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In this paper we address the problem of the calculation of the mean first passage time on generic graphs.
We focus in particular on the mean first passage time on a node s for a random walker starting from a
generic, unknown, node x. We introduce an approximate scheme of calculation which maps the original
process in a Markov process in the space of the so-called rings, described by a transition matrix of size
O�ln N / ln �k�� ln N / ln �k��, where N is the size of the graph and �k� the average degree in the graph. In this
way one has a drastic reduction of degrees of freedom with respect to the size N of the transition matrix of the
original process, corresponding to an extremely low computational cost. We first apply the method to the
Erdös-Renyi random graphs for which the method allows for almost perfect agreement with numerical simu-
lations. Then we extend the approach to the Barabási-Albert graph, as an example of scale-free graph, for
which one obtains excellent results. Finally we test the method with two real-world graphs, Internet and a
network of the brain, for which we obtain accurate results.
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I. INTRODUCTION

Modern graph theory starts with the study of Erdös-Rényi
�ER� random networks in 1959 �1�. In more recent times it
has regained a great amount of attention �2� since it has
become evident that many different systems can be described
as complex scale-free networks, i.e. assemblies of nodes and
edges with nontrivial topological properties �3,4�.

In this article we focus on the properties of random walks
on generic graphs. It is well known that random walk is a
fundamental process to explore an environment �5–10�, and
recently great attention has been devoted to the study of ran-
dom walk on networks �see, for instance, Refs. �11–20��. In
this process a walker, situated on a given node at time t, can
be found with probability 1 /k on any of the k neighbors of
that node at time t+1.

In particular we are interested in the mean first passage
time �MFPT� on a node s for a random walker starting from
a generic, unknown, node x. It is important to note here that
Noh and Rieger �14� have derived, exploiting the properties
of Markov chains, an exact formula for the MFPT Tsj of a
random walker between two nodes s and j in a generic finite
network.

In this paper, however, we do not trivially average Tsj
over all j�s, a very costly operation, but we use the concept
of ring �see also Ref. �21��. In this perspective we study the
graph as seen by node s, and partition it in rings according to
the topological distance of the different nodes from s �see
also Refs. �16,22��. This allows us to map the original Mar-
kov problem �of N states� in a Markov chain of drastically
reduced dimension �O�ln N / ln �k�� ln N / ln �k��� and, as a
consequence, to calculate MFPT on a generic node s with a
reduced computational cost. On the other hand, with the new
process, the identity of the single target node s is lost, and all
the nodes with the same connectivity �i.e. number of neigh-
bors� are not distinguishable.

Our explicit calculation is almost free of approximations
only for Erdös-Rényi random graphs, for which we obtain an
excellent agreement between theory and numerical simula-

tions. The more disordered scenario of other complex net-
works makes the extension of our approach progressively
more problematic. Nevertheless we find quite surprisingly
that our approach is able to make very good predictions also
for other synthetic networks, such as the Barabási-Albert
scale-free networks �23�, and at least two real-world graphs.
In all these cases, the considered networks behave, with re-
spect to the property studied, as if they were random graphs
with the same average degree. Finally our approach allows
us to show that a random walker recovers rapidly the degree
distribution of the network it is exploring.

The paper is organized as follows. In Sec. II the concept
of ring is introduced and the Markov process on which the
original problem can be mapped is defined. In Sec. III ex-
plicit calculations for the case of random graphs are per-
formed. It is shown that the description of a random graph in
term of rings is very accurate, and that theoretical predictions
for the MFPT are in excellent agreement with results from
simulations. Section IV, finally, is devoted to the possible
extension of the theory to other networks. Notwithstanding
the difficulties that arise in the analytical extension of the
theory, it is shown that MFPT of walkers in both artificial
and real-life networks can be predicted quite accurately with
our theory. It is also shown that a random walk can be used
for the reconstruction of the degree distribution of a network.

II. THE NEW PROCESS—RINGS

All the information about a generic graph is contained in
the adjacency matrix A whose element Aij =1 if nodes i and j
are connected, and Aij =0 otherwise. We shall consider here
only undirected graphs, i.e. Aij =Aji, which do not contain
any links connecting a node with itself �Aii=0, ∀ i�. The de-
gree of a node, k�i�, is given by k�i�=� jAij. Finally, we shall
concentrate only on the case of connected graphs, i.e. graphs
in which each pair of nodes i , j, with k�i� , k�j��0, are con-
nected with at least one single path. From a random walk
point of view, the matrix A can be interpreted as the N�N
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symmetric transition matrix of the associated Markov pro-
cess �32�.

We are interested in the problem of the average MFPT on
a node s of degree k�s� of a random walker that started from
a different, unknown, node x. Our idea is mapping the origi-
nal Markov process A on a much smaller process B that will
be asymmetric and will contain self-loops �i.e. Bii�0�. More
precisely we reduce the N�N matrix to a O�ln N / ln �k�
� ln N / ln �k�� matrix.

Given the target node s, we start by subdividing the entire
network in subnetworks, or rings �see also Refs. �16,21,22��,
rl, with the following property:

rl = �nodes j	dsj = l
 , �1�

where dsj =djs is the distance between nodes s and j, i.e. the
smallest number of links that a random walker has to pass to
get from j to s. These rings will be the states of the new
matrix B. Their number, being proportional to the maximum
distance between any two nodes in the network, i.e. to the
diameter of the network, is O�ln N / ln �k�� �24,25� �where �k�
is the average degree of the nodes of the graph�.

Other important quantities are the average number
mrl,rl+1

�ml,l+1 of links that connect all the elements of rl with
all the elements of rl+1, and the average number ml,l of links
between nodes belonging to the same rl. We have trivially
ml,l−1=ml−1,l and ml,k=0 if dlk�1.

We now have all the elements to define our new process.
We are no longer interested in the exact position of the ran-
dom walker. The relevant information is now the ring in
which the random walker is. The matrix of this process has
size �lmax+1�� �lmax+1�, where lmax is the diameter of the
original graph. The matrix has the following structure �33�
�for the case lmax=6�:

B =�
0 0 0 0 0 0 0

b10 b11 b12 0 0 0 0

0 b21 b22 b23 0 0 0

0 0 b32 b33 b34 0 0

0 0 0 b43 b44 b45 0

0 0 0 0 b54 b55 b56

0 0 0 0 0 b65 b66


 , �2�

where bij =mij / ��k�i=0
lmax mik+2mii� for i� j, and bii

=2mii / ��k�i=0
lmax mik+2mii�. bij thus represents the probability

of going from ring i to ring j. By definition of rings it is clear
that it is not possible to move from a ring to a nonadjacent
other ring, while it is obviously possible to move inside a
ring, and in this case the number of links must be doubled to
take into account that each internal link can be passed in two
directions. The elements of the first row of the matrix are set
equal to 0 because we are interested in the first passage time
in the target node s. The probability Pij

�t� of going from state
i to state j in t steps is given by �Bt�ij. If we set b01=1, we
would allow the walker to escape from node s, while b00
=1 should be used if we were interested in the probability
that the walker reached node s before time t. The probability
Fk�s��t� that the first passage on node s occurs at time t is then

Fk�s��t� = �
l=1

lmax nl

N − 1
�Bt�l0, �3�

where nl is the number of nodes belonging to the ring rl and
each matrix term is weighted with the probability that the
random walker started in the ring corresponding to its row,
i.e. nl / �N−1�.

The average time MFPT �(k�s�) can be calculated using
Eq. �3� as

�„k�s�… = �
l=1

�

lFk�s��l� . �4�

III. EXPLICIT CALCULATION
FOR RANDOM GRAPHS

A. Static

A random graph is obtained in the following manner:
given a finite set of isolated N nodes, all the N� �N−1� /2
pairs of nodes are considered and a link between two nodes
is added with probability p. This yields �in the limit N→��
to Poisson’s distribution for the degree k of a node

P�k� =
�k�k

k!
e−�k�, �5�

with �k�= p�N−1�. It is clear that such a graph does not con-
tain any relevant correlations between nodes and degrees,
and this will allow us to obtain exact average relations for
the quantities illustrated in the previous section.

The first important quantity to calculate is the average
number nl of elements of rl. It holds

nl+1 = �N − �
k=0

l

nk��1 − �1 − p�nl� , �6�

where nl+1 is calculated as the expected number of nodes not
belonging to any interior ring that are connected with at least
a member of rl. Figure 1 illustrates that Eq. �6� is in excellent
agreement with results from simulations. Obviously n0=1
and n1= �k�. However, if we know the degree k�s� of node s
we can impose n1=k�s� and calculate the following nl�1 in
the usual manner. In fact, this is the way in which we will
use Eq. �6�.

For the average numbers ml,l+1 of links that connect all the
elements of rl with all the elements of rl+1, and ml,l of links
between nodes belonging to the same rl we have

ml,l+1 = nl�N − �
k=0

l

nk�p , �7�

ml,l =
nl�nl − 1�

2
p ,

where the fact that a link between two nodes exists with
probability p is exploited. As a practical prescription we add
that when Eq. �7� yields to nonphysical ml,l�0 one has to
redefine ml,l=0. Also these expressions, which are crucial
for the construction of the B matrix of Eq. �2�, give predic-

A. BARONCHELLI AND V. LORETO PHYSICAL REVIEW E 73, 026103 �2006�

026103-2



tions in excellent agreement with results from simulations
�data not shown�. As expected we have that, in the limit
p→0, ml,l+1→nl+1, while, when p→1, ml,l+1→nl�nl+1.
Note that from Eq. �7� one has that nl�1⇒ml,l�0, which
has clearly no physical meaning.

Before going on it is interesting to make a remark. It is
known �22,27� that the nearest neighbors of a generic node
have particular properties, e.g., an average degree different
from the �k� of the graph. Our relations are able to predict
this fact. Combining Eqs. �6� and �7� it is easy to see that the
average degree of the nodes belonging to rl depends on l,
being constant �and larger than �k�� for low values of l and
decreasing rapidly for l large enough. Data from simulation
reported in Fig. 2 show that this prediction is correct. This
agreement is not surprising since Eqs. �6� and �7� are sepa-
rately in excellent agreement with simulations, thus being
able to predict very accurately the value of the average de-
gree of the nodes belonging to the same ring.

B. Dynamics

So far, we have shown that predictions of the above rela-
tions on the static properties of a random graph are correct.
We now explore the predictions on the diffusion processes.
Figure 3 shows, for different values of the degree k�s� of
the target node, the comparison of the predicted values of
Fk�s��t�, calculated with Eq. �3� and results from simulations.
Data from simulations are obtained by selecting randomly,
for each of the approximately N�N runs, one of the nodes
of selected degree k�s� present in the network to play the
role of s, and one of the remaining N−1 nodes to be the
starting point of the random walker. The agreement between
theory and simulations is very good. The exponential behav-

ior, typical of finite ergodic Markov chains, has the form
f�t�= �1/��exp�−t /��.

Figure 4 shows that the average MFPT �(k�s�), calculated
using Eq. �4� �with the B matrix built using Eqs. �6� and �7��
are in good agreement �though slightly smaller� with those
obtained in simulations. We shall return to the origin of the
small disagreement between theory and simulations at the
beginning of the next section.

The relation, found both in theory and simulations �see
also Ref. �14��, �(k�s�)=��1��k�s�−1, can be explained with
elementary qualitative probabilistic arguments. In fact, since,
as shown in Fig. 2, the average degree of the nodes in r1 does
not depend on k�s� �i.e. on the size n1 of r1�, also the MFPT
on a node of r1 is independent from n1. This means that,
while the probability of passing from r1 to s does not depend

FIG. 1. Nodes nl per ring: Rings populations nd are shown in
this figure. Comparisons of theoretical previsions from Eq. �6� and
data from simulations for different values of k�s� in a single ER
graph of size N=103 and �k�=6 are shown. The fractional error e,
defined as the ratio between measured and calculated values, is
also plotted for each represented value of k�s�. Theoretical average
quantities are in excellent agreement with single graph
measurements.

FIG. 2. �Color online� Average ring degree: average degrees of
nodes belonging to different rings are shown in function of rings’
distances for an ER random graph �N=104 nodes and �k�=6�. A
dependence on the ring’s distance appears clearly, as predicted by
theory. Results for different values of k�s� are shown �predictions
shown only for the case k�s�=6�.

FIG. 3. �Color online� First passage time distributions: FPT
probability distributions both measured and calculated for an ER
graph with �k�=6 are presented for different values of k�s�. Theo-
retical predictions are in excellent agreement with data of random
walk on a single graph. Theoretical curves are obtained with Eq.
�3�, and fit the relation Fk�s��t�= �1/�� exp�−t /�� with � obtained
with Eq. �4�. In the inset the first part of the distribution is show in
more detail.
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on n1, a larger r1 is visited more often than a smaller one.
Combining these observations, it seems plausible to guess
that the MFPT on a target node s with k�s��1 will be 1/k
times the MFPT of a node s with k=1, and this behavior is
indeed observed.

It is worth noting that both the k�s�−1 trend and the order
of magnitude of ��1� can be derived with a simple mean field
approach �18,19�. In fact, neglecting all the possible correla-
tions in a graph, the whole random walk process can be
approximated with a two-state Markov process where the
two states correspond to the walker being at the target node
and on any other node. Easy calculations shows that the
probability for the walker to arrive at a node s is given by
q�s�=q(k�s�)=k�s� /2M, where M is the total number of links
of the graph. For a fully connected graph this relation gives
the exact value of �=��N−1�=N−1. In a random graph the
mean field approach gives better and better results the larger
is the mean degree �k�. For small values of �k�, only the
order of magnitude of ��1� is in fact predicted by this ap-
proach. The method based on rings, though being less
simple, is able to make more accurate predictions for all
values of �k�. Just for comparison we report here data shown
in Fig. 4 relative to a network of N=103 nodes with �k�=6:
we have ��1�sim /��1�calc=1.03 and ��1�sim /2M =1.24, where
��1�sim and ��1�calc are MFPT obtained respectively with
simulations and with the ring method.

All the results discussed above allow us to explain the
curve presented in Fig. 5, which represents the distribution
P�t� of the MFPT in a graph when both s and the starting
point of the walker are randomly chosen at each run. P�t� can
be calculated here as the convolution of several exponential
FPT distributions Fk�s��t� corresponding to the different val-

ues of k�s�, each weighted with the probability of encounter-
ing a node of degree k�s� in the graph. More precisely, ac-
cording to Eq. �5�, for each time step t every Fk�s��t� must be

weighted with Poisson’s weights ck�s�
��k��= ��k�k�s� /k�s� ! �e−�k�.

We have

P�t� = �
j=1

�

cj
��k��Fj�t� = �

j=1

�

cj
��k��e�−t/��j�� 1

��j�
. �8�

This relation can be written in a more compact way exploit-
ing the fact that �(k�s�)=��1��k�s�−1 �26�. Defined Z= �k�
�exp�−t /��1��, it holds

P�t� = �
j=1

�

Z
Zj−1

�j − 1�!
e−�k�

��1�
= cZeZ, �9�

where c is the constant e−�k� /��1�.

IV. EXTENSIONS OF THE THEORY

In the previous sections we have described a method that
allows us to calculate the average MFPT on a node s of a
walker that started from a generic other node of the graph.
We have then obtained exact �average� expressions for the
case of random graphs. Unfortunately, the analytical exten-
sion of the relations found for this kind of graphs to other
graphs �such as, for example, scale-free networks� is diffi-
cult. This is due to the fact that Eqs. �6� and �7� exploit the
knowledge of the rules according to which a random graph is
generated. In other words, the absence of correlations be-
tween nodes is the main feature those equations are based on.
When correlations are present, the calculation of the number

FIG. 4. Mean first passage times: in upper graph, MFPT both
measured and calculated �using Eq. �4�� are reported for an ER
graph of size N=103 with �k�=6. Error bars on measured values are
not visible on the scale of the graph. The line �(k�s�)���1�
�k�s�−1 is also plotted. It holds ��1�sim=7413 and ��1�calc=7164
for values obtained respectively from simulations and from calcu-
lation. It can be noted that the order of magnitude of ��1� is given
by 2M, where M is the total number of links in the graph; in our
case we have 2M ��k��N=6000. In lower graph the fractional
error e, defined as the ratio between simulated and calculated MF-
PTs, is reported.

FIG. 5. First passage time distribution—average on all target
nodes s: The distribution of the FPT obtained is shown �ER graph:
N=103 , �k�=6�. At each run both the target node s and the starting
node of the random walker are randomly chosen. This means that in
this distribution the degree of the target nodes is no more fixed.
The nonexponential curve is the result of the convolution of several
exponential curves obtained for fixed k�s�. The theoretical curve,
obtained according to Eq. �8�, is in excellent agreement with data
from simulation performed on a single graph. The fractional error
e, defined as the ratio between simulated and calculated data, is also
plotted. For large times poor statistics causes bigger fluctuations
of e.
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of nodes of the second ring, n2, is already very difficult �for
finite networks� and requires some empirical assumptions
�27�.

In addition there is a more subtle reason that makes our
method difficult to extend. Given the set of all nodes of a
graph with a certain degree k, their first rings, although hav-
ing the same number of nodes, present two kinds of fluctua-
tions. On a global scale, the average degree k�r1� of the
nodes of the first ring does not have a unique value, but in
general is distributed according to some probability density.
On a local scale, on the other hand, a single ring is not made
by identical nodes, and its average degree has a certain vari-
ance �. In Fig. 6 we show global and local fluctuations for
both a random graph and a Barabási–Albert �BA� scale-free
graph �23�. The preferential attachment rule of the Barabási-
Albert network generates a graph with a scale-free form
P�k��k−c, with c=3, for the degree distribution. As it is
evident from Fig. 6, BA graphs have larger fluctuations than
random graphs.

With our method of rings, described above, the fluctua-
tions cannot be taken into account. Matrix B �2� is in fact
defined under both the assumptions of �i� equivalence of all
the nodes with a given k �global homogeneity� and �ii�
equivalence of all the nodes inside each ring �local homoge-
neity�. The slight disagreement between our theory and
simulation results present in Fig. 4 are thus easily explained
in term of local fluctuations of the first ring. In fact, as it is
easy to demonstrate using Lagrange multipliers, the assumed

local ordered configuration is the most advantageous for a
walker that has to reach the node s from the first ring. This is
then the reason for which our calculated MFPT are always
smaller than those obtained from simulations.

Notwithstanding these difficulties in extending our theory,
we found a quite surprisingly result, shown in Fig. 7: given a
BA graph with a given average degree �k�, the average
MFPT for a walker starting from a generic node on a node s
of degree k�s� is almost equal to the corresponding average
MFPT of the same random walk on a random graph with the
same average degree. This means that our theory continues
to predict very well the MFPT �and hence its exponential
distribution�. It is remarkable that the theory predicts well
also the MFPT on nodes with high degree, which are absent
in the corresponding random graph.

The ability of our theory to predict diffusion processes on
BA graphs can be due to the modest presence of correlations
between its nodes. Many properties of real networks, in fact,
are not reproduced by the BA model. One important measure
of correlations in a graph is the measure of the average de-
gree of the nearest neighbors �i.e. of the nodes of the first
ring� of vertices of degree k, called knn �28�. While random
and BA graphs have a flat knn, indicating the absence of
strong correlations among nodes, many real networks exhibit
either an assortative or disassortative behavior. In the first
case high-degree vertices tend to be neighbors to high-degree
vertices, while in the second case they have a majority of
low-degree neighbors. Another important measure of corre-
lation is the clustering coefficient, which is proportional to
the probability that two neighbors of a given node are also

FIG. 6. First ring fluctuations: Fluctuations related to nodes of
degree k=3 are presented for ER �left� and BA �right� graphs of size
N=1�105 and �k�=6. On the two top figures global fluctuations
are analyzed. Histograms of the number of nodes vs. the average
degree k�r1� of the nodes of the first ring r1 for ER graphs �top left�
and BA graphs �top right�. Logarithmic scale for the ordinate of BA
graph must be noted. In the two bottom figures local fluctuations are
analyzed. Here the histograms represent the number of rings in
function of the ratio ��r1� /k�r1�, where ��r1� is the variance of the
degree of the nodes belonging to each r1 for ER graphs �top left�
and BA graphs �top right�. The higher degree of fluctuations of the
BA graphs is evident.

FIG. 7. �Color online� Mean first passage times vs the degree of
the target node for different networks. Continuous lines with small
filled points �upper graph� are obtained from Eq. �4�, i.e. for random
ER graphs, while empty symbols of different shapes come from
simulations. The agreement between the theory and simulations for
both ER graphs �circles� and, less obviously, for the BA graphs,
�squares�, is evident. Data from real networks are also reported: also
in this case the agreement with theoretical predictions is good. Error
bars are not visible on the scale of the graph. In the lower graph,
fractional errors e, defined as the ratio between measured and cal-
culated values, are reported both for real networks and BA graph.
Dashed lines correspond to e=1.
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neighbor of themselves. Again, BA and random graphs, in
which clustering is very poor, do not reproduce the clustering
properties of many real networks.

In order to check how far our theory can predict the
MFPT on correlated graphs we have performed two sets of
experiments on real networks. We have considered in par-
ticular a network of Internet at the level of Autonomous Sys-
tems �29,30�, which exhibits a disassortative mixing feature
and a recently proposed scale-free brain functional network
�31�, which exhibits an assortative mixing feature as well as
a strong clustering coefficient.

The results for the MFPT for these two networks, as a
function of the degree of the target node, are reported in Fig.
7. Though the agreement between theory and simulation is
not perfect, it remains good. In particular we find again the
approximate trend �(k�s�)=��1��k�s�−1.

Now we have all the elements to estimate the probability
of finding a random walker on a node of a given degree k.
On the one hand, in fact, it seems obvious that this probabil-
ity is related to the fraction f�k� of nodes of that degree in the
network, while on the other hand we now know that the
MFPT on such a node is proportional, on average, to 1/k. It
is then reasonable to argue that the probability for a random
walker being on a node of degree k is proportional to kf�k�.

We have tested this hypothesis in an experiment reported
in Fig. 8. In the experiment a walker has explored a BA
network and an ER random graph with N=105 nodes for N
time steps. At each time step the degree of the visited node
was recorded and the normalized histogram of the fraction of
time spent on nodes of any degree is reported in Fig. 8. In the
limit of infinite time steps this histogram would indicate ex-
actly the probability of finding the walker of a node of a
given k. According to our hypothesis, this histogram should
be described by the function P�k�k / �k�, where P�k� is the
degree distribution of the considered network, and the figure
shows this is in fact the case, already after a relatively small
number of time steps.

Finally, it is worth noting that the previous argument can
be reversed. A walker able to record the degree of each node
it traverses can be used to determine the degree distribution
of the network it travels. In fact, if t�k� is the fraction of time
spent on nodes of degree k, it holds that f�k�� t�k� /k. The
average degree �k� is then trivially obtained by requiring the
normalization of the estimated P�k�.

V. CONCLUSIONS

In this paper we addressed the problem of the computa-
tion of the mean first passage time on a selected node s of
random walkers starting from different nodes on a generic
network. We have introduced an approximate method, based
on the concept of rings, which maps the original Markov
process on another Markov process in a much smaller space.
This allows for a drastic reduction of the computational cost.
In the case of ER random graphs we have been able to ana-
lytically derive all the quantities of interest and we have
shown that our method gives predictions, both for static and
dynamic properties, in excellent agreement with results
found in simulations. Even if this method is promising, ana-

lytical results are difficult to obtain for nonrandom graphs.
However, quite surprisingly, we have found that MFPTs cal-
culated with our theory for ER graphs are in excellent agree-
ment also with simulations of dynamics on BA networks and
in good agreement with results obtained with random walk-
ers on two real networks, thus making our method an easy
tool to predict MFPT time-related quantities in many cases.
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FIG. 8. �Color online� Degree distribution exploration: a random
walker explores the degree distribution of two networks, a BA
graph of size N=105 and �k�=6 and an ER random graph of size
N=105 and �k�=15. Simulations in which a walker travels the net-
works for N time steps have been performed. Empty symbols in
figure represent the fraction of time spent on a node of degree k.
Filled symbols joined by light lines are obtained with the relation
P�k�k / �k�, where P�k� is the degree distribution of the considered
network. Filled points fit well the experimental data, and, as it is
obvious, a longer walking process would allow for better agree-
ment. The probability of finding a random walker on a node of a
given degree k is related to the degree distribution of the graph via
the inverse of 1 /k MFPT scaling relation �apart from a normalizing
factor�. For BA graphs it holds P�k��k−3. The first part of the curve
P�k�k / �k� presented in the figure is indeed c�k−2, where c is a
constant. The region of higher degrees, on the other hand, grows
linearly due to the fact that in a finite-size realization the statistics
on high-degree nodes is poor and the degree distribution in this
region is flat. We avoided any binning in experimental or theoretical
data to make clear that the walker exploration of the network is not
perfect.
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