�C1�

where underscore minus indicates that particle 1 is in the
past light cone. The unit vector n points from the retarded

position of particle 1, which is not indicated with underscore
to avoid an overloaded notation. For the PP modes, the fact
that the electronic coordinates on the right-hand side of Eq.
�C1� are evaluated at t1−� t2−rb makes a lot of difference,
because the PP modes execute complete periods during this
time lag. Since the gyration amplitude is small compared
with rb, we henceforth assume that the distance r21b along the
retarded light cone on the right-hand side of Eq. �C1� is
constant and given by rb. Along the orbit of Fig. 1, the fast
gyration can be parallel to the normal, so that �1−n ·v1−�3

becomes arbitrarily small, and we henceforth approximate
the denominator of the right-hand side of Eq. �C1� by �1
− �	 ��1�3rb. We also approximate the square root on the left-
hand side of Eq. �C1� by �1− �	�2�2

2�1/2. The stiff limit is
obtained by substituting orbit �47� with �k=sup��Rk

z � , �Rk
xy � �

into Eq. �C1� and taking the Fourier component of Eq. �C1�
along the PP frequency wPP� �q� /�. We also multiply Eq.
�C1� by rb

2, so that the order-of-magnitude balancing posed
by the Fourier-transformed version of Eq. �C1� is

m2

��2�2 �
�1 − �	�2�2

2�1/2

�1 − �	��1�3 �1exp�− 	� . �C2�

The equation of motion for the electron is obtained by inter-
changing indices in Eq. �C2�. A salient feature of Eq. �C2� is
that 	 must be purely imaginary and multiple of �, 	=�qi,
so that the �’s can be real in Eq. �C2�; i.e., the phase shift
2 Im�	� must be a multiple of 2�. Considering the fraction
on the right-hand-side of Eq. �C2� as a given number, Eq.
�C2� and the corresponding equation for the electron are two
linear homogeneous equations for �1 and �2. Equating the
determinant of this homogeneous system to zero and disre-
garding smaller terms yields

��4exp�− 2	�
M

�
�1 − �	��1�5/2�1 − �	��2�5/2

��1 + �	��1��1 + �	��2�
. �C3�

Equation �C3� gives the main finite-amplitude correction to
Eq. �43�, to which it reduces for �1=�2=0. The finite-� cor-
rections cancel the �’s, which was the justification for the
approximation explained above Eq. �54�. When sup��1 ,�2�
approaches 1/ �	� from below, the right-hand side of Eq. �C3�
matches the O��4� left-hand side, so that Eq. �C3� accepts a
purely harmonic solution with 	=�qi, as we wanted to dem-
onstrate here.

After solving for the ping-pong oscillation, the dynamics
at the slow frequency is the next-to-leading of the multiscale
solution. For the electronic motion, Eq. �A10� has a zero-
order dissipative force along the unperturbed orbit, as illus-
trated in Fig. 3. This offending force has a component along
the electronic velocity that is given by

rb
2Fr = rb

22

3
x�1 = −

2e2

3c3�2rb
2ẋ1 = −

2

3
�3, �C4�

where we multiplied the force by rb
2, as in Eqs. �40� and

�B14�. The Lorentz force of the proton along the unperturbed
circular orbit is almost normal to the electronic velocity and
does not contribute much for the dissipation. On the equation
of the proton, the main offending force at zero order is the
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delayed interaction with the electron, instead of the much
smaller protonic self-interaction. Using Page’s series in the
same way of Ref. �17�, we find an offensive zero-order force
against the protonic velocity of the same magnitude of force
�C4�. It turns out that it is impossible to cancel the zero-order
force �C4� with the linear terms of the variational equations,
which is shown by averaging the linearized equations over
the orbital period, an averaging that yields a 4�4 linear
system with no solutions. The balancing of the offensive
zero-order force is nevertheless possible by using the reso-
nance between ping-pong modes that is introduced at qua-
dratic order by the spin-radiation term, as discussed below.

Multiplying the offensive force �C4� by the velocity along
the circular orbit yields an O��4� dissipated power. Again,
the discussion of the dissipated power must start from the
leading fast dynamics, as follows. Taking the scalar product
of Eq. �A10� with v1 and disregarding the contribution of the
protonic fields for the dissipated power yields

m1�v1 · a1� =
2

3
�1	�v1 · ȧ1� + 3�1

2�v1 · a1�2
 . �C5�

The pair of brackets on the right-hand side of Eq. �C5� is
multiplied by the possibly large factor �1, so that it must
vanish in the large-�v1� limit—i.e.,

�v1 · a1�2 � −
1

3�1
2 �v1 · ȧ1� . �C6�

The offending force �C4�, multiplied by the slow guiding-
center velocity �, gives only an O��4� contribution to the
right-hand side of Eq. �C5�. The dominant contribution is
given by the PP oscillation, of frequency � �	 � /�, and de-
fined by Eqs. �46� and �47�. We henceforth replace the ȧ1 on
the right-hand-side of Eq. �C6� by −��2 �	�2 /�2�v1. Multiply-
ing Eq. �C6� by rb

2 and using the fast component of orbit �47�
with �1�sup��R1

z � , �R1
xy � � yields

�	�2�1
2cos2��� �

�
3

�1 − �1
2�	�2� , �C7�

where � is the angle between the velocity and the accelera-
tion. In the limit when �v1 � →1, this angle � must be close to
ninety degrees, since �v1� must be less than one and �v1 ·a1�
= �d /dt���v1�2 /2�. Using Eq. �C7� together with �cos��� � �1
yields a lower bound for �1:

�1 �
1

2�	�
. �C8�

Next-to-leading in the multiscale solution is the guiding-
center dynamics—i.e., the equilibration of offending force
�C4�—a balance that takes place after the fast dynamics is
established as a harmonic oscillation with a radius given by
Eq. �C8�. In the following we give a third derivation of reso-
nance �52� by averaging the equations of motion over the
fast time scale. Due to the larger protonic mass, we hence-

forth assume that the protonic field at the electron averages
essentially to the Coulombian field, a force that rotates at the
guiding-center frequency. On the other hand, in the limit
�1 �	 � →1, the electronic field on the proton, averaged over
the fast time scale, is significantly changed. Analogously to
the derivation of Eq. �57�, the electronic spin-radiation field,
second term on the right-hand side of Eq. �C1�, averaged
over the fast time scale, rotates at the guiding-center fre-
quency � if resonance �52� holds. This averaged field adds to
the rotating electronic Coulombian field on the proton �not
included in Eq. �C1��, so that the averaged attractive force on
the proton deviates from the diametral direction. The proton
repositions along the circular orbit, until its velocity becomes
perpendicular to this perturbed centripetal force, as illus-
trated in Fig. 3. After repositioning, the angular distance be-
tween particles at the same time is less than 180°. The self-
consistent repositioning stops when the Coulombian field of
the proton acquires a component along the electronic veloc-
ity to balance the electronic self-interaction �C4�. The per-
turbed equilibrium position along the guiding-center orbit is
illustrated in Fig. 3. The situation of Fig. 3 is possible only at
resonance, when the averaged spin-radiation force acting on
the proton rotates at the guiding-center frequency. In Ref.
�17� we also used a resonance between mutually orthogonal
vibration modes. The present work goes beyond our simple
estimates of the helium dynamics of Ref.�17�. Unlike the
Coulombian orbits of helium �17�, Coulombian circular or-
bits of hydrogen radiate in dipole, and we have seen here that
the fast PP oscillations are essential to cancel this dipolar
radiation, a complex dynamics that demands a multiscale
solution. The PP modes are lost when the delay is expanded,
as in Page’s series of Ref. �17�, a nontrivial manifestation of
stiffness.

For � in the atomic magnitude, the lower bound �C8� is a
few percent of the interparticle distance; nevertheless, the
distance �1rb is already some 1000 classical electronic radii,
much larger than the radius of the fat Lorentz electron �27�.
To improve on estimate �C8� one needs the relation between
cos��� and �1−�1

2 �	�2�, which is beyond the present work. To
solve Eq. �C3� it suffices that either �R1

z � or �R1
xy� approaches

the upper limiting value 1/ �	�; the other Rk can take a much
lower value—i.e., a solution exists already in the limit when
just the electron rotates near the speed of light. As an esti-
mate for the angular momentum of gyration, Eq. �57�, we use
�R1

z � and �R1
xy�given by Eq. �C8�, yielding

�lxy� =
1

4��2q
. �C9�

Calculating the angular momentum �C9� with the first line of
Table I gives �lxy � =213.5. The angular momenta estimated
by Eq. �C9� depend on q, but are in the correct order of
magnitude. The electronic spin angular momentum of QED
is independent of the orbital quantum number and given by
�s � =�3 /2=118.
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