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We examine the power spectrum of the energy level fluctuations of a family of critical power-law random
banded matrices whose spectral properties are similar to those of a disordered conductor at the Anderson
transition. It is shown analytically and numerically that at the Anderson transition the power spectrum presents
1 / f2 noise for small frequencies but 1 / f noise for larger frequencies. The analysis of the region between these
two power-law limits gives an accurate estimation of the Thouless energy of the system. Finally we discuss in
what circumstances these findings may be relevant in the case of nonrandom Hamiltonians.
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I. INTRODUCTION

The analysis of the level statistics is one of the main tools
in the study of quantum complex systems. Part of this inter-
est is due to the fact that, once the model-dependent spectral
density is extracted from the spectrum, level correlations of
apparently unrelated models shows striking universal fea-
tures in a variety of physical situations. For instance, in the
context of deterministic Hamiltonians, the celebrated
Bohigas-Giannoni-Schmit conjecture �1� states the level sta-
tistics of a deterministic quantum system whose classical
counterpart is fully chaotic depend only on the global sym-
metries of the system and are described by the prediction of
random matrix theory (usually referred to as Wigner-Dyson
statistics �WD� �2�). Remarkably the same WD statistics also
describes �3� the spectral correlations of a disordered system
in the metallic limit. In the strong disorder limit, due to the
phenomenon of Anderson localization, eigenvalues are not
correlated and the level statistics are universally described by
Poisson statistics. For deterministic systems the same statis-
tics are generic of systems whose classical dynamics is inte-
grable �4�. These universal features are unveiled by comput-
ing different spectral correlators from the unfolded spectrum.
Two popular choices are the level spacing distribution P�s�
�the probability of having two eigenvalues at a distance s� for
short range correlations and the number variance �2�L�
= �L2�− �L�2 �it measures deviations of the number of eigen-
values in an interval L from its mean value� for long range
correlations.

A different spectral characterization of universal features
has been recently introduced in the context of quantum chaos
�5,6�. In �5,6�, the unfolded energy levels are considered as
elements of a time series. Specifically they compute the
power spectrum

S�k� = � 1
�N

	
n=1

N

�n exp
− 2�ikn

N
��2

, �1�

of the signal

�n = 	
i=1

n

�si − s̄� = �n+1 − �1 − n , �2�

where si=�i+1−�i, �i is the ith unfolded eigenvalue and N is
the length of the series. The signal �n is by definition the
deviation of the ith nearest neighbor spacing si from its mean
value s̄ which is unity for unfolded eigenvalues. According
to �5� certain features of S�k� are universal, they do not de-
pend on the details of the Hamiltonian but only on the type
of classical dynamics: S�k��1/k for chaotic and S�k�
�1/k2 for integrable motion.

Signatures of universality are also found in the statistical
properties of the eigenfunctions. Thus Poisson statistics is
associated with exponential localization and WD statistics is
typical of systems in which the eigenstates are delocalized
and can be effectively represented by a superposition of
plane waves with random phases.

Universal features appear in principle only for small en-
ergy scales of the order of the mean level spacing such that
an initially localized wave packet has already explored the
whole phase space available. In other words, universality is
related to a certain ergodic limit of the quantum dynamics.
For larger energy differences the system has not yet relaxed
to the ergodic limit and deviations from universality are ex-
pected. For finite disordered systems this scale is determined
by the dimensionless conductance g=Ec /� �Ec, the Thouless
energy, is a scale of energy associated with the classical dif-
fusion time through sample and � is the mean level spacing�.
Roughly speaking the numerical value of g corresponds with
the number of eigenvalues whose spectral correlations are
universally described by WD statistics.

Universal features not related to any ergodic limit �they
persist beyond the mean level spacing scale� have also been
observed in a disordered system at the metal-insulator tran-
sition also referred to as Anderson transition �AT�. By uni-
versality in this case we mean that certain parameters char-
acterizing the AT as the slope of the number variance, the
value of the dimensional conductance, or the set of multi-
fractal dimensions Dq �see below for a definition� do not
depend on boundary conditions, system shape, or the micro-
scopic details of the disordered potential. It is by now well
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established that a disordered system with short range hop-
ping in more than two dimensions undergoes an AT �7,8� at
the center of the band for a critical amount of disorder �for
critical we mean a disorder such that, if increased, all the
states in the band become exponentially localized�. The di-
mensionless conductance g at the AT is about unity so spec-
tral correlations beyond the mean level spacing scale de-
scribe truly dynamical features of the system.

Indeed signatures of an AT are found in both level statis-
tics and eigenfunctions. Systems belonging to this new uni-
versality class have multifractal eigenstates. Intuitively mul-
tifractality means that the eigenstates have structures at all
scales. In a more formal way multifractality is defined
through the anomalous scaling of the eigenfunctions mo-
ments Pq=
ddr���r��2q�L−Dq�q−1� with respect to the sample
size L, where Dq is a set of different exponents describing the
AT �9�.

Level statistics at the AT �commonly referred to as critical
statistics �10�� is intermediate between WD and Poisson sta-
tistics. Although a formal definition is still missing, typical
features of critical statistics include: scale invariant spectrum
�11�, level repulsion, and linear number variance ��2�L�
��L� �12� as for a insulator ��=1� but with a slope smaller
�	1 �0.27 for the three-dimensional �3D� Anderson transi-
tion�. Similar spectral properties have also been found in
random matrix models based on soft confining potentials
�13�, effective eigenvalue distributions �14,15� related to the
Calogero-Sutherland model �16� at finite temperature, and
random banded matrices with power-law decay �17�. The last
one is specially interesting since an AT �for the case of 1 /r
decay� has been established analytically by mapping the
problem onto a nonlinear 
 model.

In this paper we propose an alternative spectral character-
ization of the Anderson transition based on the analysis of
the power spectrum S�k� introduced above. We will also
show that the study of S�k� provides with an accurate way to
locate the Thouless energy of a disordered system. Finally
we will discuss the relevance of our findings for nonrandom
Hamiltonians. For instance, it will be shown that S�k�
�1/k2 is not exclusive of quantum systems whose classical
counterpart is integrable. Consequently a precise classifica-
tory scheme based on S�k� must include other features of
S�k� in addition to the exponent of the power-law decay.

The organization of the paper is as follows. In Sec. II we
introduce the model to be investigated. In Secs. III and IV
the power spectrum S�k� is evaluated both analytically and
numerically for a broad range of parameters. Based on these
findings we propose a spectral characterization of the Ander-
son transition. Finally in Sec. V we discuss in what situations
our findings may be relevant for nonrandom quantum sys-
tems.

II. THE MODEL

Unlike WD or Poisson statistics, critical statistics is not
parameter free. Together with generic properties such as
scale invariance, level repulsion, and linear number variance
�2�L�=�L L�1, there are also features as the numerical
value of the slope of the number variance � which, for short

range Anderson models, depends on the Euclidean dimen-
sion d of the sample. Thus for the lowest critical dimension
d=2+� ���0� �8�, ���
1. In the opposite limit d�1, the
slope ��1 is close to the unity similar to the case of an
insulator.

In this paper, instead of looking at short range Anderson
models, we will focus on certain generalized random matrix
models which have been shown to reproduce critical statis-
tics �10� with great accuracy. An advantage of these models
is that exact analytical solutions are available in a certain
region of parameters �13,15,17�.

We investigate the ensemble of random complex Hermit-

ian matrices Ĥ whose matrix elements Hij are independently
distributed Gaussian variables with zero mean �Hij�=0 and
variance

��Hij�2� =
1

2
�1 +

1

b2

sin2���i − j�/N�
��/N�2 �−1

. �3�

For any value of the bandwidth 0	b	�, the spectral cor-
relations are given by critical statistics and the eigenvectors
are multifractal exactly as in the conventional AT in 2	d
	� �17�. The limit b→� corresponds with the standard
Gaussian unitary ensemble �GUE� of random matrices. The
region b�1 �weak diagonal disorder, �
1� corresponds
with d=2+� ��
1� and the b
1 limit with d�1 and �
�1 �strong diagonal disorder�. For matrices with unitary
symmetry these two limits are accessible to analytical tech-
niques �17,18�. Here we do not discuss the details of these
calculations but just enumerate certain results we will use
later on in the calculation of the power spectrum S�k�.

For b�1, level statistics can be rigorously investigated
after mapping the random banded matrix onto a supersym-
metry 
 model. It can be shown �17� that, in this limit, the
connected part of two level correlation function �TLCF� is
given by

R2�s� =
���s/2���− s/2��

���0��2 − 1 = ��s� −
1

16b2

sin2��s�
sinh2��s/4b�

,

�4�

where ��s=E /��=	i��s−si� is the spectral density in units
of the mean level spacing �=1/ ���0��, brackets stand for
ensemble average and ���0�� is the mean spectral density in
the region of the spectrum to be studied.

For b
1 various spectral correlators can also be calcu-
lated explicitly by a virial expansion around the Poisson limit
�18� �for a more heuristic approach see �17��.

The region b�1 is not yet accessible to analytical tech-
niques. However there is a related exactly solvable random
matrix model �15� which to leading order has the same TLCF
in the two regions �b
1,b�1� discussed above. Its joint
probability distribution is given by

P�H,b� =� dUe−1/2 TrHH†
e−b/2 Tr�U,H��U,H�†

. �5�

Here, the N�N matrices H and U are Hermitian and unitary,
respectively, and the integration measure dU is the Haar
measure. Despite its complicated form, it can be shown
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�14,15� that the joint distribution of eigenvalues of H is equal
to the diagonal element of the density matrix of a system of
free spinless fermions at finite temperature T=1/b confined
in a harmonic potential. By using elementary statistical me-
chanics techniques it can be shown that the TLCF for arbi-
trary b is given by �14,15�

R2�s� = ��s� − 
�
0

� cos��st/��0��
��0�

1

1 + zet2
dt�2

, �6�

where h=1/2�b, z=1/ �e1/h−1�, and ��0�=
0
�1/ �1+zet2�.

We shall use this expression in the analytical evaluation of
the power spectrum for intermediate values of b and then
check its validity by carrying out numerical simulations of
the random banded model Eq. �3�.

III. ANALYTICAL EVALUATION OF S„k…. POWER
SPECTRUM CHARACTERIZATION OF CRITICAL

STATISTICS

Our goal is to compute the power spectrum

�S�k�� =�� 1
�N

	
n=1

N

�n exp
− 2�ikn

N
��2� , �7�

with �n=	i=1
n si− s̄=�n+1−�1−n, �n represents the nth un-

folded eigenvalue of the critical random banded model Eq.
�3� and brackets stand for ensemble average.

In a first stage we evaluate �S�k�� in a continuous approxi-
mation, �S�k��= �S�k��cont, 	→
, si→����d�, and s̄
→ �̄����d�� where ����=	i���−�i� is the full spectral density
and �̄��� is just the smooth part of it �the one utilized to
unfold the spectrum�.

The power spectrum is now given by

�S�k��cont = ��� d������exp�− 2�i�k��2�
=��

−�

+� �
−�

+�

d��d� exp�− 2�i��

− ���k������

�̃����̃����d��d�� , �8�

with �����=
�d���̃���� and �̃���=����− �̄���.
After integrating by parts in � and �� the above expression

simplifies to

�S�k��cont =
1

4�2k2�
−�

+� �
−�

+�

d��d� exp�− 2�i��

− ���k�R2��,��� , �9�

where R2�� ,��� is the TLCF defined previously. Since the
spectrum is translational invariant �we are far from the
edges� R2�� ,���=R2�s=�−��� and

�S�k��cont =
1

4�2k2�
−�

�

exp�− 2�isk�R2�s� =
1

4�2k2K�k� ,

�10�

where K�k�, the Fourier transform of the TLCF, is usually
referred to as the spectral form factor.

Once we have obtained an explicit expression for the
power spectrum in terms of known quantities as R2�s� we
have to go back to the original discrete formulation. This can
be easily done by following standard relations between the
discrete and the continuous Fourier transform, here we
present the final result and refer to �6,20� for additional de-
tails

S�k� =
K�t�

4�2t2 + 	
q=1

� � K�t + q�
4�2�t + q�2 +

K�q − t�
4�2�q − t�2� + � ,

�11�

with t=k /N and � a constant given by �= �K�0�−1�2 /12
which accounts for the differences between the fluctuations
of 
��
���̃����̃�����d��d� and those of the original discrete
correlator �n �see �20� for details�. For the sake of simplicity
we set �S�k��=S�k�. Finally a closed expression of the power
spectrum S�k� as a function of the band size b=1/2�h is
obtained by combining Eqs. �11�, �4�, and �6�.

In the region b�1 the spectral form factor can be explic-
itly evaluated by using the TLCF of Eq. �4� �27�

K�t� = 1 −
1

2
��1 − t�coth
2 − 2t

h
� + �1 + t�coth
2 + 2t

h
�

− 2t coth�2t/h�� . �12�

We can distinguish two different regions. For t
h
=1/2�b, corresponding to eigenvalues separated a distance
much larger than the mean level spacing, K�t��h /2 is a
constant and S�k��h / �8�2t2�, similar to the case of Poisson
statistics. However for Poisson statistics K�0�=1 but in our
case K�0�=h /2. This is an important difference since Pois-
son statistics is associated with eigenstates exponentially lo-
calized but for K�0��1 the eigenstates are multifractal and
level statistics are described by critical statistics. It seems
that the exponent of the decay of S�k� does not specify com-
pletely the nature of the quantum dynamics. We will go back
to this point when we discuss applications of our work to
nonrandom Hamiltonians. In passing we mention that the
multifractal dimension D2 may be inferred from the power
spectrum S�k�. According to Ref. �26�, K�0�= �d−D2� /2d
and consequently, for sufficiently small k, S�k�= ��d
−D2� /2d��1/4�2t2� where d is the space dimension.

In the opposite limit t�h=1/2�b, K�t�= t, and S�t�
�1/ �2�2t� in agreement with the result for WD statistics
�GUE�. The transition region between the two types of
power-law decay �1/ t and 1/ t2� corresponds to the Thouless
energy of the system. As usual it separates short range cor-
relations still controlled by WD statistics from long �beyond
the Thouless energy� range correlations in which typical fea-
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tures of the AT appear. We have thus found that the power
spectrum in the limit b�1, corresponding to the case of a
disordered system in 2+� dimensions with short range dis-
order at the AT, has different power-law exponents depend-
ing on the spectral region of interest, these differences can be
effectively utilized to find signatures of an AT from a given
spectrum. We remark that a somehow similar analysis in-
volving only the spectral form factor �not S�k�� was first
reported in Ref. �27�.

Analogously, in the region b=1/2�h
1, which corre-
sponds to the case of a disordered conductor in d�1, a
straightforward calculation shows that K�t�=1−1/�2h for t

h and then goes to K�t�=1 for t�h. Consequently S�t�
�1/ t2 up to scales smaller than the mean level spacing.
Strictly speaking there is a narrow region for t�1 in which
K�t� is linear. However the transition region can not be in-
terpreted as a Thouless energy since level statistics deviate
from the WD prediction even for distances smaller than the
mean level spacing.

As is mentioned previously, the TLCF for intermediate
value of b is not yet accessible to analytical treatment. How-
ever we shall see in Sec. IV that the conjecture Eq. �6� de-
scribes accurately the numerical results �see Fig. 1�.

Finally we point out that generic features of S�k� as dif-
ferent regimes of power-law decay with specific exponents
are not restricted to the critical random banded model studied
in this paper, but should be considered as genuine spectral
signatures of an AT, no matter what the microscopic Hamil-
tonian is. Thus the analysis of just S�k� could be used as a
standard technique to detect the transition to localization in a
given system. We consider that this spectral characterization
of the AT is the most relevant result of this paper.

IV. NUMERICAL RESULTS

We now test the analytical predictions for S�k� of the pre-
vious section by numerical diagonalization of critical random
banded model, defined by Eq. �3�, for different matrix sizes
N �almost all of our plots are for N=3000 though we tried
higher volumes, up to N=5000, in order to check that our
results are not size dependent�. The number of different re-
alizations of disorder is chosen such that for each matrix size
the total number of eigenvalues be at least 2�106. The ei-
genvalues thus obtained are unfolded with respect to the
mean spectral density. The power spectrum is calculated
from Eq. �7� by using a standard fast Fourier transformation
routine. Typically up to 35% of the eigenvalues around the
center of the band are utilized. We have decided to go be-
yond the standard recipe of taking no more than 10% of the
eigenvalue around the band center in order to investigate to
what extent numerical results deviate from the analytical pre-
diction and also to find out whether the main expected fea-
tures S�k� are robust against finite volume effects �see below
for more details about this issue�.

In Fig. 1 we have plotted log10 S�k� for different band-
widths b. In all cases the matrix size was 3000 and S�k� was
evaluated within a band around the center of the spectrum
containing 1024 eigenvalues. As is observed the agreement
between analytical �with R2�s� given by Eq. �6� and h
=1/2�b� and numerical results is excellent for all b’s. In
agreement also with the analytical prediction we observe
that, for b�1, the power spectrum switches from S�k�
�1/k for N /k
h=1/2�b to S�k��1/k2 in the opposite
limit. However for b
1, S�k��1/k2 for almost all accessible
frequencies. Based on the analytical and numerical results
above, we conclude that the AT in a disordered conductor
can be satisfactorily detected and examined by looking at the
power spectrum S�k� of a signal �n given by the fluctuations
of the nearest neighbor spacings si=�i+1−�i around its mean
value s̄.

We have also found that S�k� provides with an accurate
method to locate the Thouless energy of a generic disordered
conductor. As is mentioned previously, the Thouless energy
Ec is a scale of energy related with the classical diffusion
time through the sample. From a practical point of view the
evaluation of g=Ec /� �the Thouless energy in units of the
mean level spacing �� from a given spectrum is a hard task
since it may depend on what spectral correlator is used. Thus
�2�L� gives a prediction of g bigger than that of P�s� but
smaller than that of the spectral rigidity �3�L� �see �2� for a
definition�. Another problem is that even for each particular
correlator the value of g is somewhat ambiguous since it is
far from clear how to locate even approximately the point in
which WD statistics cease to be applicable.

Below we show that S�k� provides with a more efficient
and precise way to locate g. The idea �see Figs. 2 and 3 is to
plot S�k� as a function of N /k. Then, in the region N /k
�2�b, we find the best fit of S�k� to a linear �in a ln scale�
curve S�k��1/k� �from the previous analysis ��2�. In the
opposite limit S�k� should be given by the prediction of WD
statistics. We define the Thouless energy as the intersection
between the WD prediction and the linear fit.

FIG. 1. �Color online� Power spectrum S�k� as a function of k.
Symbols represent numerical results �the matrix size is 3000 and the
number of eigenvalues considered is N=1024 around the center of
the band� for the critical random banded model Eq. �3� for different
bandwidths b, the power spectrum was evaluated from Eq. �7�.
Lines represent the analytical prediction of critical statistics Eq. �11�
with the TLCF given by Eq. �6�. For all bandwidths b the agreement
between analytical and numerical results is excellent. For b�1 we
observe two different regions: N /k�2�b corresponding with S�k�
�1/k2 and N /k
2�b with S�k��1/k similar to the prediction of
WD �GUE�. However for b
1, S�k��1/k2 for almost all k.
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In Fig. 2 we see that for b�1 these two curves meet at
g�2�b�1, in good agreement with the theoretical predic-
tion. However in the region b�1 �see Fig. 3�, though for-
mally a Thouless energy can be defined through the intersec-
tion of the two curves, its interpretation as the limit of
applicability of WD statistics is dubious since even in the
limit N /k
2�b deviations with respect to the WD predic-
tion are clearly visible.

Finally we mention that, as observed in Fig. 1, the best fit
of the numerical results does not occur at the analytical es-
timation h=1/2�b. There are two reasons for that disagree-
ment: The analytical results are strictly valid only at the cen-
ter of the band. Eigenstates beyond this region are still

critical but are described by an effective bandwidth �19�
smaller than b. On the other hand finite size effects may be
important in the limit t=k /N
1 since we are testing the
largest eigenvalue separations. However we have decided not
to reduce the spectral window in order to give a full global
picture of the power spectrum at the AT. After all, as shown
in Fig. 1, the two power law exponents signaling the AT are
not affected by these limitations and a very good qualitative
agreement with the numerical results is achieved by choos-
ing an effective bandwidth b.

V. APPLICATION TO QUANTUM CHAOS

In this final section we investigate possible applications of
our previous findings in the context of quantum chaos and

FIG. 2. �Color online� Power spectrum S�k� versus N /k in the
limit b�1. Crosses and circles represent the numerical results �the
matrix size is 3000 and the number of eigenvalues considered is
N=1024 around the center of the band� for the critical random
banded model Eq. �3� with b=0.25,1, respectively. The power
spectrum S�k� was obtained from Eq. �7�. The dashed line corre-
sponds to the best fit S�k��1/k� �the statistical error of � is about
��= ±0.02� in the limit N /k�2�b and the solid line is the predic-
tion of WD statistics obtained from the GUE. The intersection be-
tween the linear fit and the WD statistics prediction corresponds in
principle with the dimensionless conductance g �the Thouless en-
ergy in units of the mean level spacing� of the system. However we
observe that, for b�1, S�k� is always different from the WD result
and consequently no Thouless energy can be defined.

FIG. 3. �Color online� Power spectrum S�k� versus N /k in the
limit b�1. Crosses and circles represent the numerical results �the
matrix size is 3000 and the number of eigenvalues considered is
N=1024 around the center of the band� for the critical random
banded model Eq. �3� with b=4,16, respectively. The power spec-
trum S�k� was evaluated from Eq. �7�. The dashed line corresponds
to the best fit S�k��1/k� �the statistical error of � is about ��
= ±0.02� in the limit N /k�2�b and the solid line is the prediction
of WD statistics obtained from the GUE. The intersection between
the linear fit and the WD prediction corresponds with the Thouless
energy, Ec, of the system. Units have been chosen such that the
intersection point yields the dimensionless conductance of the sys-
tem g=Ec /�. Thus g�25 for b=4 and g�100 for b=16.
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also argue that, contrary to the claims of �5�, S�k��1/k2 is
not exclusive of quantum deterministic systems whose clas-
sical counterpart is integrable.

Critical statistics and multifractal wave functions are very
much universal so they should also appear in deterministic
quantum systems. Indeed, in a recent paper �21�, we have
established a relation between the presence of anomalous
diffusion in the classical dynamics, the singularities of a clas-
sically chaotic potential and the power-law localization of
the quantum eigenstates. Specifically, it was found that for a
kicked rotor with Hamiltonian

H =
p2

2
+ V�q�	

n

��t − nT� �13�

(with q� �−1,1�) both level statistics and eigenfunctions are
similar to the ones at the AT �critical statistics� provided that
V�q� has a ln �in the simplest case V�q�=�0 ln�x�� or a step-
like �22� singularity. It was also found in �21� that these
findings are universal in the sense that neither the classical
nor the quantum properties depend on the details of the po-
tential, but only on the type of singularity. Deviations from
the WD statistics not coming from a mixed phase space have
also been reported in a variety of systems: a Coulomb bil-
liard �23�, the anisotropic Kepler problem �24�, a kicked ro-
tor in a well potential �25�, and certain pseudointegrable bil-
liards �28,29�. In the last case it was found �28� that level
statistics are accurately described by the classical Dyson gas
with the logarithmic pairwise interaction restricted to a finite
number k of nearest neighbors. Analytical solutions are avail-
able for general k. For k=2, usually referred to as semi-
Poisson �SP� statistics, R2�s�=1−e−4s, P�s�=4se−2s, and
�2�L�=L /2+ �1−e−4L� /8. We have also found �22� that SP
statistics describes accurately the spectral correlations of the
above kicked rotor with a step-like singularity and also pro-
vide with a reasonable description for the case of a logarith-
mic singularity but only in the region �0�0.2.

Due to the simplicity of the TLCF in SP statistics one can
evaluate the power spectrum exactly

S�k� =
1

4�2t2�1 −
8

16 + 4�2t2� , �14�

with t=k /N. Thus the power spectrum associated to SP sta-
tistics presents 1 / t2 decay in the t
1 limit even though the
classical dynamics is not integrable, this is also in agreement
with the prediction of critical statistics for b
1. This explic-
itly shows S�k��1/ t2 is not always a signature of classical
integrable dynamics. Although generically the power spec-
trum associated with classically integrable systems has this
feature, other types of nonintegrable dynamics may have a
1/ t2 tail as well. In order to fully characterize the classical
dynamics from S�k� one has to specify not only the exponent
but also an additional point of the curve, for instance K�0�.
Thus a S�k��1/ t2 behavior only tell us that the form factor
is constant. However, as is mentioned previously, the physi-
cal properties of the system are strongly modified by a spec-
tral form factor different from unity. In passing we mention
that the analytical results for SP statistics are in disagreement
with a recent numerical calculation �30�.

As a further corroboration of our claims we have evalu-
ated numerically S�k� for the Hamiltonian of Eq. �13� with a
potential V�x�=0.2 ln�x�. We have diagonalized numerically
the evolution matrix associated to the Hamiltonian Eq. �13�
for N=5200, S�k� is obtained from Eq. �7�. In order to im-
prove statistics we divided the original spectrum in 20 sets of
256 eigenvalues. As is shown in Fig. 4, S�k��1/ t2 for al-
most all t�s in close agreement with the prediction of SP or
critical statistics. However �see right plot� the associated
Poincare section obtained from just a single initial condition
is very different from the one corresponding to a classically
integrable system.

VI. CONCLUSIONS

We have shown that the power spectrum of the energy
level fluctuations at the Anderson transition is characterized
by a power spectrum with 1/ f2 noise for small frequencies
and 1/ f noise for larger frequencies. In the weak disorder

FIG. 4. �Color online� �Left� Power spectrum S�k� obtained
from 25 sets of 256 eigenvalues from the numerical diagonalization
of the evolution matrix associated to Eq. �13� with V�q�=0.2 ln�q�
�cross�. The dashed line is the prediction of SP statistics, the dotted-
dashed line is the best fit S�k��1/k� and the dotted line is the
prediction of WD statistics as is obtained from the Gaussian or-
thogonal ensemble �GOE� of random matrices. �Right� Poincare
section from a single initial condition p0=0.2 and q0=0.6 after
300 000 iterations.
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limit, the analysis of the transition region between these two
power-law limits provides with an accurate estimation of the
Thouless energy of the system. As disorder increases the
Thouless energy looses its meaning and the power spectrum
presents 1 / f2 noise up to frequencies related to the Heisen-
berg time of the system. Finally we discuss under what cir-
cumstances these findings may be relevant in the context of
nonrandom Hamiltonians. Specifically it is shown that the

exponent of the power-law decay of S�k� does not fully
specify the type of motion of the classical counterpart.
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