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We have revisited the fragment-asperity interaction model recently introduced by Sotolongo-Costa and
Posadas �Phy. Rev. Lett. 92, 048501 �2004�� by considering a different definition for mean values in the
context of Tsallis nonextensive statistics and introducing a scale between the earthquake energy and the size of
fragment ��r3. The energy-distribution function �EDF� deduced in our approach is considerably different from
the one obtained in the above reference. We have also tested the viability of this EDF with data from two
different catalogs �in three different areas�, namely, the NEIC and the Bulletin Seismic of the Revista Brasileira
de Geofísica. Although both approaches provide very similar values for the nonextensive parameter q, other
physical quantities, e.g., energy density, differ considerably by several orders of magnitude.
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I. INTRODUCTION

Over the last two decades a great deal of attention has
been paid to the so-called nonextensive Tsallis entropy both
from theoretical and observational viewpoints. This particu-
lar nonextensive formulation �1,2� seems to present a consis-
tent theoretical tool to investigate complex systems in their
nonequilibrium stationary states, systems with multifractal
and self-similar structures, systems dominated by long-range
interactions, and anamolous diffusion phenomena among
others. Some recent applications of the Tsallis entropy Sq�1
to a number of complex scenarios is now providing a more
definite picture of the kind of physical problems to which
this q formalism can in fact be applied.

In this regard, systems of interest in geophysics have also
been studied in light of this nonextensive formalism. In this
particular context an investigation was done by Abe �3� who
showed that the statistical properties of the three-dimensional
distance between successive earthquakes follows a
q-exponential function with the nonextensive parameter ly-
ing in the interval �0, 1� �4�. Since then, other geophysical
analyses have been performed such as, for instance, the sta-
tistics of the calm time, which indicates a scale-free nature
for earthquake phenomena and corresponds to a
q-exponential distribution with q�1 �5�, models for tem-
perature distributions, and radon emission of volcanos �6�.
More recently, a very interesting model for earthquake dy-
namics related to the Tsallis nonentensive framework has

been proposed by the Sotolongo-Costa and Posadas �SCP�
model �7�. Such a model consists basically of two rough
profiles interacting via fragments filling the gap between
them where the fragments are produced by local breakage of
the local plates. By using the nonextensive formalism the
authors of Ref. �7� not only showed the influence of the size
distribution of fragments on the energy distribution of earth-
quakes but also deduced an energy-distribution function
�EDF� that gives the well-known Gutenberg-Richter law �8�
as a particular case.

However, in dealing with this nonextensive framework,
particular attention must be paid to the possible definitions
for mean values, which play a fundamental role within the
domain of these nonextensive statistics �9�. In this regard,
recent studies of the properties of the relative entropy and the
Shore-Johnson theorem for a consistent minimum cross-
entropy principle, revealed the necessity of the so-called
q-expectation value in studies involving these nonextensive
statistical mechanics �see Ref. �10� for details�. Thus, by in-
troducing this q definition of mean value we reanalyzed the
fragment-asperity interaction model of Sotolongo-Costa and
Posadas �7�. Moreover, a scale law between the released rela-
tive energy � and the three-dimensional size of fragments has
also been introduced. By using the standard method of en-
tropy maximization we also deduced an energy distribution
function that differs considerably from the one obtained in
Ref. �7�. In order to test the viability of our appoach we used
data taken from two seismic catalogs, namely, the NEIC and
the Bulletin Seismic of the Revista Brasileira de Geofísica. It
is shown that although both approaches provide very similar
values for the nonextensive parameter q, other physical
quantities, e.g., energy density, differ by several orders of
magnitude.

This paper is organized as follows. In Sec. II the standard
formalism of nonextensive statistical mechanics is reexam-
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ined as well as the theorical basis of the SCP model. In Sec.
III an EDF is calculated analytically through the extremiza-
tion of the Tsallis entropy under the constrains of the
q-expectation value and the normalization condition. In Sec.
IV we test this EDF with data from two different catalogs
and estimate the best-fit values for the nonextensive param-
eter q and the proportionality constant between the released
relative energy � and the volume of the fragments r3, i.e., the
energy density a. We summarize our main results in Sec. V.

II. NONEXTENSIVE FRAMEWORK AND SCP
MODEL

In this section we recall the nonextensive theoretical basis
of the SCP model. As is widely known, the Tsallis statistics
generalize the Botzmann-Gibbs statistics as far as the con-
cept of entropy is concerned. Such formalism is based on the
parametric class of entropies given by

Sq�1 = − kB� pq���lnq p���d� , �1�

where kB is the Boltzmann constant. In the SCP model p���
stands for the probability of finding a fragment of relative
surface � �which is defined as a characteristic surface of the
system�, q is the nonextensive parameter, and the
q-logarithmic function above is defined by

lnq p = �1 − q�−1�p1−q − 1� �p � 0� , �2�

which recovers the standard Boltzmann-Gibbs entropy S1
=−kB� p ln pd3p in the limit q→1. It is worth mentioning
that most of the experimental evidence supporting the Tsallis
proposal are related to the power-law distribution associated
with the Sq�1 descripition of the classical N-body problem
�11�.

The SCP model is a simple approach for earthquake dy-
namics revealing a very interesting application of the Tsallis
framework. Indeed, the fundamental idea is based on the fact
that the space between faults is filled with the residue of the
breakage of the tectonic plates. In this regard, the authors
studied the influence of the size distribution of fragments on
the energy distribution of earthquakes. The theoretical moti-
vation follows from the fragmentation phenomena �12� in the
context of the geophysical systems. In this latter work, En-
glaman et al. showed that the standard Botzmann-Gibbs for-
malism, although useful, cannot account for an important
feature of fragmentation process, i.e., the presence of scaling
in the size distribution of fragments, which is one of the
main ingredients of the SCP approach. Thus, a nonextensive
formalism is not only justified in the SCP model but it is also
necessary since the process of violent fractioning is very
probably a nonextensive phenomenon leading to long-range
interactions between the parts of the object being fragmented
�see, e.g., �7,13��. In reality, such an influence was empha-
sized earlier in other investigations �14�. In general, the SCP
model follows similar arguments to those presented in Ref.
�15� being, however, a more realistic seismic model than the
one proposed in Ref. �16�. In particular, the theoretical ingre-
dients read as follows:

�i� The mechanism of relative displacement of fault plates
is the main cause of earthquakes.

�ii� The surfaces of the tectonic plates are irregular and
the fragments filling the space between them are very diverse
and have irregular shapes.

�iii� The mechanism of triggering earthquakes is estab-
lished through the combination of the irregularities of the
fault planes and the distribution of fragments between them.

�iv� The fragment-distribution function, and consequently
the EDF, emerges naturally from a nonextensive framework.

From the above arguments, the EDF deduced in Ref. �7�
is given by

log�N�m� = log N + �2 − q

1 − q
�

� log�1 + a�q − 1��2 − q��1−q�/�q−2� � 102m� .

�3�

According to Ref. �7�, the above expression describes the
energy distribution in all detectable range of magnitudes very
well, unlike the empirical formula of Gutenberg-Richter �8�.

III. CURRENT APPROACH

Now let us discuss the standard method of maximization
of the Tsallis entropy. In this section and hereafter the Bolt-
zmann constant is set equal to unity for the sake of simplic-
ity. Thus, the functional entropy to be maximized is

�Sq
* = ��Sq + ��

0

�

p���d� − 	�q� = 0, �4�

where � and 	 are the Lagrange multipliers. The constraints
used above are the normalization of the distribution

�
0

�

p���d� = 1 �5�

and the q-expectation value

�q = 	�
q = �
0

�

�Pq���d� �6�

with the escort distribution �17� given by

Pq =
pq���

�
0

�

pq���d�

. �7�

By considering the same physical arguments of Ref. �7�, we
derive, after some algebra, the following expresion for the
fragment size distribution function:

p��� = �1 −
�1 − q�
�2 − q�

�� − �q��1/�1−q�

, �8�

which corresponds to the area distribution for the fragments
of the fault plates. Here, however, and differently from Ref.
�7�, which assumes that 

r, we use an energy scale of 


r3. Thus, the proportionality between the released relative
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energy � and r3 �r is the size of fragments� is now given by
�−�q= �
 /a�2/3, where � scales with r2 and a �the propor-
tionality constant between 
 and r3� and has the dimension of
volumetric energy density. In particular, this scale is in ac-
cordance with the standard theory of seismic rupture, the
well-known seismic moment scaling with rupture length
�see, for example, Ref. �18��.

The EDF of earthquakes is obtained by changing vari-
ables from �−�q to �
 /a�2/3. From Eq. �8� it is straightfor-
ward to show that

p�
�d
 =
C
−1/3d


�1 + C�
2/3�1/�q−1� , �9�

which has also a power-law form with C and C� given by

C =
2

3a2/3 and C� = −
�1 − q�

�2 − q�a2/3 . �10�

In the above expression the energy probability is written as
p�
�=n�
� /N, where n�
� corresponds to the number of
earthquakes with energy 
 and N is the total number of earth-
quakes.

IV. TESTING THE EDF WITH THE CUMULATIVE
NUMBER OF EARTHQUAKES

In order to test the viability of the EDF derived above
�Eq. �9�� we introduce the cumulative number of earthquakes
given by integral �7�

N��

N
= �




�

p�
�d
 , �11�

where N
� is the number of earthquakes with energy larger
than 
. Now, substituting Eq. �9� into Eq. �11�, and consid-
ering m= 1

3 ln 
 �m stands for magnitude� it is possible to
calculate the above expression. In reality, note that depend-
ing on the value of q the limits of integral �11� presents a
cutoff on the maximum value allowed for energy �, which is
given by �max=�a2/3�2−q� / �1−q� for the intervals q�1 and
q�2, while for 1�q�2 the cutoff is absent in the distribu-
tion. Note also that in the limit q→1, �max→�, and p�
�
goes to the exponential function. As a matter of fact, the
calculation of integral �11� for q�1 leads to the general
expression

log�N�m� = log N + �2 − q

1 − q
�log�1 − �1 − q

2 − q
��102m

a2/3 �� ,

�12�

which, similarly to the modified Gutenberg-Ricther law �see,
e.g., Ref. �19� for more details�, appropriately describes the
energy distribution in a wider detectable range of magni-
tudes.

Figure 1 shows the relative cumulative number of earth-
quakes �Gm�=Nm� /N� as a function of the magnitude m.
The data points, corresponding to earthquakes events lying in
the interval 3�m�8, were taken from two different cata-
logs, namely, the Bulletin Seismic of the Revista Brasileira
de Geofísica �Fig. 1�a�� and the NEIC �Figs. 1�b� and 1�c��.
Figures 1�a�, 1�b�, and 1�c� show the results of our analysis
for the Samambaia fault, Brazil �100 events�, the New
Madrid fault, USA �173 events�, and the Anatolian fault, Tur-
key �8980 events�, respectively. We note that similarly to the
original version of the SCP model, our approach, as repre-
sented by Eqs. �8�–�12�, provide a very good fit to the ex-
perimental data of the two catalogs considered here. It is
worth emphasizing, however, that the energy densities differ
by several orders of magnitude from our model to the origi-
nal SCP model. Therefore, we expect that other independent
estimates of the parameter a may indicate which approach is
more realistic physically. The estimates of the parameters q
and a obtained in this paper and in Ref. �7� are summarized
in Table I.

V. CONCLUSION

In Ref. �10� we discussed what seems to be the correct
definition for the expectation values within the Tsallis non-
extensive statistical mechanics. Based on the properties of
the generalized relative entropies and the Shore-Johnson
theorem, it was shown that the expectation value of any
physical quantity in this extended framework converges to
the normalized q-expectation value instead of to the ordinary
definition.

In this paper, by considering this necessity of
q-expectation values in the Tsallis nonextensive framework,
we have revisited the fragment-asperity interaction model for
earthquakes as introduced in Ref. �7�. An energy-distribution
function has been calculated, which allowed us to determine
the relative cumulative number of earthquakes as a function
of the magnitude. Additionally, a scale law between the re-

TABLE I. Limits to q and a.

Fault Reference q a

California, USA �7� 1.65 5.73�10−6

Iberian Penisula, Spain �7� 1.64 3.37�10−6

Andalucía, Spain �7� 1.60 3.0�10−6

Samambaia, Brazil This paper 1.60 1.3�1010

New Madrid, USA This paper 1.63 1.2�1010

Anatolian, Turkey This paper 1.71 2.8�1010
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FIG. 1. The relative cumulative number of earthquakes �Eq. �12�� as a function of the magnitude m. In all panels the data points
correspond to earthquakes lying in the interval 3�m�8. �a� Samambaia fault, Brazil: 100 events from Bulletin Seismic of the Revista
Brasileira de Geofísica. �b� New Madrid fault, USA: 173 data points taken from the NEIC catalog. �c� Anatolian fault, Turkey: 8980 events
from the NEIC catalog. The best-fit values for the parameters q and a are shown in the respective panels. A summary of this analysis is also
shown in Table I.
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leased relative energy � and the volume of fragments r3 has
also been introduced, i.e., in agreement with the so-called
seismic moment scaling with rupture length. As discussed
earlier, although our analysis and the one presented in Ref.
�7� provide very similar values for the nonextensive param-
eter q, the other physical quantities, e.g., energy density, dif-
fer by several orders of magnitude. It would be interesting,
therefore, if we could have experimental estimates for these
quantities in order to compare the predictions of the models.
Finally, it is worth mentioning that the estimates for the non-
extensive parameter from the two catalogs considered here

�Fig. 1� are consistent with the upper limit q�2 obtained
from several independent studies involving the Tsallis non-
extensive framework �20�.
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