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We study the topological and geographic structure of the national road networks of the United States,
England, and Denmark. By transforming these networks into their dual representation, where roads are vertices
and an edge connects two vertices if the corresponding roads ever intersect, we show that they exhibit both
topological and geographic scale invariance. That is, we show that for sufficiently large geographic areas, the
dual degree distribution follows a power law with exponent 2.2���2.4, and that journeys, regardless of their
length, have a largely identical structure. To explain these properties, we introduce and analyze a simple fractal
model of road placement that reproduces the observed structure, and suggests a testable connection between
the scaling exponent � and the fractal dimensions governing the placement of roads and intersections.
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I. INTRODUCTION

Complex networks has received much attention from the
physics community and beyond in the recent past �1–3�. This
interest has primarily sprung from the near ubiquity of net-
works in both the natural and manmade world. Canonical
examples of complex networks include the Internet �4�, the
World Wide Web �5�, social contacts �6�, scientific citations
�7,8�, and gene and protein interactions �9,10�. Most of these
studies have focused on topological quantities like the degree
distribution, diameter, and clustering coefficient. More often
than not, it has been found that networks exhibit a degree
distribution in which the fraction of vertices with degree k
has the form of a power law, P�k��k−�, where 2���3.

While virtual networks like the World Wide Web, or in-
teraction networks like that of proteins, may be considered
purely in terms of their topology, physical networks have
additional geographic properties. In particular, creating and
maintaining edges presumably requires physical resources
proportional to their length, and the physical length of a path
between two vertices may be rather different from its topo-
logical length �i.e., the number of edges along it�. In some
cases, the interaction of a network’s topology with its under-
lying geography has been studied previously through models
of evolving networks or optimizing resource costs �11–13�.

Here, we focus on the presence of hierarchy and scale
invariance in physical networks as illustrated by the nation-
wide road networks of the United States, England, and Den-
mark. To reveal their topological organization, we employ
the dual model of the road network, in which a vertex rep-
resents a single road of a given name, and two vertices are
joined if their corresponding roads ever intersect. This
should not be confused with the dual of a planar graph, in
which faces become vertices and vice versa. This graph

transformation has been used previously to study the topo-
logical structure of urban roads �14–17�.

By representing the road network in this manner, we are
able to show empirically that the degree distribution has a
heavy tail, and is well characterized by a power law with an
exponent 2.2���2.4. Rosvall et al. showed that urban net-
works also have heavy tails in the dual degree distribution,
although not unequivocally with a power-law form �16�. Ad-
ditionally, we find the structure of journeys on the physical
network is scale invariant, i.e., the structure of a journey is
similar regardless of its scale. To explain these properties, we
introduce and analyze a simple fractal model for the hierar-
chical placement of roads on the unit square. We show that
the recursive nature of this model generates the scale invari-
ant journey structure, and suggests a simple relationship be-
tween the scaling exponent of the dual degree distribution �
and the fractal dimensions governing the placement of roads
and intersections.

II. PRIMAL AND DUAL MODELS

The natural representation of a road network is a collec-
tion of road segments, in which each segment terminates at
an intersection; this is called the primal representation. How-
ever, this representation gives us little opportunity to con-
sider scale-free properties or heavy-tailed degree distribu-
tions: almost all vertices have degree 4, and the average
degree of a planar network is at most 6, as the maximum
number of edges is 3n–6. However, this representation vio-
lates the intuitive notion that an intersection is where two
roads cross, not where four roads begin. Nor does it well
represent the way we tell each other how to navigate the road
network �18�, e.g., “stay on Main Street for 10.3 miles, ig-
noring all cross streets, until you reach Baker Street, then
turn left.” If we use the dual representation, however, such a
set of directions reduces to a short path through the network
where each transition from one road to another corresponds
to a single step.

In order to transform the road network into its dual rep-
resentation, we must define which road segments naturally
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belong together. In previous studies of road networks, seg-
ments have been grouped by their street name �15,16�, line
of sight by a driver �19�, or by using a threshold on the angle
of incidence of segments at an intersection �14�. Here, we
use the method of taking a single road to be the collection of
road segments that bear the same street name.

III. SAMPLING METHODOLOGY

We sampled the national road networks of the United
States, England, and Denmark by querying a commercial
service, provided by Mapquest.com. This service provides
driving directions, i.e., a path through the dual graph, when
given source and destination addresses. If only partial infor-
mation is provided, e.g., the postal code, the service defaults
to a unique address near that region’s center. The directions
returned are a list of road names, the respective distances a
driver should travel on each, and instructions as to how to
get from one road to another, e.g., “turn left onto” or “con-
tinue on.”

We sampled each road network by taking the union of
paths between a large number of uniformly random pairs of
source and destination postal codes. For the United States,
we sampled until every postal code was present in the net-
work �roughly 200 000 trials�, while for England and Den-
mark, we sampled beyond this limit �for about 35 000 total,
each�. We repeated our analysis for a random fraction 0.25,
0.50, and 0.75 of each sample and found that our observa-
tions are not sensitive to the number of trials.

Notably, our sampled networks are biased according to
population distribution, as postal codes in each country are
distributed roughly according to population. On the other
hand, by focusing only on travel between postal regions, we
restrict ourselves to studying the structure of long journeys.
Naturally, we expect short-range travel to represent the ma-
jority of real journeys, e.g., trips to the office, the grocery
store, etc. Finally, while most details of the algorithm that
Mapquest uses to generate its driving directions are con-
cealed on account of it being proprietary, we note that any
algorithm that minimizes travel time, as opposed to geo-
graphical distance, will create a bias toward traveling on ma-
jor roads and highways.

IV. JOURNEY STRUCTURE

Intuitively, a road network is composed of a hierarchy of
roads with different importance. For instance, a road atlas
classifies roads, according to their speed limit and capacity,
into minor and major local streets, regional roads, and finally
highways. Assuming that a driver wishes to reach her desti-
nation as quickly as possible, we may model the structure of
an arbitrary journey as follows. Our driver begins at the local
street where her point of origin is located, and moves to
progressively larger and faster roads, i.e., she moves up the
hierarchy, until she reaches the fastest single road between
her source and destination. On this road, she covers as much
distance as possible, and then descends to progressively
smaller roads until she reaches the local street of her desti-
nation.

FIG. 1. �Color online� The average journey profiles for the
United States, England, and Denmark. Profiles are defined to be the
largest step �centered� in the journey, flanked by the three
largest preceding and subsequent steps �in order of appearance� in
the path.
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Thus, we expect that the largest steps of a journey will
cover a significant fraction of the total distance, and that the
length of a step will increase as a driver moves up the hier-
archy in the beginning of the journey, and decrease as she
descends it at the journey’s end. Empirically, we find that this
assumption reflects the structure of journeys through our
sampled networks. For the purposes of comparison, we clas-
sify journeys into three roughly equally populated groups
based on their length: short, medium, and long.

To more precisely compare the journey structure between
trips of different lengths, we define a journey’s profile in the
following way. We take the largest step of the journey, in
terms of distance traveled, the three largest steps �in order of
appearance� that precede it, and the three largest steps �again,
in order of appearance� that follow it. Thus we ignore the
many small steps that are scattered throughout the journey,
e.g., taking a highway ramp to merge onto a national high-
way. While this definition of a journey profile is somewhat
arbitrary, it allows us to focus on the journey’s large-scale
structure.

Figure 1 illustrates the average profile for journeys on
each of the three national road networks for short, medium,
and long journeys. The unimodal shape of these profiles
clearly supports the hierarchical model we describe above.
Additionally, their approximate collapse across journeys of
different lengths indicates that the structure of the journey
profile is invariant with respect to the scale of the journey.
We omit error bars in Fig. 1 for visual conciseness, but note
that they are less than ±0.1, on average. The slight asymme-
try in Denmark’s short-journey profile reflects the presence
of one-way roads of different lengths.

In Table I, we show the fraction of the total distance cov-
ered by the five largest steps of these journeys, where sj is
the jth largest step. These steps alone account for about 85%
of the total length of the journey; the largest step typically
covers about 46% of the entire distance, the second largest
covers 19%, the third largest covers 10%, etc. Moreover, for
each j from 1 to 5, the fraction of the journey covered by the
jth largest step appears to be roughly constant. This suggests
a simple linear relationship of the form

sj = Aj� , �1�

where sj is the jth largest step, � is the total path length, and
Aj is some constant. Figure 2 shows the average step size for

each of the five largest steps against the total path length for
each of our three networks. We fit our data to a power law
with the form sj =Aj�

�j, bootstrapped via least squares �we
ignore the longest journeys, since we expect finite-size ef-
fects to appear as � approaches the diameter of the country�.
We observe that this power law fits the data reasonably well,
with average r2 values of 0.97, 0.99, and 0.99, respectively;
moreover, averaging across all such models, we have � j
=1.0±0.1, suggesting that the linear form of �1� is accurate.

V. DEGREE DISTRIBUTION

Other studies of road networks have found that the degree
distribution of the dual graph, i.e., the number of intersec-
tions in which a single road is involved, is heavy-tailed, al-
though not necessarily a power law �15,16�. We find simi-
larly heavy-tailed distributions at the national level �Fig. 3�,
but with apparent finite-size cutoffs related to respective geo-
graphic scales. For small countries like England and Den-
mark, and for cities as in �16�, the case for scale invariance is
not clear: the data spans too small a range to rule out other
heavy-tailed distributions like the log normal. Based on the
nearly three decades of relatively clean scaling for the United
States, however, we conjecture that the formation of road
networks, when conducted at a sufficiently large scale, leads
to true scale-free structure.

We fit these distributions using a maximum likelihood
estimator for the power law, as in �20�. For the United States,
England, and Denmark, we find scaling exponents of �
=2.4, 2.2, and 2.4, respectively. These are likely slight over-
estimates of their true values; progressive subsampling of
each network yields slightly larger estimates of �. Using
Monte Carlo simulation and the Kolmogorov-Smirnov
goodness-of-fit test, in the manner of �21�, we find that the
models are good representations of the data, with pMC
�0.99. Finally, we do not propose that � has a universal
value. Rather, in the next section, we describe a toy model
which can give rise to a variety of exponents, depending on
the fractal dimensions describing the placement of roads and
intersections.

VI. A SIMPLE FRACTAL MODEL

In this section we introduce and analyze a simple fractal
model for the placement of roads on the unit square that

TABLE I. The average fraction Aj =sj /� of the total length covered by each of the five largest steps with standard deviations.

Network Distance 1st largest 2nd largest 3rd largest 4th largest 5th largest Sum

0–750 0.460±0.179 0.212±0.081 0.118±0.056 0.071±0.040 0.045±0.030 0.905

United States 750–1250 mi 0.397±0.149 0.208±0.072 0.129±0.048 0.084±0.038 0.055±0.030 0.873

1250+ 0.382±0.153 0.201±0.061 0.132±0.048 0.083±0.036 0.058±0.030 0.856

0–150 0.396±0.148 0.088±0.042 0.061±0.030 0.061±0.030 0.046±0.024 0.739

England 150–275 mi 0.410±0.205 0.169±0.087 0.084±0.043 0.057±0.031 0.042±0.024 0.761

275+ 0.390±0.014 0.158±0.062 0.097±0.033 0.063±0.021 0.044±0.018 0.752

0–90 0.472±0.183 0.199±0.085 0.098±0.040 0.070±0.029 0.052±0.027 0.891

Denmark 90–185 mi 0.672±0.179 0.139±0.088 0.066±0.051 0.037±0.026 0.025±0.018 0.939

185+ 0.564±0.100 0.253±0.118 0.064±0.040 0.034±0.021 0.023±0.014 0.937
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FIG. 2. �Color online� The scale invariant hypothesis predicts
that sj �Aj� for constants Aj, and thus that � j �1. This is consistent
with our power-law fits, in which we estimate � j using a bootstrap
resampling method. Journeys on the very largest scales were ex-
cluded in order to avoid finite-size effects.

FIG. 3. �Color online� The cumulative degree distributions
P�K�k� of the dual model for the United States, England, and
Denmark. We show fits based on a maximum likelihood estimate of
a power law model P�k��k−�, where �=2.4, 2.2, and 2.4,
respectively.
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reproduces both the observed hierarchical and scale invariant
structure of journeys. As we will see, the key quantities of
the model are the fractal or Hausdorff dimensions dp and di

that, in turn, describe the distribution of road intersections in
the plane, and the distribution of intersections along a single
road.

Unlike previous models of physical networks �11–13�, our
model assumes no optimization or resource constraint satis-
faction mechanism. Rather, we simply assume the fractal
structure is given, and analyze the resulting implications for
journey structure and the dual degree distribution. We leave
for future work the exploration of mechanisms that may in
turn generate a fractal placement of roads.

To create a road network according to our model, we first
divide the unit square into �2 squares of equal size for some
fixed integer � by placing 2��−1� roads. We then choose
some subset of these �2 squares and subdivide them as we
did the original square, by placing 2��−1� new roads per
subdivision. Repeating this process recursively for as many
levels as desired yields a road network with fractal structure,
where lines are roads and line crossings are intersections. For
instance, with �=3, subdividing all but the center square
gives the Sierpinski carpet �22�, and in Fig. 4 we show a
network resulting from subdividing five of the nine squares.

Observe that in this model the road intersections are dis-
tributed as a fractal both over the original unit square and
along a given road. For instance, in the Sierpinski carpet, at
each level of construction the total number of intersections in
the plane increases by a factor of 8, while the number of
intersections along a given road triples; this construction thus
yields a fractal dimension dp=log3 8 for the distribution in
the plane, and di=log3 3=1 for the distribution along a given
road. Similarly, for the scheme illustrated in Fig. 4, at each
level the number of intersections increases by a factor of 5
and the number of intersections along a given road doubles,
giving dp=log3 5 and di=log3 2.

We show, by a simple counting argument, that the scaling
exponent of such a network’s dual degree distribution is re-
lated to the fractal dimensions in the following way:

� = 1 +
dp

di
. �2�

For each x�m, where m is the total number of levels of
subdivision, the number of roads at level x is r�x���dpx.
Similarly, for a road added at level x, the number of inter-
sections along its length is exponential in the number of
subsequent subdivisions, and is given by c�x���di�m−x�

��−dix.
The cumulative degree distribution of this model can be

calculated as follows. The number of roads with degree
greater than k is given by

P�K � k� = �
x:c�x��k

r�x� � �
x=m−�1/di�log� k

m

�dpx � k−dp/di.

So, differentiating this cumulative distribution gives the de-
gree distribution P�k��k−�, with � given by Eq. �2�. The
values of � for a few variations on the �=3 subdivision
schema are given in Table II.

Further, by placing roads hierarchically through the sub-
division process, journeys that seek to minimize travel time
will necessarily utilize this same hierarchical structure, espei-
cally if roads at the earlier levels of construction correspond
to roads with higher speed limits and traffic capacities. For
instance, if the source and destination are in different sub-
squares, then the shortest path in the dual model will use one

FIG. 4. A version of our fractal model for road placement �see text�. Line-thickness indicates greater road capacity and speed limits. The
Sierpinski carpet corresponds to recursively subdividing all squares except square 5.

TABLE II. Fractal dimensions for the distribution of intersec-
tions in the plane dp, the distribution of intersections along a single
road di, and the power-law exponent � for different subdivision
schemes given by Eq. �2� for �=3 �see text�.

Schema dp di �

all log3 9 log3 3 3.00

all but center log3 8 log3 3 2.89

odd numbers log3 5 log3 2 3.32

corners log3 4 log3 2 3.00
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of the roads at level x=1; this is also recursively true at each
step of the journey. Thus, the jth largest step will cover an
average fraction Aj of the journey, which scales as Aj �n−j.
Indeed, looking at the data for the United States �Table I�, it
appears that Aj decreases roughly exponentially with j.

The fact that our toy fractal model reproduces the scale
invariant journey structure, and can similarly produce the
correct functional form of the dual degree distribution, sug-
gests that the roads in our real world networks may be orga-
nized in a similar fractal structure. It would be interesting to
use the geographic distribution of population and road inter-
sections to estimate the fractal dimensions dp and di for vari-
ous countries, and compare the value of � predicted by Eq.
�2� to the measured value. We leave this as a direction for
future work.

VII. CONCLUSION

We studied the national road networks of the United
States, England, and Denmark through their dual representa-
tion, using the driving directions provided by a popular com-
mercial service. Like those of urban road networks �16�, we
found that the dual degree distribution is characterized by a
heavy tail; however, for large countries such as the United
States, this distribution is likely scale free, following a power
law of the form P�k��k−�, with 2.2���2.4 �Fig. 3�.

We further showed that journeys on these networks have a
scale invariant structure, characterized by a driver rising up
through the road hierarchy, i.e., from local to regional to

national roads where the speed limit and capacity grows with
each step, and then descending in reverse order as she ap-
proaches her destination. This scale invariance is exhibited
by the fact that journeys have similar structure regardless of
their total length. Notably, our empirical observations say
nothing about the actual traffic density on these roads, which
is likely determined by the nonuniform popularity of desti-
nations.

To explain the observed structure in the road networks,
we introduced and analyzed a simple fractal model of road
placement. This model recovers the scale-free structure of
journeys in the network and the power-law dual degree dis-
tribution. It also suggests a fundamental relationship between
the exponent � and the fractal dimensions describing the
distribution of road intersections in the plane dp and along a
single road di. Although our model assumes that road place-
ment is not a function of resource-bound optimization as in
�12,13�, it would be interesting to adapt it in such a way as to
generate more statistically realistic road networks. Arguably,
biological transportation networks, e.g., vascular networks,
also have a fractal structure �23�, and a comparative study of
these and our road networks would be interesting.
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