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The approach to the nonequilibrium thermodynamics based on the Boltzmann equation and gas-surface
interaction law proposed in previous papers [F. Sharipov, Physica A 203, 457 (1994); 209, 457 (1994)] is
generalized considering kinetic coefficients, which are neither odd nor even with respect to time reversal. It is
proved that the reciprocity of the gas-gas and gas-surface interactions is a necessary and sufficient condition to
derive the symmetry of the Onsager matrix. As an example of the generalized theory, the thermal slip coeffi-
cients are related to the heat flux vector appearing in the isothermal shear gas flow in a semi-infinite space, i.e.,
both viscous and thermal slip coefficients can be calculated simultaneously, solving a unique kinetic

coefficient.
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I. INTRODUCTION

The reciprocal relations established by Onsager [1,2] in
1931 are very important results of the nonequilibrium ther-
modynamics. Casimir [3] generalized the reciprocal rela-
tions, considering different types of thermodynamic fluxes
(i.e., fluxes that change their own sign under the time rever-
sal and fluxes that do not change the sign). Using these re-
lations, one can couple the kinetic coefficients corresponding
to the so-called cross phenomena. As a result, the number of
the kinetic coefficients determining irreversible processes is
reduced. These relations also can be used as additional crite-
ria of numerical accuracy and experimental uncertainty. In
many practical applications, the reciprocal relations allow us
to diminish a number of measurements in experiments and to
reduce computational efforts in numerical calculations, see,
e.g., Ref. [4]. Thus, nowadays, the Onsager-Casimir recipro-
cal relations (OCRRs) are not just a fundamental property of
the nonequilibrium thermodynamics but are very useful tools
in computational physics and engineering. That is why it is
necessary to know the exact range of applicability of the
OCRRs and to develop a formalism easily allowing one to
relate different types of the kinetic coefficients.

The OCRRs express the following properties. If we con-
sider weakly nonequilibrium irreversible processes, then the
corresponding physical laws can be described in a general
linear form as

N

Jk=2Aann» (1)

n=1

where X, are thermodynamics forces, J; are conjugated ther-
modynamics fluxes, and A, are the kinetic coefficients. If
the set of the thermodynamic fluxes J; is chosen so that the
entropy production in the statistical system is expressed as
the sum
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N

o= 1X,, (2)
k=1

then the Onsager-Casimir theorem establishes the following
relations between the kinetic coefficients

Akn = EkEnAnk’ (3)

where €=+1, depending on whether the corresponding
force X changes its own sign at the time reversal or it does
not.

It is essential that the reciprocal relations (3) obtained by
Onsager [1,2] and Casimir [3] are a consequence of the time
reversibility of microscopic processes. Some researchers,
see, e.g., [5,6], claim that the microscopic reversibility is not
necessary for the OCRRs, but they cannot prove this in the
general case. Some particular examples given in Refs. [5,6]
do not convince one that the obtained symmetry is the same
as that obtained by Onsager. De Groot and Mazur analyzed
the so-called spatial symmetry (see Sec. II of Chap. IV in
their book [7]). Thus, other types of symmetry exist, but a
symmetry, which is not a consequence of the microscopic
reversibility, cannot be called the OCRRs.

To prove the reciprocal relations Onsager [1,2] and Ca-
simir [3] considered isolated statistical systems and assumed
that the fluctuation regressions obey the same law as the
corresponding macroscopic irreversible processes. However,
these two assumptions are not essential to prove (3). De
Groot and Mazur [7] showed that the reciprocal relations are
valid for an open system being in a local equilibrium. They
also considered the so-called discontinuous systems when
the thermodynamic variables change discontinuously from
one part of the system to another, while every part is staying
in equilibrium. Thus, according to De Groot and Mazur [7],
the irreversible thermodynamics is based on the hypothesis
of local equilibrium and its main consequences, including the
OCRRs, are valid only for systems being in a local equilib-
rium. This idea is supported by other researchers, see, e.g.,
Ref. [8].
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Prigogine [9] showed that the entropy production expres-
sion can be obtained from the Boltzmann kinetic equation
applying the Chapman-Enskog method [10,11]. De Groot
and Mazur ([7], see Chap. IX) showed that this expression
leads to the OCRRs in the frame of the first Chapman-
Enskog approximation. However, they considered a very par-
ticular case when the temperature and bulk velocity are uni-
form. McLennan [12] pointed out that the higher orders of
the Chapman-Enskog approximation, i.e., Burnett equations,
do not satisfy the OCRRs. To remove this contradiction,
some works (see, e.g., Refs. [13,14]) modified the expres-
sions of the thermodynamic forces and fluxes in order to
combine the Burnett equations and the OCRRs. Another
manner to prove the OCRR from the Boltzmann equation is
based on the moment method, see, e.g., Refs. [15-18]. How-
ever, both the Chapman-Enskog and moment methods can-
not be used to derive the OCRRs in the transition and free
molecular regimes because both are valid only for small
Knudsen numbers, i.e., in the hydrodynamic regime. Thus,
for a long time the idea that the OCRRs are valid only for
systems being in local equilibrium, i.e., at small Knudsen
numbers, was consolidated.

The main shortcoming of the above-described approaches
was the disregard of boundary conditions to the Boltzmann
equation. The OCRRs can be proved over the whole range of
the rarefaction determined by the Knudsen number if besides
the main properties of the Boltzmann equation one takes into
account an interaction of the gas with a boundary restricting
the gaseous system. For some particular situations, such a
task was realized in Refs. [19-28], but these papers did not
show if the OCRRs were valid only in the considered cases
or they are valid for any kind of rarefied gas flow. A proof of
the OCRRs based on the Boltzmann equation and gas-
surface interaction law was given in general form for a single
gas in Refs. [29,30] and for gaseous mixtures in Ref. [31].
The proof was generalized for gas interacting with a radia-
tion [32], for rotating gas [33], and for gas in the presence of
magnetic field [34]. Recently, the OCRRs were successfully
used in many practical calculations, see, e.g., Refs. [35-40].

The relation (3) can be applied to phenomena, which are
odd or even with respect to the time reversal. In the present
approach, the sign of ¢, is not determined by the fact that the
corresponding thermodynamic force is odd or even, but is
determined by the source functions, which appear as a result
of the linearization. In Ref. [29], we claimed that if the
source function has both odd and even parts, then it can be
decomposed and every part can be considered as an indepen-
dent source function. This is possible in many applications,
but there are some situations when such a decomposition is
impossible, i.e., the odd and even parts of the source function
appear together. Then, the relation (3) is not applicable, be-
cause €, is neither 1 nor —1. Moreover, the proof given in
Refs. [29,31] is valid under assumption that the boundary
distribution function is always Maxwellian, i.e., all particles
entering into a gas flow region have the Maxwellian distri-
bution function. As will be shown here, this assumption is
also not fulfilled in a general case.

The aim of the present work is to generalize the OCRRs
obtained in Refs. [29-34] for the source functions, which are
neither odd nor even with respect to the time reversal. We
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also consider situations when the systems are not in a local
equilibrium at its boundary, i.e., we assume an arbitrary dis-
tribution function of particles entering into a gas flow region.
As an example of an application of the generalized OCRRs,
the velocity slip problem will be considered.

II. BASIC EQUATION

We consider a gaseous system occupying a region ().
The state of the gas is described by the distribution function
f=f(,I'), which obeys the Boltzmann equation
[4,10,11,41-43]. Here, r € () is the position vector and I" is a
set of variables describing a state of every particle, i.e., trans-
lational velocity of particles v, rotational velocity if the gas is
polyatomic, quantum state of molecules, etc. We consider
only stationary states of the system so that the distribution
function does not depend on time.

The basic properties of the full Boltzmann equation and
gas-surface interaction law are given in Ref. [29] for a single
gas, where the reader can find all the details about the lin-
earization. Here we will start from the linearized Boltzmann
equation, which reads

Dh—Lh=g(r,T), 4)
where D is the differential operator

povy. L2 5)
=v.-—+1—.
or I’

L is the linearized collision operator, h=h(r,I") is the pertur-
bation function determining the deviation of the distribution
function from the Maxwellian, i.e.,

fe,0) =, D)1+ h(r,D)],

£ is the Maxwellian distribution function given as

2
(e,T) = n0<I)(T0)exp[— 19 _ M] NC)

lh| <1, (6)

kT, 2kT,
-1
d(7) = [f exp(— %)df} , (8)
ED)=1(8) + %mvz, 9)

where E(I') is the full molecular energy, I(¢) is the inner
molecular energy determined by the variables & i.e.,
I'=(v, &), m is the molecular mass, and k is the Boltzmann
constant.

If the linearization is realized near the absolute Maxwell-
ian, then the number density n, and temperature 7|, are con-
stant, while the bulk velocity u, is zero. The linearization can
be made also near the local Maxwellian. Then, the density
ng, temperature T}, and bulk velocity u, are assumed to be
functions of the space coordinates r. In this case, the source
function g(r,I") appears in the following form:
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dln f°

o (10)

g(rvr) =-V

Usually, the functions n(r), Ty(r), and uy(r) are chosen so
as to reduce the computational efforts to solve the kinetic
equation (4).

On a solid surface restricting the gas flow, the linearized
boundary condition in the general form reads

h*=Ah™+h, —Ah,, (11)

where A is the scattering operator defined as
Ah= [|vn|f0([‘)]"f ! |f°(C")A(T")RT’ — T)dl’,
v,’l<0
(12)

v,>0.

h™ is the perturbation of incident particles, i* is the pertur-
bation of reflected particles, and #,, is the perturbation of the
surface Maxwellian

1(§) m(v- u,)’
kT,  2kT, |

w

fw=n,P(T,)exp (13)

n,, is the number density of particles evaporated by the solid
wall, T,, is the wall temperature, and u,, is its velocity. The
main properties of the scattering kernel R(I"’ —I") are given
in Ref. [29]. For the following derivations, the most impor-
tant property is reversibility, i.e.,
7= v )l TRT" —T) = 5(v,)|v,lf, (DRI —T"),
(14)
where 7(x) is the Heaviside function and the superscript ¢
means a time-reversed molecule state.

The following scalar products were introduced in the
work [29]

(. h) = f D) y(r,T)drl, (15)
(p) = | (¢dr, (16)
Q

(¢9¢)B=f 7)o (e, T)yfr,1)dl,  r e a0,

(17)

where ¢ and ¢ are some functions of r and I', v,=(v-n) is
the normal component of the molecular velocity, and n is the
unit vector normal to the surface and directed toward the gas.
We also will use the time-reversal operator

Tp(r,I') = p(r,I). (18)

As was shown in Ref. [29], the operators L and A satisfy
the following equalities:

(TL¢, ) = (TLys, 9)), (19)
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(T¢~ Ay )= (T, Ad ), (20)

respectively. The equality (19) expresses the reversibility of
the intermolecular collisions, while the equality (20) is a
consequence of Eq. (14) and corresponds to the reversibility
of the gas-surface collisions.

It should be noted that the two properties (19) and (20)
are necessary and sufficient to derive the OCRRs, i.e., all
derivations given below are made without any additional as-
sumption. In some works, see, e.g., Refs. [25-27], the
OCRRs were derived without the gas-surface interaction re-
versibility (20). In some particular cases, the perturbation
functions of particles reflected by a solid wall are zero and
Eq. (20) is fulfilled automatically without the assumption
about the reversibility. Thus, the results given in Refs.
[25-27] are restricted by such particular cases. However, in
more general situations the reflected perturbation functions
are arbitrary and the use of Eq. (20) becomes inevitable to
prove the OCRRs.

In other works based on the Boltzmann equation, some
additional assumptions are used besides microscopic revers-
ibility. For example, in Refs. [26,28], like in the original
works by Onsager [1,2], it is assumed that a fluctuation de-
crease obeys the same law as the corresponding macroscopic
process. However, if one starts from the kinetic equation, one
does not need any additional assumption besides the main
properties of this equation [i.e., Egs. (19) and (20)].

In practical calculations, the so-called model kinetic equa-
tions [4] are used instead of the exact Boltzmann equation.

The idea is to substitute the Boltzmann collision operator L
by a simplified one maintaining the main properties. The
most frequently used model is that proposed by Bhatnagar,
Gross, and Krook (BGK) [44]. All models analyzed in Ref.
[4] satisfy the property (19), and all derivations presented in
Refs. [29-31] and here are valid for these model equations,
too. Thus, it is not necessary to prove the OCRRs for every
specific model equation as some researchers try to do, see,
e.g., Ref. [45].

After some noncomplicated derivations we obtain the fol-
lowing equality:

((fb¢,w)>=<<fb¢,¢>>—§g (Tv,.h)dS.  (21)
Z0)

The boundary € is closed, and in the general case, it is
composed of two parts: 2., corresponds to the surface of the
solid wall and Eg is a surface passing through the gas, i.e.,

39 (Tv, ¢, )d3 = J (Tv, ¢, )d3 + f (Tv, b, )ds..
N DI 3,

(22)

An infinite region () is considered as a limit removing X, to
infinity.

With the help of Egs. (11) and (20), the first integral in
(22) is transformed as
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f (Tv, b, )3 = f (Tv, ¢, )dS — J (Tv, i, P)dS..
3, S, 3,

(23)

The second term in the right-hand side of Eq. (22) can be
written as

J (Fo,h.)dS = — f (Fo,6. )5 j (To,ih ).
3, 2Js, 2Js,

(24)

We assume the distribution function on the boundary 2., is
arbitrary, while in Ref. [29] it is assumed to be Maxwellian.
Finally, we have

é (f‘vn¢)7 ¢)d2 = f (fvn¢»v’ ¢)d2 - f (fvnlpw’ ¢)d2
a0 S 2,

ir f (Fo,h )5 - — J (Fonh $)dS.
2, 2Js,

(25)

Substituting this equality into (21), we obtain

(TD, ) + L (fv,l¢w,¢)d2+% J (Tv, ¢, 9)d3
w 2g

A . 1 .
=((TDy,¢)) + L (Tv, i, ¢)d2+5J2 (Tv, i, $)dx.

(26)

Note, this relation is valid for any functions ¢ and ¢ on the
surface X,. However, if we assume that ¢ and ¢ are pertur-
bations of the local Maxwellian on X, then the relation (26)
is reduced to the particular case given by Eq. 35 of Ref. [29].

Here, it should be noted that the existence of solution of
the linearized Boltzmann equation was proved for most clas-
sical problems of rarefied gas dynamics. A critical review of
the corresponding works can be found in the book by Cer-
cignani ([41], Chap. VIII).

III. ENTROPY PRODUCTION

For gaseous systems, the entropy production consists of
the two parts: production due to the intermolecular collisions
given as [see Eq. 35 of Ref. [29]]

Ocon=-— ((ih,h)) (27)

and production due to the gas-surface interaction given as
[see Eq. 48 of Ref. [29]]

o, = ((Dh,h)) + f (unhw,h)dz+l f (v,h,h)d3.
s, 2J)s,

(28)

Thus, the total entropy production reads
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1
7=t o= (e + | ez [ wamas,
3, 2,

(29)

where Eq. (4) has been used. As was shown in Ref. [29],
both parts o) and o,, are always positive; hence, o is posi-
tive, too.

IV. DEFINITION OF THE KINETIC COEFFICIENTS

If a set of the small parameters X), is used for the linear-
ization of the Boltzmann equation, then the functions g(r,I"),
h,(r,I"), and the solution A(r,I") can be written as the linear
combinations

N
g, 1) =2 ¢¥(r, D)X, (30)
k=1
N
hy(r,1) = 2 B9 (r, D)X, (1)
k=1
N
h(r,T) = > h¥(r,1)X,. (32)
k=1

If one substitutes Egs. (30) and (31) into the first and second
terms, respectively, of the right-hand side of Eq. (29) and if
one replaces the first 4 appearing in the third term of Eq. (29)
by Eq. (32), then one can see that to satisfy Eq. (2), the
thermodynamic fluxes must be defined as

1
To= (g™, h)) + f (vnhff),h)d2+5 f (v,hP,h)d3.
s, S,

(33)

Substituting again Eq. (32) into the right-hand side of Egq.
(33), we obtain the expression of the Kinetic coefficients

A= ((g%,1)) + f (0,h%,h")d3,
Ew

1
+= f (v,h®,h"M)ds., (34)
2Js,

which follows from Eq. (1). It should be noted that the ex-
pressions (33) and (34) are more general than those given by
Egs. 53 and 54 of Ref. [29], respectively.

Let us introduce the time-reversed kinetic coefficients as

AL =((Tg®,h")) + f (T, h'Y,h")ds,
s,

1 .
+= f (Tv,h"™, h™)d3.. (35)
2)s

4

Then, with the help of Egs. (4), (19), and (26), we prove the
OCRRs in the form
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A== ((TLA®,1™)) + (TDA®,h™))
. 1 .
+ J (Tv,h®, h™)d3 + ~ f (Tv,h™,h")ds,
s, 2Js,
== ((TLA™,h®)) + (TDA™,hM))
. 1 .
+ J (Tv, '™, h*¥)ds. + 5 f (Tv,h™,hP)dS = A! .
s, 3,

(36)

Thus, instead of the relation (3), the OCRRs must be written
in the more general form

AL = AL, (37)
In a particular case when
A;(n = EkAkn’ €= % I, (38)

the relation (37) takes the form of (3). For all examples con-
sidered in Ref. [30], the kinetic coefficients satisfy the prop-
erty (38) and the OCRRs can be used in the form of (3).
Below, an example where the OCRRs must be used only in
the form of (37) will be given.

V. VELOCITY SLIP PROBLEM

In this section, an example of how to apply the above-
presented formalism is given. Namely, we consider the clas-
sical problem of the velocity slip coefficients. If a gas flows
over a solid surface, its tangential velocity is not equal to
zero at the surface but is determined by the slip coefficients,
ie.,

2T\ "2 ou, dlnT
w=ope| ) Za o B aix=0, (39)
Y P ox

where x is the coordinate normal to the surface, y is the
tangential coordinate, u is the stress viscosity, P is a local
pressure, T is a local temperature, and @ is a local mass
density. The dimensionless quantities op and oy are the vis-
cous and thermal slip coefficients, respectively.

To calculate the coefficients op and oy, the kinetic
Boltzmann equation is employed in the Knudsen layer adja-
cent to a solid surface and having the thickness of the order
of the molecular mean free path. Thus, we consider a gas
occupying a semi-infinite space x=0 and subject to two ther-
modynamic forces: normal gradient of the tangential velocity
X, and longitudinal temperature gradient X7. In other words,
we assume that far from the surface, the bulk velocity of the
gas has a linear distribution, i.e.,

uy(x) — ugy(x) = Xuv,,,x at x > ¢, (40)

Z’
and the temperature over the whole space has the following
distribution:

TO(y)zTeq|:l+XT%:|’ (41)

where T, is the equilibrium temperature of the gas, € is the
equivalent mean free path
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2kT, 12
e:%, Um=<—“i) : (42)
m

and v,, is the most probable molecular velocity at the equi-
librium temperature 7.

The velocity distribution function can be linearized by the
standard manner using Eq. (6), where the local Maxwellian
f°(r,T") corresponds to the state of the gas far from the sur-
face, i.e., the temperature T is given by (41) and the bulk
velocity u, has the y component only, i.e., uy=(0,ug,,0),
where u, is given by Eq. (40). Note that in the problem
under consideration, the pressure is maintained constant and,
hence, the density distribution ny(y) in f° is not arbitrary but
satisfies the condition ng(y)Ty(y)=const.

Since the forces X and X,, are considered to be small, i.e.,

X <1, X, [<1, (43)
the source function calculated by (10) is split in accordance
with Eq. (30), where

@ __U'@__} _lf
¢D(T) = _t”{kTe,, 6-11, 0_P fPE(M)dT,
(44)
g(“)(r) - _ 2%@ (45)

m

The temperature 7|, and bulk velocity u, at x=0 in the Max-
wellian given by Eq. (7) are the same as those of the wall
surface. It means that the surface perturbation functions are
Zero, i.e.,

D=0, n"=0. (46)

These equalities do not mean that the perturbations A* are

equal to zero on the surface because of the term AR~ in Eq.
(I11). Thus, we continue to consider an arbitrary gas-surface
interaction.

Following the formalism presented above, the solution A
is decomposed into two independent parts in accordance
with Eq. (32)

h(r,T) = hD(r, 1) X+ h"(r,T)X,. (47)

Here it should be noted that the existence and uniqueness of
solutions 4" and ™ were proved in Refs. [46,47].

Far from the surface (x— ), the solutions become space
homogeneous and satisfy the equalities

LhP =— gW, k=T,u. (48)

The asymptotic behavior of the perturbations hif) at x—®
can be written as

U,
() = aT;L +h(T), (49)

m
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U
h(T) = 2op 4 hE(T). (50)

The first terms in Egs. (49) and (50) appeared due to the
tangential bulk velocities outside of the Knudsen layer satis-
fying Eq. (39), while the second terms hCE and h i are the
Chapman-Enskog solutions of the linearized Boltzmann
equation [11] in the gas being at rest, i.e., they satisfy the
following equations:

LAY =—g®  k=Tu. (51)
Note
P
(Uny’hg]%) ==, (52)
’ m

which follows from the fact that far from the surface

u
P.=—u—2, 53
xy I o (53)
where the stress tensor is calculated via the distribution func-
tion as

Py=m ffohvxvydl“ = (mv,v,,h). (54)
It is important if the solutions hCE and h(") are odd or
even. In general case, one cannot know this, but in majority

of cases the operators T and L are commutative. Then, it is

easily shown that h(C is an odd function, while h(E is an

even one, i.e.,
(T)(F) (T)(F)

(”)(F) (")(I‘) (55)

In case of monatomic gases, this is shown in Ref. [11]. Thus,
the right-hand side of Eq. (50) contains both odd and even
parts caused by the same thermodynamic force.

Since the solutions 4" and A are one-dimensional and
depend only on the x coordinate the region of integration ()
is the one-dimensional interval [0, ). Thus, for the problem
under question the general expressions (34) of the kinetic
coefficients take the form

Ayr=((g™,h D)) + 1 Tim (v,h", 7))

X—00

= ((g",n 7)) = 1 (w,h",nD), (56)

Ag=((g".h")) + 5 lim (0,h D, )

X—%
= ((g(T)vh(u))) - %(UxhgcT)’hg:)) s (57)

where the fact v,=-v, at x— o has been considered. Here,
the scalar product ((,)) means

0

The physical sense of the first term in Eq. (56) becomes
clear after substitution of g given by Eq. (45)
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s
(g0 1) =~ 2Pn

v, €

m

P(T)—mfﬂh(rv v,dl’, (59)

where PiT,) is the stress tensor due to the thermodynamic
force X;. According to the Curie principle [7], a vectorial
thermodynamic force cannot cause a tensor thermodynamic
flux in an isotropic system, i.e.,

PD=0 atx— co. (60)

Xy

Since P(T) is constant over the whole space because of the
momentum conservation law, then we have

((g“,h")) =0. (61)

Let us see the physical sense of the first term of Eq. (57)
substituting (44)

( g(T) h(”))

(u) ffoh(u)v [E—kT,(6+1)]dT",
(62)

fkT

where q(”) is the tangential heat flux due to the force X,. In
Ref. [48)] the quantity

oV = f g% (x)dx (63)
0

was introduced as the surface heat flux where it was shown
that

lim q(")(x) =0 (64)

X—0

so that the integral (63) converges. Thus, in terms of QE”) the
scalar product in Eq. (57) takes the form

(0 pw 0"

D py))=—- =—. 65
((g ) ur, (65)
Substituting Egs. (49) and (50) into (56) and (57), we obtain

the following expressions for the kinetic coefficients:

orP
ulT = . ( hg}g’ (66)
2mvm
Q(") orP
=" S ( v ALY, (67)
T,,0 2mvm

The term containing op vanishes because of Eq. (60).
The time inverse kinetic coefficients have the following
form:

A;Tz——(T K B Dy = ( v, A% D)
orP
=—ﬁ L0, h8 1), (68)

m
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N 1 4
Al = ((TgD,n)) - E(Tvxhic”,hﬁz”)

= ()~ S o

o,  orf M ).
—_— hegshep 69
CkT, 2mvm ( CcE (69)

eq

where Egs. (55) have been taken into account. Thus, one can
see that the coefficient A,; changes its own sign at the time
reversal, i.e., A,;=—A!;, while the coupled coefficient A,
neither changes nor maintains its own sign. Thus, it does not
have the property (38) and we cannot use the OCRRs in their
usual form (3), but we have to use the generalized form of
the OCRRs, i.e.,

Al =A%, (70)
Substituting Egs. (68) and (69) into (70), we obtain
" (1) 7 ) p
heg, hiE) — op—— 71
r = CHRHD ~or (1)
or
i“) ]i‘l( h u)) l (72)
{Pv,, Puv, CE’ 27T

This equality was obtained previously in Ref. [48] using the
OCRRs applied to the channel flow in the hydrodynamic
regime. However, the derivations in Ref. [48] are based on
the Chapman-Enskog expansion for monatomic gas. Some
numerical results based on the § model kinetic equation [49]
with the Cercignani-Lampis boundary condition [50] are
given in Ref. [48] to confirm the equality (72). Later, this
relation was obtained and confirmed numerically in Ref. [51]
employing the Boltzmann equation for the rigid sphere par-
ticles. Note that the derivation given here is valid for any
kind of the intermolecular interaction potential satisfying Eq.
(19), including polyatomic molecules and for an arbitrary
gas-surface interaction law satisfying the property (20).

The first term in the right-hand side of Eq. (72) depends
only on the intermolecular potential. For many model equa-
tions, this term can be calculated analytically. For instance,
for the § model [4], this term has the value

kT
WG =075, (73)
1%

m

For the hard sphere gas, it was calculated numerically in Ref.
[51] from the Boltzmann equation
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Mg, w0 ) =

CE> >< 0.398 935 128 =0.598 402 692.

m

(74)

The relation (72) is very useful in practical calculations.
In all papers reviewed in Ref. [4], the slip coefficients op and
or were calculated separately solving two different kinetic
equations. Employing Eq. (72), one can obtain both coeffi-
cients op and o7 simultaneously solving only one equation,
i.e., obtaining the V1scous slip coefficient op one calculates
the surface heat flux Q ). Thus, knowing the 1ntegra1 term in
the right-hand side of Eq. (72) and the flux Q , one imme-
diately knows the thermal slip coefficient o w1thout solving
the second kinetic equation.

On the other hand, if one needs the surface heat flux Qi”)
for some applications, one may use the numerical data on the
thermal slip coefficient o reported in the literature (see, e.g.,
Ref. [4]).

VI. CONCLUDING REMARKS

An approach to derive the Onsager-Casimir reciprocal re-
lations elaborated previously in Refs. [29-31] was general-
ized, taking into account the kinetic coefficients, which are
neither odd nor even with respect to time reversal. Moreover,
arbitrary perturbation functions on the boundary surface
passing through a gas were considered. It was shown that the
equality between the time-reversed kinetic coefficients is the
most general form of the reciprocal relations. The derivations
are based on the linearized Boltzmann equation and gas-
surface interaction in their quite general forms. It was proved
that microscopic reversibility is necessary and sufficient to
derive the reciprocal relations, while any other assumptions,
e.g., local equilibrium or hypothesis on the fluctuation re-
gression, are not essential. In other words, the reciprocal re-
lations are obtained without any additional assumption be-
sides those underlying the Boltzmann equation, its
linearization and microscopic reversibility of the intermo-
lecular collision and gas-surface interaction.

An example, where the reciprocal relations cannot be ap-
plied in their conventional form but only in the generalized
form, was given. As a result, the viscous and thermal slip
coefficients can be calculated solving just one equation.

ACKNOWLEDGMENTS

The author gratefully thanks Professor Kazuo Aoki for
helpful discussions about the present work and other topics
of rarefied gas dynamics. The Conselho Nacional de Desen-
volvimento Cientifico e Tecnolégico (CNPq, Brazil) are ac-
knowledged for the support of this research.

[1] L. Onsager, Phys. Rev. 37, 405 (1931).

[2] L. Onsager, Phys. Rev. 38, 2265 (1931).

[3] H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945).

[4] F. Sharipov and V. Seleznev, J. Phys. Chem. Ref. Data 27, 657

(1998).

[5] D. Gabrielli, G. Jona-Lasinio, and C. Landim, Phys. Rev. Lett.
77, 1202 (1996).

[6] D. Gabrielli, G. Jona-Lasinio, and C. Landim, J. Stat. Phys.

026110-7



FELIX SHARIPOV

96, 639 (1999).

[7] S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynam-
ics (Dover, New York, 1984).

[8] D. G. Miller, J. Stat. Phys. 78, 563 (1995).

[9] I. Prigogine, Physica (Amsterdam) 15, 272 (1949).

[10] S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, Cambridge,
England, 1952).

[11] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Trans-
port Processes in Gases (North-Holland, Amsterdam, 1972).

[12] J. A. McLennan, Phys. Rev. A 10, 1272 (1974).

[13] G. F. Hubmer and U. M. Titulaer, J. Stat. Phys. 49, 331
(1987).

[14] I. KusCer, Physica A 133, 397 (1985).

[15] C. Y. Liu, Phys. Fluids 11, 481 (1968).

[16] R. Velasco and L. Garcia-Colin, J. Non-Equilib. Thermodyn.
18, 157 (1993).

[17] R. M. Velasco, Rev. Mex. Fis. 39, 352 (1993).

[18] V. M. Zhdanov and V. 1. Roldughin, JETP 86, 1141 (1998).

[19] S. K. Loyalka, J. Chem. Phys. 55, 4497 (1971).

[20] B. I. M. ten Bosch, J. J. M. Beenakker, and I. Ku$&er, Physica
A 123, 443 (1984).

[21] A. M. Bishaev and V. A. Rykov, Izv. Akad. Nauk SSSR,
Mekh. Zhidk. Gaza 6, 140 (1983).

[22] A. M. Bishaev and V. A. Rykov, Zh. Vychisl. Mat. Mat. Fiz.
23, 954 (1983).

[23] A. M. Bishaev and V. A. Rykov, Izv. Akad. Nauk SSSR,
Mekh. Zhidk. Gaza 6, 106 (1984).

[24] V. 1. Roldughin, Kolloidn. Zh. 49, 45 (1987).

[25] V. 1. Roldughin, J. Non-Equilib. Thermodyn. 19, 349 (1994).

[26] V. Vysotsky and V. I. Roldughin, Physica A 209, 25 (1994).

[27] V. 1. Roldughin and V. M. Zhdanov, Adv. Colloid Interface
Sci. 98, 121 (2002).

[28] V. 1. Roldughin, Adv. Colloid Interface Sci. 65, 1 (1996).

PHYSICAL REVIEW E 73, 026110 (2006)

[29] F. Sharipov, Physica A 203, 437 (1994).

[30] F. Sharipov, Physica A 203, 457 (1994).

[31] F. Sharipov, Physica A 209, 457 (1994).

[32] F. Sharipov, J. Stat. Phys. 78, 413 (1995).

[33] F. Sharipov, Physica A 260, 499 (1998).

[34] F. Sharipov, Phys. Rev. E 59, 5128 (1999).

[35] F. Sharipov, J. Vac. Sci. Technol. A 14, 2627 (1996).

[36] F. Sharipov, J. Micromech. Microeng. 9, 394 (1999).

[37] F. Sharipov and D. Kalempa, J. Vac. Sci. Technol. A 20, 814
(2002).

[38] F. Sharipov, Eur. Phys. J. B 22, 145 (2003).

[39] S. Naris, D. Valougeorgis, D. Kalempa, and F. Sharipov, Phys.
Fluids 17, 100607 (2005).

[40] F. Sharipov, P. Fahrenbach, and A. Zipp, J. Vac. Sci. Technol.
A 23, 1331 (2005).

[41] C. Cercignani, Theory and Application of the Boltzmann Equa-
tion (Scottish Academic Press, Edinburgh, 1975).

[42] E. M. Lifshitz and L. P. Pitaevskii, Theoretical Physics. X.
Physical Kinetics (Nauka, Moscow, 1979).

[43] G. A. Bird, Molecular Gas Dynamics and the Direct Simula-
tion of Gas Flows (Oxford University Press, London, 1994).

[44] P. L. Bhatnagar, E. P. Gross, and M. A. Krook, Phys. Rev. 94,
511 (1954).

[45] A. V. Latyshev and A. A. Yushkanov, Tech. Phys. Lett. 28,
391 (2002).

[46] C. Bardos, R. E. Caflisch, and B. Nicolaenko, Commun. Pure
Appl. Math. 39, 323 (1986).

[47] K. Aoki, C. Bardos, and S. Takata, J. Stat. Phys. 112, 629
(2003).

[48] F. Sharipov, Phys. Rev. E 69, 061201 (2004).

[49] E. M. Shakhov, Fluid Dyn. 3, 95 (1968).

[50] C. Cercignani and M. Lampis, Transp. Theory Stat. Phys. 1,
101 (1971).

[51] C. E. Siewert, Phys. Fluids 16, 2132 (2004).

026110-8



