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We study the predictability of emergent phenomena in complex systems. Using nearest-neighbor, one-
dimensional cellular automata �CA� as an example, we show how to construct local coarse-grained descriptions
of CA in all classes of Wolfram’s classification. The resulting coarse-grained CA that we construct are capable
of emulating the large-scale behavior of the original systems without accounting for small-scale details. Several
CA that can be coarse-grained by this construction are known to be universal Turing machines; they can
emulate any CA or other computing devices and are therefore undecidable. We thus show that because in
practice one only seeks coarse-grained information, complex physical systems can be predictable and even
decidable at some level of description. The renormalization group flows that we construct induce a hierarchy
of CA rules. This hierarchy agrees well with apparent rule complexity and is therefore a good candidate for a
complexity measure and a classification method. Finally we argue that the large-scale dynamics of CA can be
very simple, at least when measured by the Kolmogorov complexity of the large-scale update rule, and
moreover exhibits a novel scaling law. We show that because of this large-scale simplicity, the probability of
finding a coarse-grained description of CA approaches unity as one goes to increasingly coarser scales. We
interpret this large-scale simplicity as a pattern formation mechanism in which large-scale patterns are forced
upon the system by the simplicity of the rules that govern the large-scale dynamics.
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I. INTRODUCTION

The scope of the growing field of “complexity science”
�or “complex systems”� includes a broad variety of problems
belonging to different scientific areas. Examples for “com-
plex systems” can be found in physics, biology, computer
science, ecology, economy, sociology, and other fields. A re-
curring theme in most of what is classified as “complex sys-
tems” is that of emergence. Emergent properties are those
which arise spontaneously from the collective dynamics of a
large assemblage of interacting parts. A basic question one
asks in this context is how to derive and predict the emergent
properties from the behavior of the individual parts. In other
words, the central issue is how to extract large-scale, global
properties from the underlying or microscopic degrees of
freedom.

In the physical sciences, there are many examples of
emergent phenomena where it is indeed possible to relate the
microscopic and macroscopic worlds. Physical systems are
typically described in terms of equations of motion of a huge
number of microscopic degrees of freedom �e.g., atoms�. The
microscopic dynamics is often erratic and complex, yet in
many cases it gives rise to patterns with characteristic length
and time scales much larger than the microscopic ones �e.g.,
the pressure and temperature of a gas�. These large-scale
patterns often possess the interesting, physically relevant
properties of the system, and one would like to model them

or simulate their behavior. An important problem in physics
is therefore to understand and predict the emergence of large-
scale behavior in a system, starting from its microscopic de-
scription. This problem is a fundamental one because most
physical systems contain too many parts to be simulated di-
rectly and would become intractable without a large reduc-
tion in the number of degrees of freedom. A useful way to
address this issue is to construct coarse-grained models,
which treat the dynamics of the large-scale patterns. The
derivation of coarse-grained models from the microscopic
dynamics is far from trivial. In most cases it is done in a
phenomenological manner by introducing various �often un-
controlled� approximations.

The problem of predicting emergent properties is most
severe in systems which are modeled or described by unde-
cidable mathematical algorithms �1,2�. For such systems
there exists no computationally efficient way of predicting
their long-time evolution. In order to know the system’s state
after �e.g.� 1�106 time steps one must evolve the system
1�106 time steps or perform a computation of equivalent
complexity. Wolfram has termed such systems computation-
ally irreducible and suggested that their existence in nature is
at the root of our apparent inability to model and understand
complex systems �1,3–5�. It is tempting to conclude from
this that the enterprise of physics itself is doomed from the
outset; rather than attempting to construct solvable math-
ematical models of physical processes, computational mod-
els should be built, explored, and empirically analyzed. This
argument, however, assumes that infinite precision is re-
quired for the prediction of future evolution. As we men-
tioned above, usually coarse-grained or even statistical infor-
mation is sufficient. An interesting question that arises is
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therefore, is it possible to derive coarse-grained models of
undecidable systems and can these coarse-grained models be
decidable and predictable?

In this work we address the emergence of large-scale pat-
terns in complex systems and the associated predictability
problems by studying cellular automata �CA�. CA are spa-
tially and temporally discrete dynamical systems composed
of a lattice of cells. They were originally introduced by von
Neumann and Ulam �6� in the 1940s as a possible way of
simulating self-reproduction in biological systems. Since
then, CA have attracted a great deal of interest in physics
�5,7–9� because they capture two basic ingredients of many
physical systems: �1� they evolve according to a local uni-
form rule and �2� CA can exhibit rich behavior even with
very simple update rules. For similar and other reasons, CA
have also attracted attention in computer science �10,11�, bi-
ology �12�, material science �13�, and many other fields. For
a review of the literature on CA see Refs. �4,5,9�.

The simple construction of CA makes them accessible to
computational theoretic research methods. Using these meth-
ods it is sometimes possible to quantify the complexity of
CA rules according to the types of computations they are
capable of performing. This together with the fact that CA
are caricatures of physical systems has led many authors to
use them as a conceptual vehicle for studying complexity
and pattern formation. In this work we adopt this approach
and study the predictability of emergent patterns in complex
systems by attempting to systematically coarse-grain CA. A
brief preliminary report of our project can be found in Ref.
�14�.

There is no unique way to define coarse-graining, but here
we will mean that our information about the CA is locally
coarse-grained in the sense of being stroboscopic in time, but
that nearby cells are grouped into a supercell according to
some specified rule �as is frequently done in statistical phys-
ics�. Below we shall frequently drop the qualifier “local”
whenever there is no cause for confusion. A system which
can be coarse-grained is compact-able since it is possible to
calculate its future time evolution �or some coarse aspects of
it� using a more compact algorithm than its native descrip-
tion. Note that our use of the term compact-able refers to the
phase-space reduction associated with coarse-graining and is
agnostic as to whether or not the coarse-grained system is
decidable or undecidable. Accordingly, we define predictable
to mean that a system is decidable or has a decidable coarse-
graining. Thus, it is possible to calculate the future time evo-
lution of a predictable system �or some coarse aspects of it�
using an algorithm which is more compact than both the
native and coarse-grained descriptions.

Our work is organized as follows. In Sec. II we give an
introduction to CA and their use in the study of complexity.
In Sec. III we present a procedure for coarse-graining CA.
Section IV shows and discusses the results of applying our
procedure to one-dimensional CA. Most of the CA that we
attempt to coarse-grain are Wolfram’s 256 elementary rules
for nearest-neighbor CA. We will also consider a few other
rules of special interest. In Sec. V we consider whether the
coarse-grain-ability of many CA that we found in the el-
ementary rule family is a common property of CA. Using
computational theoretic arguments we argue that the large-

scale behavior of local processes must be very simple. Al-
most all CA can therefore be coarse-grained if we go to a
large enough scale. Our results are summarized and dis-
cussed in Sec. VI.

II. CELLULAR AUTOMATA

Cellular automata are a class of homogeneous, local, and
fully discrete dynamical systems. A cellular automaton A
= �a�t� , �SA� , fA� is composed of a lattice a�t� of cells that can
each assume a value from a finite alphabet �SA�. We denote
individual lattice cells by a��t� where the indexing reflects
the dimensionality and geometry of the lattice. Cell values
evolve in discrete time steps according to the preprescribed
update rule fA. The update rule determines a cell’s new state
as a function of cell values in a finite neighborhood. For
example, in the case of a one-dimensional, nearest-neighbor
CA the update rule is a function fA : �SA�3→ �SA� and an�t
+1�= fA�an−1�t� ,an�t� ,an+1�t��. At each time step, each cell in
the lattice applies the update rule and updates its state ac-
cordingly. The application of the update rule is done in par-
allel for all cells, and all cells apply the same rule. We denote
the application of the update rule on the entire lattice by
a�t+1�= fAa�t�.

In early work �1,3,4,15�, Wolfram proposed that CA can
be grouped into four classes of complexity. Class-1 consists
of CA whose dynamics reaches a steady state regardless of
the initial conditions. Class-2 consists of CA whose long-
time evolution produces periodic or nested structures. CA
from both of these classes are simple in the sense that their
long-time evolution can be deduced from running the system
a small number of time steps. On the other hand, class-3 and
class-4 consist of “complex” CA. Class-3 CA produce struc-
tures that seem random. Class-4 CA produce localized struc-
tures that propagate and interact in a complex way above a
regular background. This classification is heuristic, and the
assignment of CA to the four classes is somewhat subjective.
Successive works on CA attempted to improve it or to find
better alternatives �16–22�. To the best of our knowledge
there is, to date, no universally agreed upon classification
scheme of CA.

Based on numerical experiments, Wolfram hypothesized
that most of class-3 and -4 CA are computationally irreduc-
ible �1,4,15�. Namely, the evolution of these CA cannot be
predicted by a process which is drastically more efficient
than themselves. In order to calculate the state of a compu-
tationally irreducible CA after t time steps, one must run the
CA for t time steps or perform a computation of equivalent
complexity. This definition is somewhat loose because it is
not always clear how to compare computation running times
and efficiency on different architectures. In addition, Wol-
fram recognized that even computationally irreducible sys-
tems may have some “superficial reducibility” �see p. 746 in
Ref. �4�� and can be reduced to a limited extent. The differ-
ence between “superficial” and true reducibility, however, is
not well, defined. It is nevertheless clear that the asymptotic
t→� behavior of a computationally irreducible system can-
not be predicted by any computation of finite size. Wolfram
further argued that computationally irreducible systems are
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abundant in nature and that this fact explains our inability as
physicists to deal with complex systems �1,3–5�.

It is difficult in general to tell whether a CA, behaving in
an apparently complex way, is computationally irreducible.
More concrete properties of CA which are related to compu-
tational irreducibility are undecidability and universality.
Mathematical processes are said to be undecidable when
there can be no algorithm that is guaranteed to predict their
outcome in a finite time. Equivalently CA are said to be
undecidable when aspects of their dynamics are undecidable.
Computationally irreducible CA are therefore undecidable,
and in the weak asymptotic definition that we gave above,
computational irreducibility is equivalent to undecidability.
For lack of a better choice we adopt this asymptotic defini-
tion and in the reminder of this work we will use the two
terms interchangeably.

Some CA are known to be universal Turing machines �23�
and are capable of performing all computations done by
other processes. A famous two-dimensional example is Con-
way’s game of life �24�; several examples in one dimension
are Lindgren and Nordahl �25�, Albert and Culik �26�, and
Wolfram’s rule 110 �4�. Universal CA are, in a sense, maxi-
mally complex because they can emulate the dynamics of all
other CA. Being universal Turing machines, these CA are
subject to undecidable questions regarding their dynamics
�15�. For example, whether an initial state will ever decay
into a quiescent state is the CA equivalence of the undecid-
able halting problem �23�. universal CA are therefore unde-
cidable.

Wolfram’s classification of CA is topological in the sense
that CA are classified according to the properties of their
trajectories. A different, more ambitious, approach is to clas-
sify CA according to a parameter derived directly from their
rule tables. Langton �27� suggested that CA rules can be
parametrized by his � parameter which measures the fraction
of nonquiescence rule table entries. He showed a strong cor-
relation between the value of � and the complexity found in
the CA trajectories. For small values of � one characteristi-
cally finds class-1 and -2 behavior while for ��1 a class-3
behavior is usually observed. Langton identified a narrow
region of intermediate values of � where he found class-4
characteristic behavior. Based on these observations Langton
proposed the edge-of-chaos hypothesis �27�. This hypothesis
claims that in the space of dynamical systems, interesting
systems which are capable of computation are located at the
boundary between simple and chaotic systems. This appeal-
ing hypothesis, however, was criticized in later works �28�.
Recently, a different parametrization of CA rule tables was
proposed by Dubacq et al. �29�. This new approach is based
on the information content of the rule table as measured by
its Kolmogorov complexity. As we will show below, our re-
sults lend support to this notion and indicate that rule tables
with low Kolmogorov complexity lead to simple behavior
and vice versa.

In addition to attempts to find order and hierarchy in the
space of CA rules, much research has been devoted to the
study of CA classes with special properties. Additive CA �or
linear� �30,31�, commuting CA �32�, and CA with certain
algebraic properties �33,34� are a few examples. Unsurpris-
ingly, the dynamics of CA which enjoy such special proper-

ties can in most cases be understood and predictable at some
level.

In this work we will mostly be concerned with the family
of one-dimensional, nearest-neighbor binary CA that were
the subject of Wolfram’s investigations. These 256 elemen-
tary rules are among the simplest imaginable CA and thus
present us with the least computational challenges when at-
tempting to coarse-grain them. We will use Wolfram’s nota-
tion �7� for identifying individual rules. The update function
of an elementary rule is described by a rule number between
0 and 255. The 8-bit binary representation of the rule number
specifies the update function outcome for the eight possible
three-cell configurations �where “000” is the least significant
and “111” is the most significant bit�. CA are often conve-
niently visualized with different colors denoting different cell
values. When dealing with binary CA we will use the con-
vention �=0, �=1 and use the two notations interchange-
ably.

III. LOCAL COARSE-GRAINING OF CELLULAR
AUTOMATA

We now turn to study the emergence of large-scale pat-
terns in CA and the associated predictability problems by
attempting to coarse-grain CA. There are many ways to de-
fine a coarse-graining of a dynamical system. In this work
we define it as a �real-space� renormalization scheme where
the original CA A= (a�t� , �SA� , fA) is coarse-grained to a
renormlized CA B= (b�t� , �SB� , fB) through the lattice trans-
formation bk= P�aNk ,aNk+1 , . . . ,aNk+N−1�. The projection
function P : �SA�N→ �SB� projects the value of a block of N
cells in A, which we term a supercell, to a single cell in B.
By writing Pa we denote the blockwise application of P on
the entire lattice a. Only nontrivial cases where P is irrevers-
ible are considered because we want B to provide a partial
account of the full dynamics of A.

In order for B and P to provide a coarse-grained emula-
tion of A they must satisfy the commutativity condition

PfA
Ta�0� = fBPa�0� , �1�

for every initial condition a�0� of A. The constant T in the
above equation is a time scale associated with the coarse-
graining. A repeated application of Eq. �1� shows that

PfA
Tta�0� = fB

t Pa�0� , �2�

for all t. Namely, running the original CA for Tt time steps
and then projecting is equivalent to projecting the initial con-
dition and then running the renormalized CA for t time steps.
Thus, if we are only interested in the projected information,
we can run the more efficient CA B.

Renormalization group transformations in statistical phys-
ics are usually performed with projection operators that arise
from a physical intuition and understanding of the system in
question. Majority rules and different types of averages are
often the projection operators of choice. In this work we
have the advantage that the CA we wish to coarse-grain are
fully discrete systems and the number of possible projections
of a supercell of size N is finite. We will therefore consider
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all possible �at least with small supercells� projection opera-
tors and will not restrict ourselves to coarse-graining by av-
eraging. In addition, the discrete nature of CA makes it very
difficult to find useful approximate solutions of Eq. �1� be-
cause there is no natural small parameter that can be used to
construct perturbative coarse-graining schemes. We therefore
require that Eq. �1� be satisfied exactly.

A. Coarse-graining procedure

We now define a simple procedure for coarse-graining
CA. Other constructions are undoubtedly possible. For sim-
plicity we limit our treatment to one-dimensional systems
with nearest-neighbor interactions. Generalizations to higher
dimensions and different interaction radii are straightfor-
ward.

The commutativity condition, Eq. �1�, implies that the
renormlized CA B is homomorphic to the dynamics of A on
the scale defined by the supercell size N. To search for ex-
plicit coarse-graining rules, we define the Nth supercell ver-
sion AN= �aN , �SAN� , fAN� of A. Each cell of AN represents N
cells of A and accepts values from the alphabet �SAN�
= �SA�N which includes all possible configurations of N cells
in A. The transition function fAN of the supercell CA can be
defined in many ways depending on our choice of the super-
cell interaction radius. Here we choose AN to be a nearest-
neighbor CA and compute fAN : �SAN�3→ �SAN� by running A
for N time steps on all possible initial conditions of length
3N. In this way AN follows the dynamics of A and each
application of AN computes the evolution of a block of N
cells of A for N time steps. This choice will later result in a
coarse-grained CA B which is itself a nearest neighbor. This
is convenient because it enables us to compare the original
and coarse-grained systems. Another convenient feature of
this construction is that it renders the coarse-graining time
scale T equal to the supercell size N. Other constructions,
however, are undoubtedly possible. Note that AN is not a
coarse-graining of A because no information was lost in the
cell translation.

Next we attempt to generate the coarse CA B by project-
ing the alphabet of AN on a subset �SB�� �SAN� which will
serve as the alphabet of B. This is the key step where infor-
mation is being lost. The transition function fB is constructed
from fAN by projecting its arguments and outcome:

fB�P�x1�,P�x2�,P�x3�� = P�fAN�x1,x2,x3�� . �3�

Here P�x� denotes the projection of the supercell value x.
This construction is possible only if

P�fAN�x1,x2,x3�� = P�fAN�y1,y2,y3��, ∀ „x,y�P�xi� = P�yi�… .

�4�

Otherwise, fB is multivalued and our coarse-graining attempt
fails for the specific choice of N and P.

Equations �3� and �4� can also be cast in the matrix form

PAN = BP3, �5�

which may be useful. Here AN is an SAN � �SAN�3 matrix
which specifies the N cell block output for every possible

combination of 3N cells. P is an SB�SAN matrix that projects
from SAN to SB. P3 is a �SB�3� �SAN�3 matrix which projects
three consecutive supercells and is a �simple� function of P.
The coarse-grained CA B is an SB� �SB�3 matrix and is also
a function of P. This is a greatly overdetermined equation for
the projection operator P. For a given value of N and SB the
equation contains SB� �SAN�3 constraints while P is defined
by SAN free parameters.

In cases where Eq. �4� is satisfied, the resulting CA B is a
coarse-graining of AN with a time scale T=1. For every step
an

N�t+1�= fAN�an−1
N �t� ,an

N�t� ,an+1
N �t�� of AN, B makes the move

bn�t + 1� = fB�bn−1�t�,bn�t�,bn+1�t��

= P„fAN�an−1
N �t�,an

N�t�,an+1
N �t��… = P„an

N�t + 1�… ,

�6�

and therefore satisfies Eq. �1�. Since a single time step of AN

computes N time steps of A, B is also a coarse-graining of A
with a coarse-grained time scale T=N. Analogies of these
operators have been used in attempts to reduce the computa-
tional complexity of certain stochastic partial differential
equations �35,36�. Similar ideas have been used to calculate
critical exponents in probabilistic CA �37,38�.

To illustrate our method let us give a simple example.
Rule 128 is a class-1 elementary CA defined on the �� , � �
alphabet with the update function

f128�xn−1,xn,xn+1� = 	� , xn−1,xn,xn+1 � � , � , � ,

� , xn−1,xn,xn+1 = � , � , � .
�7�

Figure 3�b�, below, shows a typical evolution of this simple
rule where all black regions which are in contact with white
cells decay at a constant rate. To coarse-grain rule 128 we
choose a supercell size N=2 and calculate the supercell up-
date function

f128
2 �yn−1,yn,yn+1�

= 

� � , yn−1,yn,yn+1 = � � , � � , � � ,

� � , yn−1,yn,yn+1 = � � , � � , � � ,

� � , yn−1,yn,yn+1 = � � , � � , � � ,

� � , all other combinations

�8�

Next we project the supercell alphabet using

P�y� = 	� , y � � � ,

� , y = � � .
�9�

Namely, the value of the coarse-grained cell is black only
when the supercell value corresponds to two black cells. Ap-
plying this projection to the supercell update function, Eq.
�8�, we find that

P„f128
2 �P�yn−1�,P�yn�,P�yn+1��…

= 	� , P�yn−1�,P�yn�,P�yn+1� = � , � , � ,

� , P�yn−1�,P�yn�,P�yn+1� � � , � , � ,
�10�

which is identical to the original update function f128. Rule
128 can therefore be coarse-grained to itself, an expected
result due to the scale-invariant behavior of this simple rule.
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B. Relevant and irrelevant degrees of freedom

It is interesting to notice that the above coarse-graining
procedure can lose two very different types of dynamic in-
formation. To see this, consider Eq. �4�. This equation can be
satisfied in two ways. In the first case,

fAN�x1,x2,x3� = fAN�y1,y2,y3�, ∀ „x,y�P�xi� = P�yi�… ,

�11�

which necessarily leads to Eq. �4�. fAN in this case is insen-
sitive to the projection of its arguments. The distinction be-
tween two variables which are identical under projection is
therefore irrelevant to the dynamics of AN and, by construc-
tion, to the long-time dynamics of A. By eliminating irrel-
evant degrees of freedom �DOF�, coarse-graining of this type
removes information which is redundant on the microscopic
scale. The coarse CA in this case accounts for all possible
long-time trajectories of the original CA, and the complexity
classification of the two CA is therefore the same.

In the second case Eq. �4� is satisfied even though Eq.
�11� is violated. Here the distinction between two variables
which are identical under projection is relevant to the dy-
namics of A. Replacing x by y in the initial condition may
give rise to a difference in the dynamics of A. Moreover, the
difference can be �and in many occasions is� unbounded in
space and time. Coarse-graining in this case is possible be-
cause the difference is constrained in the cell state space by
the projection operator. Namely, projection of all such differ-
ent dynamics results in the same coarse-grained behavior.
Note that the coarse CA in this case cannot account for all
possible long-time trajectories of the original one. It is there-
fore possible for the original and coarse CA to fall into dif-
ferent complexity classifications.

Coarse-graining by elimination of relevant DOF removes
information which is not redundant with respect to the origi-
nal system. The information becomes redundant only when
moving to the coarse scale. In fact, “redundant” becomes a
subjective qualifier here since it depends on our choice of
coarse description. In other words, it depends on what as-
pects of the microscopic dynamics we want the coarse CA to
capture.

Let us illustrate the difference between coarse-graining of
relevant and irrelevant DOF. Consider a dynamical system
whose initial condition is in the vicinity of two limit cycles.
Depending on the initial condition, the system will flow to
one of the two cycles. Coarse-graining of irrelevant DOF can
project all the initial conditions on to two possible long-time
behaviors. Now consider a system which is chaotic with two
strange attractors. Again we would like to project all initial
conditions on to the two basins of attraction. This cannot be
achieved by coarse-graining irrelevant DOF because the dy-
namics around the strange attractors is sensitive to changes
in the initial conditions. Coarse-graining of relevant DOF is
needed. The resulting coarse-grained system will distinguish
between trajectories that circle the first or second attractor,
but will be insensitive to the details of those trajectories. In a
sense, this is analogous to the subtleties encountered in con-
structing renormalization group transformations for the criti-
cal behavior of antiferromagnets �39,40�.

IV. RESULTS OF COARSE-GRAINING
ONE-DIMENSIONAL CA

A. Overview

The coarse-graining procedure we described above is not
constructive, but instead is a self-consistency condition on a
putative coarse-graining rule with a specific supercell size N
and projection operator P. In many cases the single-
valuedness condition, Eq. �4�, is not satisfied, the coarse-
graining fails, and one must try other choices of N and P. It
is therefore natural to ask the following questions. Can all
CA be coarse-grained? If not, which CA can be coarse-
grained and which cannot? What types of coarse-graining
transitions can we hope to find?

To answer these questions we tried systematically to
coarse-grain one-dimensional CA. We considered Wolfram’s
256 elementary rules and several nonbinary CA of interest to
us. Our coarse-graining procedure was applied to each rule
with different choices of N and P. In this way we were able
to coarse-grain 240 out of the 256 elementary CA. These 240
coarse-grained-able rules include members of all four
classes. The 16 elementary CA which we could not coarse-
grain are rules 30, 45, 106, and 154 and their symmetries.
Rules 30, 45, and 106 belong to class-3 while 154 is a
class-2 rule. We do not know if our inability to coarse-grain
these 16 rules comes from limited computing power or from
something deeper. We suspect �and give arguments in Sec.
V� the former.

The number of possible projection operators P grows very
fast with N. Even for small N, it is computationally impos-
sible to scan all possible P. In order to find valid projections,
we therefore used two simple search strategies. In the first
strategy, we looked for coarse-graining transitions within the
elementary CA family by considering P which project back
on the binary alphabet. Excluding the trivial projections
P�x�=0, ∀x and P�x�=1, ∀x there are 22N

−2 such projec-
tions. We were able to scan all of them for N�4 and found
many coarse-graining transitions. Figure 1 shows a map of
the coarse-graining transitions that we found within the fam-
ily of elementary rules. An arrow in the map indicates that
each rule from the origin group can be coarse-grained to each
rule from the target group. The supercell size N and the
projection P are not shown, and each arrow may correspond
to several choices of N and P. As we explained above, only
coarse-grainings with N�4 are shown due to limited com-
puting power. Other transitions within the elementary rule
family may exist with larger values of N. This map is in
some sense an analog of the familiar renormalization group
flow diagrams from statistical mechanics.

Several features of Fig. 1 are worthy of a short discussion.
First, notice that the map manifests the “left”↔“right” and
“0”↔“1” symmetries of the elementary CA family. For ex-
ample rules 252, 136, and 238 are the “0”↔“1,” “left”
↔“right,” and the “0”↔“1” and “left”↔“right” symmetries
of rule 192, respectively. Second, coarse-graining transitions
are obviously transitive; i.e., if A goes to B with N1 and B
goes to C with N2, then A goes to C with N�N1N2. For
some transitions, the map in Fig. 1 fails to show this property
because we did not attain large enough values of N.
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Another interesting feature of the transition map is that
the apparent rule complexity never increases with a coarse-
graining transition. Namely, we never find a simple behaving
rule which after being coarse-grained becomes a complex
rule. The transition map, therefore, introduces a hierarchy of
elementary rules and this hierarchy agrees well with the ap-
parent rule complexity. The hierarchy is partial, and we can-
not relate rules which are not connected by a coarse-graining
transition. As opposed to the Wolfram classification, this
coarse-graining hierarchy is well defined and is therefore a
good candidate for a complexity measure �1,16–22,27,29�.

Finally notice that the eight rules 0, 60, 90, 102, 150, 170,
204, and 240, whose update function has the additive form

f����xn−1,xn,xn+1� = �xn−1 � �xn � �xn+1,�,�,� � �0,1� ,

�12�

where � denotes the XOR operation, are all fixed points of
the map. This result is not limited to elementary rules. As
showed by Barbe et al. �31,41,42�, additive CA in arbitrary
dimension whose alphabet sizes are prime numbers coarse-
grain themselves. We conjecture that there are situations
where reducible fixed points exist for a wide range of sys-
tems, analogous to the emergence of amplitude equations in
the vicinity of bifurcation points.

When projecting back on the binary alphabet, one maxi-
mizes the amount of information lost in the coarse-graining
transition. At first glance, this seems to be an unlikely strat-
egy, because it is difficult for the coarse-grained CA to emu-
late the original one when so much information was lost. In
terms of our coarse-graining procedure such a projection
maximizes the number of instances P�x�= P�y� of Eq. �4�.

On second examination, however, this strategy is not that
poor. The fact that there are only two states in the coarse-
grained alphabet reduces the probability that an instance
P�x�= P�y� of Eq. �4� will be violated to 1/2. The extreme
case of this argument would be a projection on a coarse-
grained alphabet with a single state. Such a trivial projection
will never violate Eq. �4� �but will never show any patterns
or dynamics either�.

A second search strategy for valid projection operators
that we used is located on the other extreme of the above
trade-off. Namely, we attempt to lose the smallest possible
amount of information. We start by choosing two supercell
states z1 and z2 and unite them using

P0�x� = 	x, x � z2,

z1, x = z2,
�13�

where the subscript in P0 denotes that this is an initial trial
projection to be refined later. The refinement process of the
projection operator proceeds as follows. If Pn �starting with
n=0� satisfies Eq. �4�, then we are done. If, on the other
hand, Eq. �4� is violated by some

Pn�fAN�x1,x2,x3�� � Pn�fAN�y1,y2,y3��,Pn�xi� = Pn�yi� ,

�14�

the inequality is resolved by refining Pn to

Pn+1�x� = 	Pn�x�, x � r2,

Pn�r1�, x = r2,

FIG. 1. Coarse-graining transi-
tions within the family of 256 el-
ementary CA. Only transitions
with a supercell size N=2,3 ,4 are
shown. An arrow indicates that the
origin rules can be coarse-grained
by the target rules and may corre-
spond to several choices of N and
P.
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r1 = fAN�x1,x2,x3�, r2 = fAN�y1,y2,y3� . �15�

This process is repeated until Eq. �4� is satisfied. A nontrivial
coarse-graining is found in cases where the resulting projec-
tion operator is nonconstant �more than a single state in the
coarse-grained CA�.

By trying all possible z1 ,z2 initial pairs, the above projec-
tion search method is guaranteed to find a valid projection if
such a projection exists on the scale defined by the supercell
size N. Using this method we were able to coarse-grain many
CA. The resulting coarse-grained CA that are generated in
this way are often multicolored and do not belong to the
elementary CA family. For this reason it is difficult to graphi-
cally summarize all the transitions that we found in a map.
Instead of trying to give an overall view of those transitions
we will concentrate our attention on several interesting cases
which we include in the examples section below.

B. Examples

1. Rule 105

As our first example we choose a transition between two
class-2 rules. The elementary rule 105 is defined on the al-
phabet �� , � � with the transition function

f105�xn−1,xn,xn+1� = xn−1 � xn � xn+1, �16�

where the overbar denotes the NOT operation and �=0, �
=1. We use a supercell size N=2 and calculate the transition
function f105

2 , defined on the alphabet ��� , � � , � � ,
� � �. Now we project this alphabet back on the �� , � �
alphabet with

P�x� = 	� , x = � � , � � ,

� , x = � � , � � .
�17�

A pair of cells in rule 105 are coarse-grained to a single cell
and the value of the coarse cell is black only when the pair
share a same value. Using the above projection operator we
construct the transition function of the coarse CA. The result
is found to be the transition function of the additive rule 150:

f150�xn−1,xn,xn+1� = xn−1 � xn � xn+1. �18�

Figure 2 shows the results of this coarse-graining transi-
tion. In Fig. 2�a� we show the evolution of rule 105 with a
specific initial condition while Fig. 2�b� shows the evolution
of rule 150 from the coarse-grained initial condition. The
small-scale details in rule 105 are lost in the transformation
but extended white and black regions are coarse-grained to
black regions in rule 150. The time evolution of rule 150
captures the overall shape of these large structures but with-
out the black-white decorations. As shown in Fig. 1, rule 150
is a fixed point of the transition map. Rule 105 can therefore
be further coarse-grained to arbitrary scales.

2. Rule 146

As a second example of coarse-grained-able elementary
CA we choose rule 146. Rule 146 is defined on the �� , � �
alphabet with the transition function

f146�xn−1,xn,xn+1�

= 	� , xn−1xnxn+1 = � � � ; � � � ; � � � ,

� , all other combinations.

�19�

It produces a complex, seemingly random behavior which
falls into the class-3 group. We choose a supercell size N
=3 and calculate the transition function f146

3 , defined on the
alphabet ��� � , � � � , . . . , � � � �. Now we project
this alphabet back on the �� , � � alphabet with

P�x� = 	� , x � � � � ,

� , x = � � � .
�20�

Namely, a triplet of cells in rule 146 is coarse-grained to a
single cell and the value of the coarse cell is black only when
the triplet is all black. Using the above projection operator
we construct the transition function of the coarse CA. The
result is found to be the transition function of rule 128 which
was given in Eq. �7�. Rule 146 can therefore be coarse-
grained by rule 128, a class-1 elementary CA. In Fig. 3 we
show the results of this coarse-graining. Figure 3�a� shows
the evolution of rule 146 with a specific initial condition
while Fig. 3�b� shows the evolution of rule 128 from the
coarse-grained initial condition. Our choice of coarse-
graining has eliminated the small-scale details of rule 146.
Only structures of lateral size of 3 or more cells are ac-

FIG. 2. Coarse-graining of rule 105 by rule 150. �a� shows re-
sults of running rule 105. The top line is the initial condition and
time progress from top to bottom. �b� shows the results of running
rule 150 with the coarse grained initial condition from �a�.
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counted for. The decay of such structures in rule 146 is ac-
curately described by rule 128.

Note that a class-3 CA was coarse-grained to a class-1 CA
in the above example. Our gain was therefore twofold. In
addition to the phase-space reduction associated with coarse-
graining we have also achieved a reduction in complexity.
Our procedure was able to find predictable coarse-grained
aspects of the dynamics even though the small-scale behav-
ior of rule 146 is complex, potentially irreducible.

Rule 146 can also be coarse-grained by nonelementary
CA. Using a supercell size of N=6 we found that the differ-
ence between the combinations �� � � �� and
�� � � �� is irrelevant to the long-time behavior of rule
146. It is therefore possible to project these two combina-
tions onto a single coarse-grained state. The same is true for
the combinations �� � � �� and �� � � �� which
can be projected to another coarse-grained state. The end
result of this coarse-graining �Fig. 3�c�� is a 62-color CA

which retains the information of all other 6-cell combina-
tions. The amount of information lost in this transition is
relatively small, 2/64 of the supercell states having been
eliminated. More impressive alphabet reductions can be
found by going to larger scales. For N=7, 8, 9, 10, and 11 we
found an alphabet reduction of 9/128, 33/256, 97/512, 261/
1024, and 652/2048, respectively. Figure 3�d� shows the per-
centage of states that can be eliminated as a function of the
supercell size N. All of the information lost in those coarse-
grainings corresponds to irrelevant DOF.

The two different coarse-graining transitions of rule 146
that we presented above are a good opportunity to show the
difference between relevant and irrelevant DOF. As we ex-
plained earlier, a transition like 146→128 where the rules
have different complexities must involve the elimination of
relevant DOF. Indeed, if we modify an initial condition of
rule 146 by replacing a ��� segment with ���, we will
get a modified evolution. As we show in Fig. 4, the differ-

FIG. 3. �Color online� Coarse-graining of rule 146 by rule 128 and by a 62-color CA. �a� shows results of running rule 146. The top line
is the initial condition and time progress from top to bottom. �b� shows the results of running rule 128 with the coarse-grained initial
condition from �a�. �c� shows results of running the 62-color CA which is a coarse-grained version of rule 146. �d� shows the percentage of
supercell states that can be eliminated when coarse graining rule 146 with different supercell sizes N.
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ence in the trajectories has a complex behavior and is un-
bounded in space and time. However, since ��� and
��� are both projected by Eq. �20� onto �, the projections
of the original and modified trajectories will be identical. In
contrast, the coarse-graining of rule 146 to the 62-state CA of
Fig. 3�c� involves the elimination of irrelevant DOF only. If
we replace a �� � � �� in the initial condition with a

�� � � ��, we find that the difference between the modi-
fied and unmodified trajectories decays after a few time
steps.

3. Rule 184

The elementary CA rule 184 is a simplified one-lane traf-
fic flow model. Its transition function is given by

f184�xn−1,xn,xn+1� = 	� , xn−1xnxn+1 = � � � ; � � � ; � � � ; � � � ,

� , xn−1xnxn+1 = � � � ; � � � ; � � � ; � � � .
�21�

Identifying a black cell with a car moving to the right and a white cell with an empty road segment we can rewrite the update
rule as follows. A car with an empty road segment to its right advances and occupies the empty segment. A car with another
car to its right will avoid a collision and stay put. This is a deterministic and simplified version of the more realistic
Nagel-Schreckenberg model �43�.

Rule 184 can be coarse-grained to a three-color CA using a supercell size N=2 and the local density projection

P�x� = 
� , x = � � ,

� , x = � � ; � � ,

� , x = � � .

�22�

The update function of the resulting CA is given by

f�yn−1,yn,yn+1� = 
� , yn−1ynyn+1 = � � � ; � � � ; � � � ; � � � ; � � � ,

� , yn−1ynyn+1 = � � � ; � � � ; � � � ; � � � ; � � � ,

� , all other combinations.

�23�

Figure 5 shows the result of this coarse-graining with gray
denoting the density-1/2 symbol �. Figure 5�a� shows a tra-
jectory of rule 184 while Fig. 5�b� shows the trajectory of the
coarse CA. From this figure it is clear that the white zero-

density regions correspond to empty road and the black high-
density regions correspond to traffic jams. The density-1/2
grey regions correspond to free-flowing traffic with an ex-
ception near traffic jams due to a boundary effect.

By using larger supercell sizes it is possible to find other
coarse-grained versions of rule 184. As in the above ex-
ample, the coarse-grained states group together local con-
figurations of equal car densities. The projection operators,
however, are not functions of the local density alone. They
are a partition of such a function, and there could be several
coarse-grained states which correspond to the same local car
density. We found �empirically� that for even supercell sizes
N=2k the coarse-grained CA contain k2 /2+3k /2+1 states
and for odd supercell sizes N=2k+1 they contain k2+3k+2
states. Figure 5�c� shows the amount of information lost in
those transitions as a function of N. Most of the lost infor-
mation corresponds to relevant DOF but some of it is irrel-
evant.

4. Rule 110

Rule 110 is one of the most interesting rules in the el-
ementary CA family. It belongs to class-4 and exhibits a
complex behavior where several types of “particles” move
and interact above a regular background. The behavior of
these “particles” is rich enough to support universal compu-
tation �4�. In this sense rule 110 is maximally complex be-

FIG. 4. The sensitivity of rule 146 to a relevant DOF change in
its initial condition. The figure shows the difference �modulo 2� in
the trajectories resulting from replacing a ��� segment in the
initial condition with ���.
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cause it is capable of emulating all computations done by
other computing devices in general and CA in particular. As
a consequence it is also undecidable �15�.

We found several ways to coarse-grain rule 110. Using
N=6, it is possible to project the 64 possible supercell states
onto an alphabet of 63 symbols. Figures 6�a� and 6�b� show
a trajectory of rule 110 and the corresponding trajectory of
the coarse-grained 63 states CA. A more impressive reduc-
tion in the alphabet size is obtained by going to larger values
of N. For N=7, 8, 9, 10, 11, and 12 we found an alphabet
reduction of 6/128, 22/256, 67/512, 182/1024, 463/2048,
and 1131/4096, respectively. Only irrelevant DOF are elimi-
nated in those transitions. Figure 6�c� shows the percentage
of reduced states as a function of the supercell size N. We
expect this behavior to persist for larger values of N.

Another important coarse-graining of rule 110 that we
found is the transition to rule 0. Rule 0 has the trivial dy-
namics where all initial states evolve to the null configura-
tion in a single time step. The transition to rule 0 is possible
because many cell sequences cannot appear in the long-time

trajectories of rule 110. For example, the sequence
�� � �� is a so-called “Garden of Eden” of rule 110. It
cannot be generated by rule 110 and can only appear in the
initial state. Coarse-graining by rule 0 is achieved in this case
using N=5 and projecting �� � �� to � and all other five
cell combinations to �. Another example is the sequence
�� � � � � � � � � � ��. This sequence is a Garden
of Eden of the N=13 supercell version of rule 110. It can
appear only in the first 12 time steps of rule 110 but no later.
Coarse-graining by rule 0 is achieved in this case using N
=13 and projecting �� � � � � � � � � � �� to �
and all other 13-cell combinations to �. These examples are
important because they show that even though rule 110 is
undecidable it has decidable and predictable coarse-grained
aspects �however trivial�. To our knowledge rule 110 is the
only proven undecidable elementary CA, and therefore this
is the only �proven� example of undecidable to decidable
transition that we found within the elementary CA family.

It is interesting to note that the number of Garden of Eden
states in supercell versions of rule 110 grows very rapidly

FIG. 5. Coarse-graining of rule 184 by a three-state CA. �a� shows a trajectory of rule 184. �b� shows the corresponding trajectory of the
coarse-grained CA with gray denoting the density-1/2 symbol �. �c� shows the percentage of supercell states that can be eliminated when
coarse graining rule 184 with different supercell sizes N.
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with the supercell size N. As we show in Fig. 6�d�, the frac-
tion of Garden of Eden states out of the 2N possible se-
quences grows almost linearly with N. In addition, at every
scale N there are new Garden of Eden sequences which do
not contain any smaller Gardens of Eden as subsequences.
These results are consistent with our understanding that even
though the dynamics looks complex, more and more struc-
ture emerges as one goes to larger scales. We will have more
to say about this in Sec. V.

The Garden of Eden states of supercell versions of rule
110 represent pieces of information that can be used in re-
ducing the computational effort in rule 110. The reduction
can be achieved by truncating the supercell update rule to be
a function of only “non-Garden of Eden” states. The size of
the resulting rule table will be much smaller ��3% with N
=21� than the size of the supercell rule table. Efficient com-
putations of rule 110 can then be carried out by running rule
110 for the first N time steps. After N time steps the system
contains no Garden of Eden sequences and we can continue
to propagate it by using the truncated supercell rule table

without losing any information. Note that we have not re-
duced rule 110 to a decidable system. At every scale we
achieved a constant reduction in the computational effort.
Wolfram has pointed out that many irreducible systems have
pockets of reducibility and termed such a reduction as “su-
perficial reducibility” �see p. 746 in Ref. �4��. It will be in-
teresting to check how much “superficial reducibility” is
contained in rule 110 at larger scales. It will be inappropriate
to call it “superficial” if the curve in Fig. 6�d� approaches
100% in the large-N limit.

5. Albert-Culik universal CA

It might be argued that the coarse-graining of rule 110 by
rule 0 is a trivial example of an undecidable to a decidable
coarse-graining transition. The fact that certain configura-
tions cannot be arrived at in the long-time behavior is not
very surprising and is expected of any irreversible system. In
order to search for more interesting examples we studied
other one-dimensional universal CA that we found in the
literature. Lindgren and Nordahl �25� constructed a seven-

FIG. 6. �Color online� Coarse-graining of rule 110. �a� shows a trajectory of rule 110. �b� shows a coarse graining of rule 110 by a
63-color CA. �c� shows the percentage of supercell states that can be eliminated when coarse graining rule 110 with different supercell sizes
N. �d� shows the percentage of “Garden of Eden” states out of the 2N possible states of supercell N versions of rule 110.
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state nearest-neighbor and a four-state next-nearest-neighbor
CA that are capable of emulating a universal Turing ma-
chine. The entries in the update tables of these CA are only
partly determined by the emulated Turing machine and can
be completed at will. We found that for certain completion
choices these two universal CA can be coarse-grained to a
trivial CA which like rule 0 decay to a quiescent configura-
tion in a single time step. Another universal CA that can
undergo such a transition is Wolfram’s 19-state, next-nearest-
neighbor universal CA �4�. These results are essentially
equivalent to the rule 110 → rule 0 transition.

A more interesting example is Albert and Culik’s �26�
universal CA. It is a 14-state nearest-neighbor CA which is
capable of emulating all other CA. The transition table of
this CA is only partly determined by its construction and can
be completed at will. We found that when the empty entries
in the transition function are filled by the copy operation

f�xn−1,xn,xn+1� = xn, �24�

the resulting undecidable CA has many coarse-graining tran-
sitions to decidable CA. In all these transitions the coarse-
grained CA performs the copy operation, Eq. �24�, for all
�xn−1 ,xn ,xn+1�. Different transitions differ in the projection
operator and the alphabet size of the coarse-grained CA. Fig-
ure 7 shows a coarse-graining of Albert and Culik’s universal
CA to a four-state copy CA. The coarse-grained CA captures
three types of persistent structures that appear in the original
system but is ignorant of more complicated details. The su-
percell size used here is N=2.

V. COARSE-GRAIN-ABILITY OF LOCAL PROCESSES

In the previous section we showed that a large majority of
elementary CA can be coarse-grained in space and time. This
is rather surprising since finding a valid projection operator
is equivalent to solving Eq. �5� which is greatly overcon-
strained. Solutions for this equation should be rare for ran-
dom choices of the matrix AN. In this section we show that
solutions of Eq. �5� are frequent because AN is not random
but a highly structured object. As the supercell size N is
increased, AN becomes less random and the probability of
finding a valid projection approaches unity.

To appreciate the high success rate in coarse-graining el-
ementary CA consider the following statistics. By using su-
percells of size N=2 and considering all possible projection
operators P : �0, . . . ,3�→ �0,1� we were able to coarse-grain
approximately one-third of all 256 elementary CA rules. Re-
call that the coarse-graining procedure that we use involves
two stages. In the first stage we generate the supercell ver-
sion AN, a four color CA in the N=2 case. In the second stage
we look for valid projection operators. Four-color CA that
are N=2 supercell versions of elementary CA are a tiny frac-
tion of all possible �4�43��3�1038� four-color CA. If we
pick a random four-color CA and try to project it—i.e., at-
tempt to solve Eq. �5� with AN replaced by an arbitrary four
color CA—we find an average of one solvable instance out
of every �1.6�107 attempts. This large difference in the
projection probability indicates that four color CA which are
supercells versions of elementary rules are not random. The

numbers become more convincing when we go to larger val-
ues of N and attempt to find projections to random 2N-
color CA.

To put our arguments on a more quantitative level we
need to quantify the information content of supercell ver-
sions of CA. An accepted measure in algorithmic informa-
tion theory for the randomness and information content of an
individual �44� object is its Kolmogorov complexity �algo-
rithmic complexity� �45,46�. The Kolmogorov complexity
KU�x� of a string of characters x with respect to a universal
computer U is defined as

KU�x� =
LU�x�

length�x�
, �25�

where length�x� is the length of x in bits and LU�x� is the bit
length of the minimal computer program that generates x and
halts on U �irrespective of the running time�. This definition
is sensitive to the choice of machine U only up to an additive

FIG. 7. �Color online� Coarse-graining of Albert and Culik’s
�26� 14-states universal CA by a 4-state copy CA. �a� shows a
trajectory of Albert and Culik’s universal CA while �b� shows the
corresponding trajectory of the coarse-grained CA. The supercell
size used here is N=2
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constant in LU�x� which do not depend on x. For long strings
this dependence is negligible and the subscript U can be
dropped. According to this definition, strings which are very
structured require short generating programs and will there-
fore have small Kolmogorov complexity. For example, a pe-
riodic x with period p can be generated by a �p long pro-
gram and K�x�� p / length�x�. In contrast, if x has no
structure, it must be generated literally; i.e., the shortest pro-
gram is “PRINT�x�.” In such cases L�x�� length�x�, K�x��1
and the information content of x is maximal. By using simple
counting arguments �45� it is easy to show that simple ob-
jects are rare and that K�x��1 for most objects x. Kolmog-
orov complexity is a powerful and elegant concept which
comes with an annoying limitation. It is uncomputable; i.e.,
it is impossible to find the length of the minimal program
that generates a string x. It is only possible to bound it.

It is easy to see that supercell CA are highly structured
objects by looking at their Kolmogorov complexity. Consider
the CA A= (a�t� ,S , fA) and its Nth supercell version AN

= �aN ,SN , fAN� �for simplicity of notation we omit the sub-
script A from the alphabet size�. The transition function fAN

is a table that specifies a cell’s new state for all S3N possible
local configurations �assuming A is nearest neighbor and one
dimensional�. fAN can therefore be described by a string of
S3N symbols from the alphabet �0, . . . ,SN−1�. The bit length
length�fAN� of such a description is

length�fAN� = S3NN log2S . �26�

If AN was a typical CA with SN colors, we could expect
that L�fAN�, the length of the minimal program that generates
fAN, will not differ significantly from length�fAN�. However,
since AN is a supercell version of A, we have a much shorter
description—i.e., to construct AN from A. This construction
involves running A N time steps for all possible initial con-
figurations of 3N cells. It can be conveniently coded in a
program as repeated applications of the transition function fA
within several loops. Up to an additive constant �45�, the
length of such a program will be equal to the bit length
description of fA:

L̃�fAN� = S3 log2S . �27�

Note that we have used L̃ to indicate that this is an upper
bound for the length of the minimal program that generates
fAN. This upper bound, however, should be tight for an up-
date rule fA with little structure. The Kolmogorov complexity
of fAN can consequently be bounded by

K�fAN� � K̃�fAN� =
L̃�fAN�

length�fAN�
= N−1S3�1−N�. �28�

This complexity approaches zero at large values of N.
Our argument above shows that the large scale behavior

of CA �or any local process� must be simple in some sense.
We would like to continue this line of reasoning and conjec-
ture that the small Kolmogorov complexity of the large-scale
behavior is related to our ability to coarse-grain many CA. At

present we are unable to prove this conjecture analytically
and must therefore resort to numerical evidence which we
present below.

A. Garden of Eden states of supercell CA

Ideally, in order to show that such a connection exists one
would attempt to coarse-grain CA with different alphabets
and on different length scales �supercell sizes�, and verify
that the success rate correlates with the Kolmogorov com-
plexity of the generated supercell CA. This, however, is com-
putationally very challenging and going beyond CA with a
binary alphabet and supercell sizes of more than N=4 is not
realistic. A more modest experiment is the following. We
start with a CA A with an alphabet S and check whether its N
supercell version AN contains all possible SN states—namely,
if there exist x� �0, . . . ,SN−1� such that

fAN�y1,y2,y3� � x, ∀ y1,y2,y3 � �0, . . . ,SN − 1� . �29�

Such a missing state of AN is sometimes referred to as a
Garden of Eden configuration because it can only appear in
the initial state of AN. Note that by the construction of AN, a
Garden of Eden state of AN can appear only in the first N
−1 time steps of A and is therefore a generalized Garden of
Eden of A. In cases where a state of AN is missing, A can be
trivially coarse-grained to the elementary CA rule 0 by pro-
jecting the missing state of AN to “1” and all other combina-
tions to “0.” This type of trivial projection was discussed
earlier in connection with the coarse-graining of rule 110.
Finding a Garden of Eden state of AN is computationally
relatively easy because there is no need to calculate the su-
percell transition function fAN. It is enough to back-trace the
evolution of A and check if all N cell combinations has a
3N-cell ancestor combination, N time steps in the past.

Figure 8�a� shows the statistics obtained from such an
experiment. It exhibits the fraction Rge of CA rules with dif-
ferent alphabet sizes S, whose Nth supercell version is miss-
ing at least one state. Each data point in this figure was
obtained by testing 10 000 CA rules. The fraction Rge ap-
proaches unity at large values of N, an expected behavior
since most of the CA are irreversible.

Figure 8�b� shows the same data as in �a� when plotted

against the variable 	= K̃CS where S is the alphabet size, K̃ is
the upper bound for the Kolmogorov complexity of the su-
percell CA from Eq. �28�, and C is a constant. The excellent
data collapse implies a strong correlation between the prob-
ability of finding a missing state and the Kolmogorov com-
plexity of a supercell CA. This figure also shows that the
data points can be accurately fitted by

Rge�N,S� =
1

1 + �	/	0�� , �30�

with 	0 a constant and ��0.7 �solid line in Fig. 8�b��.
Having the scaling form

COARSE-GRAINING OF CELLULAR AUTOMATA . . . PHYSICAL REVIEW E 73, 026203 �2006�

026203-13



Rge�N,S� = F�	� ,

	 = K̃�N,S�CS = N−1S3�1−N�CS �31�

we can now study the behavior of Rge with large alphabet
sizes. Assuming F and 	 to be continuous we define 	h as the
point where F�	h�=1/2. For a fixed value of S, the slope of
Rge at the transition region can be calculated by

� �Rge

�N
�

N�	h�
= F��	h�� �	

�N
�

N�	h�

= − F��	h��N�	h�−1 + 3 ln S�	h, �32�

where

N�	h� =
3 ln S + S ln C − ln 	h − ln N�	h�

3 ln S
�

S

ln S
. �33�

Putting together Eqs. �32� and �33� we find that the slope of
Rge at the transition region grows as log S for large values of
S. An indication of this phenomenon can be seen in Fig. 8�a�
which shows sharper transitions at large values of S. In the
limit of large S, Rge becomes a step function with respect to
N. This fact introduces a critical value Nc�S� such that for
N
Nc�S� the probability of finding a missing state is 0 and
for N�Nc�S� the probability is 1. The value of this critical N
grows with the alphabet size as Nc�S��S / log S. Note that
Nc�S� is an emergent length scale, as it is not present in any
of the CA rules, but according to the above analysis will
emerge �with probability 1� in their dynamics. A direct con-
sequence of the emergence of Nc is that a measure 1 of all
CA can be coarse-grained to the elementary rule “0” on the
coarse-grained scale Nc.

B. Projection probability of CA rules with bounded
Kolmogorov complexity

Generalized Garden of Eden states are a specific form of
emergent pattern that can be encountered in the large-scale
dynamics of CA. Is the Kolmogorov complexity of CA rules
related to other types of coarse-grained behavior? To explore
this question we attempted to project �solve Eq. �5�� random
CA with bounded Kolmogorov complexities.

To generate a random CA A= (a�t� ,S , fA) with a bounded
Kolmogorov complexity we view the update rule fA as a
string of S3log2 S bits, denote the ith bit by �fA�i, and apply
the following procedure: �1� Randomly pick the first l bits of
fA. �2� Randomly pick a generating function G : �0,1�l

→ �0,1�. �3� Set the values of all the empty bits of fA by
applying G:

�fA�i = G��fA�i−l,�fA�i−l+1, . . . ,�fA�i−1� , �34�

starting at i= l+1 and finishing at i=S3log2S. Up to an addi-
tive constant, the length of such a procedure is equal to l
+2l, the number of random bits chosen. The Kolmogorov
complexity of the resulting rule table can therefore be
bounded by

K�fA� � K̄�fA� =
l + 2l

S3log2S
. �35�

For small values of l this is a reasonable upper bound. How-
ever, for large values of l this upper bound is obviously not
tight since the size of G can be much larger than the length
of fA.

Using the above procedure we studied the probability of
projecting CA with different alphabets and different upper

bound Kolmogorov complexities K̄. For given values of S
and l we generated 10 000 �200 for the S=32 case� CA and

FIG. 8. �a� The fraction Rge of CA whose Nth supercell version
has at least one missing state. Different symbols correspond to dif-
ferent alphabet sizes S of the original CA. �b� Data collapse of the
curves Rge�N ,S� from �a� when plotted against the scaling variable

	= K̃�N ,S�CS. The solid line shows that the scaling function can be
fitted by Eq. �30�.
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tried to find a valid projection on the �0,1� alphabet. Figure
9�a� shows the fraction Rproj of solvable instances as a func-

tion of 	= K̄CS. The constant C used for this data collapse is
1.02, very close to 1. As valid projection solutions we con-
sidered all possible projections P :S3→ �0,1�. In doing so we
may be redoing the missing-states experiment because many
low Kolmogorov complexity rules has missing states and can
thus be trivially projected. In order to exclude this option we
repeated the same experiment while restricting the family of
allowed projections to be equal partitions of
�0, . . . ,S3−1�—i.e.,

P:S3 → �0,1�, ��x:P�x� = 0�� = ��x:P�x� = 1�� . �36�

The results are shown if Fig. 9�b�.
It seems that in both cases there is a good correlation

between the Kolmogorov complexity �or its upper bound� of
a CA rule and the probability of finding a valid projection. In
particular, the fraction of solvable instances goes to one at

the low-K̄ limit. As shown by the solid lines in Fig. 9, this
fraction can again be fitted by

Rproj =
1

1 + �	/	0�� , �37�

where 	0 is a constant and in this case ��1.
How many of the CA rules that we generate and project

show a complex behavior? Does the fraction of projectable
rules simply reflect the fraction of simple behaving rules? To
answer this question we studied the rules generated by our
procedure. For each value of S and l we generated 100 rules
and counted the number of rules exhibiting complex behav-
ior. A rule was labeled “complex” if it showed class-3 or -4
behavior and exhibited a complex sensitivity to perturbations
in the initial conditions. Figure 9�c� shows the statistics we

obtained with different alphabet sizes as a function of K̄
while the inset shows it as a function of l. We first note that
our statistics support Dubacq et al. �29�, who proposed that
rule tables with low Kolmogorov complexities lead to simple
behavior and rule tables with large Kolmogorov complexity
lead to complex behavior. Moreover, our results show that
the fraction of complex rules does not depend on the alpha-
bet size and is only a function of l. Rules with larger alpha-

bets show complex behavior at a lower value of K̄. As a
consequence, a large fraction of projectable rules are com-
plex and this fraction grows with the alphabet size S.

As we explained earlier, the Kolmogorov complexity of
supercell versions of CA approaches zero as the supercell
size N is increased. Our experiments therefore indicate that a
measure one of all CA are coarse-grained-able if we use a
coarse enough scale. Moreover, the data collapse that we
obtain and the sharp transition of the scaling function suggest
that it may be possible to know in advance at what length
scales to look for valid projections. This can be very useful
when attempting to coarse-grain CA or other dynamical sys-
tems because it can narrow down the search domain. As in
the case of the Garden of Eden states that we studied earlier,
we interpret the transition point as an emergent scale which
above it we are likely to find self organized patterns. Note,

however, that this scale is a little shifted in Fig. 9�b� when
compared with Fig. 9�a�. The emergence scale is thus sensi-
tive to the types of large scale patterns we are looking for.

VI. SUMMARY AND DISCUSSION

In this work we studied emergent phenomena in complex
systems and the associated predictability problems by at-
tempting to coarse-grain CA. We found that many elemen-
tary CA can be coarse-grained in space and time and that in
some cases complex, undecidable CA can be coarse-grained
to decidable and predictable CA. We conclude from this fact
that undecidability and computational irreducibility are not
good measures for physical complexity. Physical complexity,
as opposed to computational complexity, should address the
interesting, physically relevant, coarse-grained degrees of
freedom. These coarse-grained degrees of freedom maybe
simple and predictable even when the microscopic behavior
is very complex.

The above definition of physical complexity brings about
the question of the objectivity of macroscopic descriptions
�47,48�. Is our choice of a coarse-grained description �and its
consequent complexity� subjective or is it dictated by the
system? Our results are in accordance with Shalizi and
Moore �48�: it is both. In many cases we discovered that a
particular CA can undergo different coarse-graining transi-
tions using different projection operators. In these cases the
system dictates a set of valid projection operators and we are
restricted to choose our coarse-grained description from this
set. We do, however, have some freedom to manifest our
subjective interest.

The coarse-graining transitions that we found induce a
hierarchy on the family of elementary CA �see Fig. 1�. More-
over, it seems that rule complexity never increases with
coarse-graining transitions. The coarse-graining hierarchy
therefore provides a partial complexity order of CA where
complex rules are found at the top of the hierarchy and
simple rules are at the bottom. The order is partial because
we cannot relate rules which are not connected by coarse-
graining transitions. This coarse-graining hierarchy can be
used as a new classification scheme of CA. Unlike Wol-
fram’s, classification this scheme is not a topological one
since the basis of our suggested classification is not the CA
trajectories. Nor is this scheme parametric, such as Langton’s
� parameter scheme. Our scheme reflects similarities in the
algebraic properties of CA rules. It simply says that if some
coarse-grained aspects of rule A can be captured by the de-
tailed dynamics of rule B, then rule A is at least as complex
as rule B. Rule A maybe more complex because in some
cases it can do more than its projection. Note that our hier-
archy may subdivide Wolfram’s classes. For example, rule
128 is higher on the hierarchy than rule 0. These two rules
belong to class-1 but rule 128 can be coarse-grained to rule 0
and it is clear that an opposite transition cannot exist. It will
be interesting to find out if classes-3 and -4 can also be
subdivided.

In the last part of this work we tried to understand why is
it possible to find so many coarse-graining transitions be-
tween CA. At first blush, it seems that coarse-graining tran-
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sitions should be rare because finding valid projection opera-
tors is an overconstrained problem. This was our initial
intuition when we first attempted to coarse-grain CA. To our
surprise we found that many CA can undergo coarse-graining
transitions.

A more careful investigation of the above question sug-
gests that finding valid projection operators is possible be-
cause of the structure of the rules which govern the large-
scale dynamics. These large-scale rules are update functions
for supercells, whose tables can be computed directly from
the single-cell update function. They thus contain the same
amount of information as the single-cell rule. Their size,
however, grows with the supercell size and therefore they
have vanishing Kolmogorov complexities.

In other words, the large-scale update functions are highly
structured objects. They contain many regularities which can
be used for finding valid projection operators. We did not
give a formal proof for this statement but provided a strong
experimental evidence. In our experiments we discovered
that the probability to find a valid projection is a universal
function of the Kolmogorov complexity of the supercell up-
date rule. This universal probability function varies from 0 at
large Kolmogorov complexity �small supercells� to 1 at small
Kolmogorov complexity �large supercells�. A measure 1 of
CA population is therefore coarse-grained-able at large
enough scales. Note, however, that this fact does not exclude
the possible existence of individual CA which can never be
coarse-grained. The question whether such inherently un-
coarse-grained-able rules exist is very interesting and is left
open at this stage.

Our interpretation of the above results is that of emer-
gence. When we go to large enough scales we are likely to
find dynamically identifiable large-scale patterns. These pat-
terns are emergent �or self-organized� because they do not
explicitly exist in the original single-cell rules. The large-
scale patterns are forced upon the system by the lack of
information. Namely, the system �the update rule, not the cell
lattice� does not contain enough information to be complex
at large scales.

Finding a projection operator is one specific type of an
overconstrained problem. Motivated by our results we
looked into other types of overconstrained problems. The
satisfyability �49,50� problem �k-sat� is a generalized �NP
complete� form of constraint satisfaction system. We gener-
ated random 3-sat instances with different number of vari-
ables deep in the un-sat region of parameter space. The gen-
erated instances, however, were not completely random and
were generated by generating functions. The generating
functions controlled the instance’s Kolmogorov complexity,
in the same way that we used in Sec. V B. We found �51�
that the probability for these instances to be satisfiable obeys
the same universal probability function of Eq. �37�. It will be
interesting to understand the origin of this universality and
its implications.

In this work, we have restricted ourselves to deal with CA
because it is relatively easy to look for valid projection op-
erators for them. A greater �and more practical� challenge
will now be to try and coarse-grain more sophisticated dy-
namical systems such as probabilistic CA, coupled maps,
and partial differential equations. These types of systems are

FIG. 9. �a� and �b� show the fraction Rproj of Kolmogorov com-
plexity bounded CA that has a valid projection on the binary alpha-
bet. CA were generated using a random generating function with l

variables according to the procedure described above. K̄ �Eq. �35��
is the resulting upper-bound Kolmogorov complexity. Different
symbols correspond to different alphabet sizes. Insets show the data
as a function of the parameter l. �a� shows results in the case where
all projections P :S3→ �0,1� are allowed. �b� shows results in the
case where only equal partition projections �Eq. �36�� are allowed.
Solid lines in �a� and �b� show a fit by Eq. �37�. �c� shows the
fraction of complex behaving rules which are produced by our pro-
cedure as a function of l.
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among the main work horses of scientific modeling, and be-
ing able to coarse-grain them will be very useful and is a
topic of current research—e.g., in material science �52�. It
will be interesting to see if one can derive an emergence
length scale for those systems like the one we found for
Garden of Eden sequences in CA �Sec. V A�. Such an emer-
gence length scale can assist in finding valid projection op-
erators by narrowing the search to a particular scale.
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