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Spatiotemporal chaos on a regular ring network of excitable Gray-Scott dynamical elements is transient. We
find that the addition of very few nonlocal network connections drastically changes the average lifetime of
spatiotemporal chaos. In the presence of a single shortcut local interface formation delays the collapse of
spatiotemporal chaos. This competes with a reduced average characteristic path length that advances the
collapse process. Two added shortcuts can prevent the collapse of spatiotemporal chaos by causing an
asymptotic local collapse.
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I. INTRODUCTION

Transient spatiotemporal chaos is a generic pattern in ex-
tended nonequilibrium systems across several disciplines. In
the absence of external perturbations, the spatiotemporal
complexity of the system changes spontaneously from cha-
otic to steady-state or periodic behavior. The mechanistic
understanding of the collapse remains elusive, in contrast to
low-dimensional systems where a chaotic repellor is known
to govern transient chaos �1�. A collapse of spatiotemporal
chaos has been reported in models for turbulent dynamics
�2�, for semiconductor charge transport �3�, for CO oxidation
on single-crystal Pt surfaces �4�, for a cubic autocatalytic
mass-action model �5�, and in a system of coupled logistic
maps �6�. In addition, spatiotemporal complexity with irregu-
lar dynamics and fast-decaying correlations but a negative
maximum Lyapunov exponent �“stable chaos”� was found to
be transient in systems of coupled one-dimensional maps
�7,8�. The collapse of spatiotemporal chaos has also been
suggested as an explanation for species extinction in ecology
�9,10�.

The asymptotic stability of chaotic dynamics in extended
systems is difficult to determine, since transient spatiotempo-
ral chaos may be extremely long lived; its average lifetime
typically increases exponentially with the size of the medium
�3–5,8,11�. In realistic distributed systems noise and nonlocal
coupling may influence the collapse process, which provides
further difficulties in determining the asymptotic stability
�12,13�. We study transient spatiotemporal chaos on ring net-
works with few added nonlocal couplings. The motivation
stems from realistic biological, technological, and social net-
work topologies that are neither completely regular nor com-
pletely random �14–18� and often have small-world �14� or
scale-free properties �15�.

It is commonly reported that network topology influences
synchronization. Nonlocal coupling usually enhances syn-
chronization behavior in networks �19–22�, which is gener-
ally attributed to the smaller average path length in the net-
work. In a heterogeneous distribution of connections,
however, a well-connected and overloaded network node can

prevent synchronization despite a reduced path length �23�;
however, it can enhance synchronization if the coupling
strength is weighted properly �24�. In all of these cases in-
sight into the stability of the synchronized state in linearly
coupled dynamical elements is given by the master stability
function �20,25� and its generalization for weighted networks
�26�.

Nonlocal coupling induces various dynamical behavior in
complex systems: Effects of scale-free networks include ran-
dom walk behavior �27�, coherence in coupled chaotic maps
�28�, vibrational modes in a Hamiltonian system of coupled
harmonic oscillators �29�, or the absence of epidemic thresh-
olds �30�. Effects of small-world topologies include taming
of asymptotic spatiotemporal chaos to spatially periodic mo-
tion at an optimum fraction of random shortcuts �31� and
prolongation of chaotic transients by slightly reducing the
degree of connectivity in a globally pulse-coupled random
oscillator network �32�. In a coupled map lattice the second-
order phase transition to turbulence via spatiotemporal inter-
mittency became first order above some critical rewiring
probability �33�.

Nonlocal connections in a network also influence the dy-
namics of various excitable systems: Fast-response and co-
herent oscillations have been found in a neuronal layer �34�;
self-sustained neural activity is caused by branching and re-
injection of propagating activity pulses �35�; in an epidemio-
logical model, the number of infected sites are oscillating
with time at large rewiring probability �19�; spiral-wave
propagation is sustained in the presence of small-world con-
nections in a spatially inhomogeneous excitable medium
�36�.

In this paper we report that transient spatiotemporal chaos
is clearly influenced by the addition of few nonlocal connec-
tions to a regular ring network of Gray-Scott excitable ele-
ments. We demonstrate in Sec. III that only a single shortcut
can drastically change the lifetime of spatiotemporal chaos.
Whether the lifetime is on average increased or decreased,
however, depends on the length of the shortcut. In Sec. IV
we discuss local dynamical consequences of the shortcut and
how they influence the global dynamics to cause the change
in the lifetime of spatiotemporal chaos. In Sec. V we show
that two or more added shortcuts can make transient spa-
tiotemporal chaos asymptotic.*Electronic address: ffraw1@uaf.edu
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II. THE MODEL

The network of N coupled, identical, continuous-time dy-
namical elements consists of an excitable system at each net-
work node n �n=1,2 , . . . ,N� and diffusive coupling between
the nodes.

The excitable dynamics at each node is given by the two-
variable Gray-Scott model �37�, which describes an open,
autocatalytic reaction A+2B→3B and B→C, where A rep-
resents the reactant �resource�, B the autocatalytic species,
and C the final product. This reaction is modeled by the
following coupled dimensionless differential equations:

dan

dt
= 1 − an − �anbn

2 + �n�an� ,

dbn

dt
= �anbn

2 − �bn + �n�bn� . �1�

where an and bn are the dimensionless concentrations of re-
source A and species B at node n and � and � are the
bifurcation parameters, determined by the rate constants and
the reactant concentration in the reservoir. The coupling term
�n�·� depends on the connectivity of node n and the strength
of the diffusive coupling.

The spatially uniform system is characterized by three
steady states

Sn = �1,0� ,

Sf = �1 − �1 − 4�2/�

2
,
1 + �1 − 4�2/�

2�
� ,

Ss = �1 + �1 − 4�2/�

2
,
1 − �1 − 4�2/�

2�
� .

Linear stability analysis shows that Sn is a stable node, which
exists for all parameter values � and �. Sf is an unstable
focus and Ss is a saddle point, which exist for � above the
saddle node bifurcation, �sn=4�2. In the range 2���4, Sf

becomes a stable focus above the subcritical Hopf bifurca-
tion point, �H=�4 / ��−1�. In the parameter regime of inter-
est ��sn ,�H� and �=2.8 the dynamical system at each node
is excitable.

In a regular ring network the diffusive coupling is be-
tween next nearest neighbors and the boundary conditions
are periodic. Resource concentration a and species concen-
tration b follow the same Laplacian coupling scheme,

�n�xn� = D��xn+1 − xn� + �xn−1 − xn�� . �2�

D determines the strength of the coupling, and each concen-
tration gradient adds to the magnitude of nodal interaction.

On a regular ring network of Gray-Scott excitable ele-
ments �Eqs. �1� and �2�� the system dynamics exhibits tran-
sient spatiotemporal chaos �5�. After a regime of sustained
spatiotemporal chaos with a rapid decay of spatial correla-
tions �38,39� and a positive largest Lyapunov exponent �5�,
the system exhibits a spontaneous, intrinsic collapse to the
homogeneous stable steady state Sn with extinct species. The
spatiotemporally chaotic dynamics was characterized by a

Šilnikov-type orbit that consists of a heteroclinic connection
from the unstable focus Sf to the stable node Sn in the ho-
mogeneous system and a heteroclinic connection from Sn to
Sf for the traveling wave system �38�. A typical trajectory at
a network node spirals away from the unstable focus toward
the stable node, only to be reinjected to the unstable focus
via the propagating reaction-diffusion activity. The parameter
range ��c ,�H� for wave-induced spatiotemporal chaos is de-
termined by the critical threshold for traveling wave solu-
tions �c and the Hopf bifurcation point �H, with �c�33 for
�=2.8 �38�.

The regular ring topology in Eq. �2� is generalized to
allow for nonlocal coupling (shortcuts) in the network. Each
network node n is connected to its two neighrest neighbors
and possibly to a third distant node n+m. Resource concen-
tration a and species concentration b both follow the gener-
alized Laplacian coupling scheme

�n�xn,x�� = Dn 	
��K

�x� − xn� , �3�

where K= 
n−1,n+1,n+m�3,kn
� and �m��1. K represents

the set of nodes connected to node n, and kn=2+�3,kn
is the

total number of connections to node n �excluding self-
connections�. The weighted coupling coefficient Dn=2D /kn
depends on the uniform coupling parameter D from the regu-
lar network and on kn �40�. For the case where node n is
connected to only its two nearest neighbors, Dn=D and Eq.
�3� reduces to the expression for a regular network given in
Eq. �2�. The weighted coupling parameter Dn ensures that the
perturbation �n a node n is experiencing is the same on
average for all nodes, independent of the number of connec-
tions made to it. It also ensures that any node n in a complex
network, where kn varies with n, experiences on average the
same perturbation �n as a node in the corresponding regular
network, where Dn=D. Consequently differences in the dy-
namics on various networks of size N are due to differences
in their topology, and not due to differences in perturbations
�n that might be caused by a well connected node. Weighing
of the incoming perturbation at a node is commonly accepted
in other systems—for example, in neuronal networks.

Throughout this article the length s of a shortcut is an
important parameter that determines its dynamical and topo-
logical consequences for spatiotemporal chaos. s is defined
as the minimum number of edges between the two end nodes
of the shortcut, normalized by the number of nodes N in the
network. For a network with even number of nodes the long-
est shortcut is s=0.5.

III. LIFETIME OF SPATIOTEMPORAL CHAOS IN THE
PRESENCE OF A SINGLE SHORTCUT

The lifetime of spatiotemporal chaos on a regular ring
network �5� is compared to the lifetime when a single short-
cut of length s is added to the network. For each network
realization the same 100 randomly chosen initial conditions
for spatiotemporal chaos were used �41� and the shortcut was
added after spatiotemporal chaos fully developed. Figure
1�a� shows a clear increase of the average lifetime T of spa-
tiotemporal chaos with shortcut length s for small shortcuts
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s�0.05. With further increase of the shortcut length, how-
ever, the lifetime T starts to decrease and falls below the
value for the regular ring network at s=0.15. These two dis-
tinct regimes separated by s=0.05 point to two competing
dynamical consequences of the shortcut, discussed below.
For small shortcut length s the statistical fluctuations in the
lifetimes of spatiotemporal chaos are large and comparable
to the ones on the regular network �s=0�. For larger shortcut
lengths spatiotemporal chaos collapses rather quickly, which
prevents large statistical fluctuations in T �42�. Figure 1�a�
also demonstrates that the total average transient time over
all shortcut lengths with s�0, an approximation of the life-
time for random single shortcuts, is reduced in comparison to
the regular ring network.

In the regime s	0.05 the decrease of the mean transient
time with s for longer shortcuts is consistent with the de-
crease in the average characteristic path length l of the net-
work �inset of Fig. 1�a��. l is defined as the average shortest
distance between any pairs of nodes in the network, normal-

ized with the average shortest distance for the corresponding
regular ring network. A shortcut that spans a few nodes
changes the characteristic path length only a little, while the
largest possible shortcut s=0.5, which spans half the nodes,
yields the minimum average path length lmin= �3N2+6N
−8� /4N2 �43�. For large networks N→
, lmin approaches
0.75. It is frequently reported �20,34� that networks of size N
with a smaller average path length exhibit a higher syn-
chrony in their dynamics than those with larger l. Synchrony
in the form of a quasihomogeneous network is an essential
precursor to the collapse of spatiotemporal chaos on a regu-
lar ring network �Eqs. �1� and �2��. In this quasihomogeneous
state diffusive perturbations that normally initiate reaction-
diffusion fronts and thus sustain spatiotemporal chaos are
subthreshold. The trajectories throughout the medium closely
follow the heteroclinic connection from the unstable focus to
the stable node Sn, and the system reaches its stable, spatially
homogeneous asymptotic state. The presence of a shortcut
reduces the average path length in the network and promotes
the quasihomogeneous medium to statistically advance the
collapse of spatiotemporal chaos.

In the regime s�0.05, however, the monotonic decrease
of l with s is in contrast to the increase of the average life-
time T �Fig. 1�a��. This points to another dynamical mecha-
nism of the shortcut, which outweighs the effects of the de-
creasing l. This mechanism is further supported by Fig. 1�b�,
which shows that a shortcut of length s does not always
decrease the lifetime of spatiotemporal chaos. Even for s
=0.5, where the characteristic path length l is reduced by
approximately 25%, some simulations show a delay in the
collapse of spatiotemporal chaos. Insight into delay mecha-
nisms for the collapse is given in the next section from a
detailed local analysis of the dynamics at the shortcut nodes
rather than from a global network parameter like l.

On a regular ring network the lifetime of spatiotemporal
chaos increases exponentially with the network size N �5�. In
the presence of a shortcut the exponential dependence per-
sists as shown in Fig. 2 for two characteristic shortcut
lengths. For a long shortcut �s=0.25 in Fig. 2� T increases
slower than for the regular network, and for a small shortcut
�s=0.05� the increase is stronger than for the regular case.

FIG. 1. �a� Average transient lifetime T of spatiotemporal chaos
versus shortcut length s. The ring network consists of N=180 nodes
with no shortcut �s=0, dashed horizontal line� and with a single
added shortcut �s�0�. Each data point was determined from 100
randomly chosen initial conditions for spatiotemporal chaos �41�
and a fixed location for the shortcut of length s. The error bars were
calculated as one standard deviation. Equation �1� was integrated
with an explicit Euler method and a numerical time step dt
=0.0003; the system parameters are �=33.7, �=2.8, and D=16.
The solid horizontal line represents the averaged transient time over
all shortcuts of length s�0. The inset graph shows the analytically
calculated characteristic path length l as a function of the shortcut
length s, where l is normalized with the characteristic path length of
the regular network �s=0�. �b� Percentage of simulations from �a� in
which the presence of a single shortcut decreased �solid line� or
increased �dashed line� the transient time for the regular ring net-
work �s=0� as a function of the shortcut length s.

FIG. 2. Average lifetime T of spatiotemporal chaos versus num-
ber of nodes N for the ring network with no shortcut ��� and with
a single shortcut of lengh s=0.05 ��� and s=0.25 ���. The solid
line shows a “robust least absolute deviation” fit of the average
lifetimes for the regular ring network �5�. All of the other param-
eters are the same as in Fig. 1.
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IV. LOCAL DYNAMICAL CONSEQUENCES OF A SINGLE
SHORTCUT

Spatiotemporal chaos on a regular ring network is charac-
terized by an irregular distribution of local extinct regions in
space and time, in which species B is extinct �b=0� and
resource A recovers to its maximum value �a=1�. The trian-
gular shape of the extinction patterns ��5�, Fig. 3� is due to
the propagation of species B into regions of high resource
concentration A from both sides. In the presence of a single
shortcut �Eq. �3�� the extinction patterns that include one of
the shortcut’s end nodes are altered in shape due to the for-
mation of an interface. A systematic analysis of these emer-
gent local extinctions �13�, together with a manipulation of
the location and length of the shortcut, reveals a few repre-
sentative interface patterns that are marked by boxes in Figs.
3�a� and 3�b�. Outside the box, the shortcut is not visibly
evident in the spatiotemporal dynamics although preliminary
statistical results point to more local extinctions in the pres-
ence of nonlocal coupling. An interface forms when one end
of the shortcut is within a local extinct region, while the
other is not. Then the magnitude of the gradient and hence of
the coupling term between the two linked nodes, n and n
+m in Eq. �3�, is largest.

The mechanisms of interface formation in Figs. 3�a� and
3�b� are similar. In Fig. 3�a� the right end of the shortcut is
initially outside the local extinction. The reaction-diffusion
fronts enter the extinct regime from both sides to form a
triangular pattern. The interface, which is located at the right
end of the shortcut, exists as long as one shortcut is within
the extinction regime and the other is not. This interface is
caused when the nonlocal coupling “transports” species B to
the inside of the extinct regime which provides a subthresh-
old perturbation to the extinct state Sn that cannot initiate and
support a propagating reaction-diffusion front from within
the extinct regime. Concurrent with the transport of B to the
inside is the drainage of resource A from inside, where a
=1, to the outside, where a is clearly smaller �Fig. 3�a��. If
the shortcut in Fig. 3�a� would be extended to the right the
same qualitative interface pattern would arise.

In Fig. 3�b� the mechanism for the interface is similar
except that the shortcut is initially completely within the lo-
cal extinct region. Consequently the gradient between the
linked nodes n and n+m is zero and Eq. �3� reduces to Eq.
�2�. A reaction-diffusion front is entering the extinct region
from both sides until at the time of point “1” �Fig. 3�c�� the
right front meets the right end of the shortcut. An interface
forms �right vertical line in Fig. 3�c��, since the concentration
gradient along the shortcut is no longer negligible �44�: the

FIG. 3. Spatiotemporal dynamics of resource concentration a on a ring network �N=400, single shortcut� in the presence of an interface.
The simulations in �a� and �b� differ by the length of the shortcut. In �a� the shortcut is made between node 50 and node 95 with a length
of s=0.11, and in �b� the shortcut is made between node 50 and node 70 with a length of s=0.05. The box marks the presence of an interface
in the neighborhood of the shortcut. The shortcut was added after spatiotemporal chaos developed. The initial conditions consist of a
homogeneously distributed reactant A, a=1, over the entire network and randomly seeded species with concentration b=1 �5�. A reactant
concentration of a=1 �a=0� is represented in white �black�. All the other numerical and system parameters are the same as in Fig. 1. �c�
outlines important features of a local extinction of type �b�. The closed solid line marks the region of local extinction; an interface in the form
of a vertical line forms at point �1� and deteriorates at the time corresponding to point �2�. Such an interface is always accompanied by a
second vertical line at the left end of the shortcut within the extinct region. The dashed line indicates how the local extinction would evolve
from point �1� in the absence of the shortcut to form a triangular pattern. In �a�–�c� the arrows mark the left and right ends of the single added
shortcut.
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left end node is within the extinct region and the right end is
outside. As in the previous case �Fig. 3�a�� the interface is
maintained by the drainage of species B from outside into the
extinct region along the shortcut and vice versa for resource
A. In contrast to the previous case the interface at the right
end node is located at the boundary of the local extinction
and prevents the right reaction-diffusion front from entering
the locally extinct region, since the perturbations at the
boundary are below the excitability threshold due to the
drainage of B along the shortcut. The interface disappears
when the propagating reaction-diffusion front from the left
meets the left end of the shortcut at the time of point “2”
�Fig. 3�c�� such that the dynamics at both end nodes is simi-
lar and the concentration gradients along the shortcut are
negligible. Consequently, drainage of A and B along the
shortcut is absent and both reaction-diffusion fronts provide
superthreshold perturbations to the stable extinct state Sn to
propagate symmetrically into the local extinction from both
sides.

During the presence of the interface the propagation of
one wave front is halted in cases like that of Figs. 3�b� and
3�c�. Consequently the local extinction lasts for a longer time
than in the absence of the shortcut �dashed line in Fig. 3�c��
and thus delays the collapse of spatiotemporal chaos on the
global network, since the boundary of a local extinction pro-
vides a superthreshold perturbation to the network dynamics
to sustain the propagation of reaction-diffusion fronts �5�. To
prolong a local extinction a shortcut must be entirely con-
tained by that extinction �as in Figs. 3�b� and 3�c��. This,
together with the fact that the frequency of local extinctions
decreases exponentially with increasing size, makes the de-
lay mechanism most important for shorter shortcuts. For
longer shortcuts, however, the decrease in path length domi-
nates to advance the collapse of spatiotemporal chaos. Figure
1�a� shows an increased lifetime of spatiotemporal chaos for
small shortcut lengths s and a decreased lifetime for larger s.

The concentration profiles for species B at successive mo-
ments in time �Fig. 4� provide further insight into the evolu-
tion of the concentration gradient along the shortcut and its
consequences for the formation and deterioration of the in-
terface in Fig. 3�b�. At time t=940, just prior to the interface
formation, the shortcut between nodes 50 and 70 is com-
pletely within the local extinct region and the gradient be-
tween its nodes is close to zero. At time t=960 species B has
reached the right end of the shortcut. The interface is marked
by two cusps located at the end nodes with a non-negligible
concentration gradient. For t�960 the propagation of spe-
cies B into the extinct region is essentially halted until at t
=1000 the propagating species from the left has reached the
left end of the shortcut. The gradient along the shortcut is
clearly reduced, and the interface ceases. With further in-
creasing time B continues to symmetrically move into the
extinct region from both sides as it would in the absence of
the shortcut.

V. CAN TWO SHORTCUTS MAKE TRANSIENT CHAOS
ASYMPTOTIC?

A single shortcut that is initially located within an extinct
region temporarily prevents species propagation from one

side � Fig. 3�b�� into this region. Two shortcuts, however, can
form two interfaces that together prevent species invasion
from both sides isolating the local extinct region for all times
�13� as shown in Fig. 5. Since the presence of a local extinc-
tion prevents the global collapse of spatiotemporal chaos, an
asymptotic local extinction �stripe� makes transient spa-

FIG. 4. Successive concentration profiles for species B during
the formation �a� and deterioration �b� of the interface in Fig. 3�b�.
The shortcut between nodes 50 and 70 and all the other parameters
are the same as in Fig. 3�b�.

FIG. 5. Spatiotemporal dynamics of resource concentration a
during stripe formation from two interfaces. Two shortcuts have
been added to the ring network between nodes 30 and 45 and nodes
50 and 70 as marked. All the other numerical and system param-
eters are the same as in Fig. 3.
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tiotemporal chaos asymptotic. Thus, only two shortcuts are
necessary to prevent the collapse of spatiotemporal chaos in
Eqs. �1� and �3� for any network size N, provided that the
two �overlapping or nonoverlapping� shortcuts fall within a
single local extinction to prevent species propagation from
both sides. Adding two shortcuts can enhance synchrony in
the local neighborhood by forming a stripe �Fig. 5�, which in
turn prevents synchrony of the entire network.

Two or more shortcuts, however, do not always prevent
the collapse of spatiotemporal chaos since more shortcuts
also cause a smaller average characteristic path length that
promotes the collapse process as discussed in Sec. III. Spa-
tiotemporal chaos on a ring network with nonlocal connec-
tions is governed by a competition between synchrony over
the entire network and local synchrony. Synchrony over the
entire network is expressed in the generation of an extinction
of the size of the network to cause the transient behavior of
spatiotemporal chaos. Local synchrony is expressed in the
generation of local extinctions and stripes, with stripes caus-
ing asymptotic spatiotemporal chaos. In the presence of 2
shortcuts 27 out of 100 simulations �Fig. 6� show transient
spatiotemporal chaos, whereas 73 simulations show
asymptotic spatiotemporal chaos. This is in contrast to a ring
network with no shortcut or with a single shortcut where all
the simulations show transient chaos.

A preliminary statistical analysis of this competition be-
tween transient and asymptotic spatiotemporal chaos shows
that transient chaos becomes less likely when increasing the
number of shortcuts from 1 to 3 �Fig. 6�. Such a decrease in
global collapse frequency is consistent with the fact that an
increasing number of shortcuts can provide a higher chance

for stripe formation due to a higher chance of two simulta-
neous interface formations within a single local extinct re-
gion. If more than three shortcuts are added to the ring net-
work, the chance for global extinction increases again with
an increasing number of shortcuts, because the decreasing
average path length dominates the synchronization properties
in the network. We expect that this trend continues for an
even larger number of shortcuts.

VI. CONCLUSIONS

Transient spatiotemporal chaos on a regular ring network
of Gray-Scott excitable elements at each node becomes
asymptotic with a chance of 70% with the addition of two
shortcuts. This demonstrates that very small changes in the
network’s topology can profoundly alter the dynamics on the
network. Even the addition of a single shortcut can drasti-
cally change the average lifetime of spatiotemporal chaos;
short connections increase the average lifetime and long con-
nections predominantly decrease it. The shortcut’s dynamical
consequence—i.e., the prevention of species propagation
through interface formation—delays the global collapse of
spatiotemporal chaos, while the shortcut’s topological
consequence—i.e., the reduction of the characteristic path
length in the network—favors the collapse process. The lat-
ter is consistent with earlier studies where small-world topol-
ogy improves synchronization in the network �19–21�, since
the collapse process in Eqs. �1� and �3� terminates in a glo-
bally synchronized state �5�.

The master stability function �20,25� and its generaliza-
tion for weighted networks �26� allows the quantification of
the synchronization stability of linearly coupled dynamical
elements. Further studies will explore the role of the master
stability function for the collapse of spatiotemporal chaos on
a regular ring network with and without added shortcuts. It
will be of particular interest whether the local asymptotic
synchronization pattern �“stripe”�, which prevents the col-
lapse of spatiotemporal chaos, is predicted by the master
stability function, which is a quantity that describes the glo-
bal network synchronization.

In some natural systems like ecological networks a dy-
namically changing network topology might be more realis-
tic than the static topology considered in this article. The
local synchronous pattern �“stripe”� that prevents the col-
lapse of spatiotemporal chaos in the static network will des-
integrate if a shortcut is removed. Therefore, if the locations
of added shortcuts change with time, spatiotemporal chaos
will always be transient possibly with long transient times.
The lifetime is determined by a competition between delay
processes like the formation of local synchronous patterns
�“temporary stripes”� and interfaces, and processes that ad-
vance the collapse of spatiotemporal chaos like a shortcut-
induced reduction of the average distance between any two
nodes of the network.

Transient spatiotemporal chaos is also discussed as a
source for species extinction in theoretical ecologies �9,10�.
An increasing interest in spatiotemporal ecological dynamics
�45� stems from the identification of spatial symmetry �46� as
a possible cause of extinction, although the origin of spatial

FIG. 6. Extinction frequency as a function of the number of
added shortcuts in a ring network of N=180 nodes. Each data point
corresponds to 100 simulations with randomly chosen shortcut lo-
cations and a fixed initial condition for spatiotemporal chaos. The
extinction frequency describes the percentage of simulations in
which spatiotemporal chaos collapsed before the formation of a
stripe. All the other parameters are the same as in Fig. 1.
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synchronization is still under debate �47�. The Gray-Scott
excitable dynamics in Eq. �1� phenomenologically mimics an
ecological system, as it captures major ecological mecha-
nisms like density-dependent species reproduction, competi-
tion for resource, a natural exponential species decay, and
diffusion-based dispersal of species and resources. Long-
distance movement like “hitchhiking insects in a truck” �48�

are not accounted for by diffusive motion on a regular net-
work but by the addition of nonlocal coupling in a network.
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