
Model of a liquid nanofilm on a solid substrate based on the van der Waals concept of capillarity

S. Gavrilyuk*
CNRS UMR 6595, IUSTI, Project SMASH, 5 rue E. Fermi, 13453 Marseille Cedex 13, France

I. Akhatov†

Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Dolve Hall,
Fargo, North Dakota 58105-5285, USA

�Received 2 November 2005; published 21 February 2006�

Van der Waals attractive forces drastically change the material properties of thin liquid layers several
nanometers when in contact with a solid. At this scale, the fluid is no longer homogeneous. Moreover, it has
properties which are analogous to those of solids. In particular, in equilibrium the stress tensor is no longer
spherical. For such fluids, we use a long-wave approximation to derive the evolution of a liquid nanofilm on a
substrate. We establish that the driving pressure in the nanofilm should be associated with the mean value of
the component of the pressure tensor tangential to the liquid interface �along the substrate�. Finally, we derive
the equation for nanofilm dynamics by using a mass conservation formulation. This is not a conventional,
conservative equation for the position of the free surface normally used in the theory of thick films where the
density is homogeneous, but rather a conservative equation for the liquid mass. The equation turns out to be a
nonlinear parabolic equation with a diffusion coefficient of a “good” sign.
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I. INTRODUCTION

Thin liquid films are encountered in a variety of natural
phenomena and in many technological applications �1,2�.

A mathematical treatment of the dynamics of liquid films
on a solid substrate in general has to deal with the fact that
film interface represents a free boundary whose configuration
evolves both temporally and spatially. This configuration
must be determined as a solution for governing equations.
The most appropriate analytical method for dealing with the
problem is to analyze long-scale phenomena only, in which
the characteristic lateral length scale �along the substrate� is
much larger than the average film thickness. Such a long-
wave theory approach is widely and successfully used to
model dynamics of relatively thick liquid films �see Ref. �3�
for review�. However, this approach cannot be scaled di-
rectly down to the nanoscale. That is because liquid in macro
and micro films is normally treated as a viscous, incompress-
ible fluid, and Navier-Stokes equations used as the governing
equations fail at the nanoscale and have to be revised.

Van der Waals attractive forces drastically change the ma-
terial properties of thin liquid layers several nanometers
when in contact with a solid. At this scale, interfacial transi-
tion layers �due to solid-liquid and liquid-gas interactions�
completely overlap. The fluid is no longer homogeneous; its

density varies in the direction normal to the solid interface.
This nonhomogeneity can be taken into account by consid-
ering the physical concept where the liquid energy depends
on the space derivatives of its density �4,5�.

Volume energy dependent on density gradients also ap-
pears in the study of the kinetics of phase boundaries, mov-
ing contact lines, and other phenomena �see Refs. �6–9� for a
comprehensive review�.

Rocard �10� introduced the anisotropic stress tensor in
such liquids by using the methods of the kinetic theory of
gases. The reversible dynamics of such liquids was derived
from the Hamilton principle of stationary action in Refs.
�11–13� �see also references in Ref. �8��.

These liquids �often called capillary fluids� have peculiar
physical properties. In particular, in equilibrium the stress
tensor is not spherical, and the fluids have properties analo-
gous to those of solids. The boundary conditions for such
fluids represent a correlation between boundary values of the
density and its normal derivatives �14–17�. All these pecu-
liarities provide main difficulties in the detailed mathemati-
cal treatment of specific physical problems.

We apply this concept to study the motion of liquid nano-
films on a substrate. First, we consider the statics of such
liquid nanofilms. We derive an explicit formula for the dis-
joining pressure, as it was introduced by Derjaguin �18�. This
disjoining pressure is exactly the component of the pressure
tensor �equal with the sign minus to the stress tensor� normal
to the liquid interface which is identically constant in the
liquid film. In particular, we show that in static equilibrium,
the disjoining pressure should be zero to satisfy the stress-
free boundary conditions existing at the free surface �the gas
and vapor atmosphere pressure above the nanofilm is ne-
glected here�. On the contrary, the component of the stress
tensor tangential to the liquid interface �along the substrate�
strongly varies inside the liquid film. This was qualitatively
predicted by Derjaguin �18�. The tangential pressure compo-
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nent is negative which perfectly corresponds to the nature of
van der Waals attractive forces spreading the liquid films.

Then, we use long-wave approximation to describe the
evolution �dynamics� of the liquid nanofilm on a substrate. In
this approximation the disjoining pressure is always zero. It
is worth noting that there is a misleading concept in literature
about ultrathin films where the driving pressure for film dy-
namics is associated with the disjoining pressure. We estab-
lish here that the driving pressure in nanofilms should be
associated with the mean value of the component of the pres-
sure tensor tangential to the liquid interface �along the sub-
strate�, but not disjoining pressure. This tangential pressure is
completely different from the disjoining pressure. In particu-
lar, the tangential pressure is finite when the film thickness
goes to zero.

Finally, we derive the equation for nanofilm dynamics in
explicit form, by using mass conservation formulation. This
is not a conventional, conservative equation for the position
of the free surface normally used in the theory of thick films
where the density is homogeneous �see Ref. �3� for review�,
but rather a conservative equation for the liquid mass. The
equation turns out to be a nonlinear parabolic equation with
a diffusion coefficient with a “good” sign. This leads us to a
different concept of thin film dynamics, and in particular to a
different mechanism for film rupture on a substrate.

II. STATIC PROBLEM

Consider a thin liquid film of thickness h occupying the
domain � which is in equilibrium with a solid substrate. The
boundary between the solid and liquid is denoted by S, the
upper surface of the film is denoted by �. We will suppose
that both S and � are flat. Gravity is ignored. The total en-
ergy of the system ET is

ET = �
�

�W��� + �
����2

2
�d� + �

S

ESdS + �
�

E�d� . �1�

Here � is the liquid density which is supposed to be not
uniform in space due to liquid-substrate and liquid-liquid
interactions. W��� is the bulk liquid energy related in general
with the kinetic energy of thermal motion of liquid mol-
ecules and with the potential energy of interaction between
the liquid molecules in uniform liquid of density �. The sec-
ond term, depending on the density gradient ��, is respon-
sible for the capillary effects �the density nonhomogeneity�
due to van der Waals attractive forces. Van der Waals forces
are important when the film thickness is in the range of 10–
100 nm �7,18–20�. Finally, the last two terms are the energies
of the surfaces S and �.

A typical expression of ES is as follows �7�:

ES = − �1�S +
1

2
�2�S

2.

Here �S is the liquid density at the surface S ,�1�0 corre-
sponds to the attraction between solid and liquid molecules,
�2�0 is the repulsive component due to the attraction be-
tween liquid molecules, which are near the solid, and those
in the bulk. For the energy E� we propose an analogous
expression

E� =
1

2
�2��

2 .

Here �� is the liquid density on the upper boundary �. The
parameter �1 is taken to be zero in the last formula because
we neglect the interaction between liquid and gas or vapor at
the film surface.

The parameters � ,�1, and �2 can be explicitly calculated
in terms of molecular interaction potentials. An example of
such a calculation was done in Ref. �21� for semi-infinite
liquid in contact with a solid substrate for the Lennard-Jones
potentials with hard-core repulsion. If liquid-liquid �ll and
liquid-solid �ls potentials are given by

�ll = 	− Cll/r
6, r � 	l


 , r � 	l

, �ls = 	− Cls/r

6, r � �


 , r � �



then

�1 =

Cls

12�2mlms
�sol, �2 =


Cll

12�2ml
2 . �2�

Here �= �	l+	s� /2 ,	l, and 	s are diameters of the liquid and
solid molecules, ml and ms are masses of the liquid and solid
molecules, �sol is the density of the solid. The expression for
the coefficient � is �21,22�

� = −
2


3
�

	l




r4�ll�r�dr =
2
Cll

3	lml
2 . �3�

For nanofilms, the volume energy W can be neglected in
Eq. �1�. On the contrary, we account for the capillary energy
related to the distortion of the density profile due to van der
Waals forces. The validity of this approximation will be pro-
vided a posteriori �see Sec. III�. Namely, we will obtain for
this approximation an explicit equation for the disjoining
pressure and will show that its dependency on film thickness
perfectly matches the classical one given in the literature.

In static equilibrium, the total energy of the system is
minimal. The solution of the minimization problem for the
reduced energy functional

ET = �
�

�
����2

2
d� + �

S

ESdS + �
�

E�d�

looks as shown below �14–17�:

����� = 0, ��
��

�n
�

S

− �1 + �2�S = 0, ��
��

�n
�

�

+ �2�� = 0.

Here � is the Laplacian operator, and � is the operator gra-
dient. We denoted here �� /�n the normal derivative of the
density, and n is the external normal to the liquid volume.

In the Cartesian coordinates �Oxz�, where the x axis is
directed along the solid surface, and the z axis is perpendicu-
lar to the solid surface direction, we have the following ex-
plicit solution:

��z� = �S + �1z + �2
z2

2
�4�

with boundary conditions
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��
d�

dz
�

z=0
= − �1 + �2�S, ��

d�

dz
�

z=h
= − �2�� = − �2��h� .

The parameters �1 and �2 can easily be determined from the
boundary conditions

�1 =
− �1 + �2�S

�
, �2 = −

�2�S + �1�� + �2h�
��h + �2h2/2�

. �5�

In the following, it is convenient to work with the dimen-
sionless variable film thickness,

H =
h

h*
, h* =

�

�2
.

We introduce also the dimensionless parameter �,

� =
��1

�2�S
= 1 −

�1

�2�S
. �6�

In dimensionless variables Eq. �5� can be rewritten as fol-
lows:

�1 =
�1

�

�

1 − �
, �2 =

�1�2

�2

A�H,��
1 − �

, A�H,�� =

−
1 + ��1 + H�

H + H2/2
. �7�

For a fixed dimensionless film thickness H the density profile
is

��H,Z,�� = �*
�1 + �Z + A�H,��Z2/2�

1 − �
, Z =

z

h*
=

�2z

�
, �*

=
�1

�2
. �8�

In particular, the fluid density on the upper boundary � is

���H,�� = �*
2 + �H

�1 − ���2 + H�
. �9�

In this approach, the liquid density �S on the substrate,
which is related with � through Eq. �6�, is not yet defined.
Defining the density �S is equivalent to defining �. In Sec.
IV, we will propose a method to determine �S as a function
of the molecular interaction parameters and film thickness.

III. DISJOINING PRESSURE

The energy per unit area of a film of thickness h is

E =
�

2
�

0

h �d�

dz
�2

dz + E� + ES =
�

2
��1

2h + �1�2h2 + �2
2h3

3
�

+
1

2
�2��

2 + ES.

By using Eqs. �6�, �7�, and �9�, we rewrite this energy in
dimensionless variables,

E =
�1

2

2�2

1

�1 − ��2

��12 + 4�1 + ��2H + ��2 + 5��H2 + �2H3

3�2 + H�2 + 2� − 1� .

�10�

The mass of film per unit area is given by

m = �
0

h

�dz =
��1

�2
2 �H�12 + 4H�1 + �� + �H2�

6�1 − ���2 + H� � .

We introduce the dimensionless mass per unit area,

M =
m�2

2

��1
,

and express the dimensionless energy per unit area,

E =
E�2

�1
2 ,

as a function of H and M. First, we find � as a function of M
and H:

� =
2�6M − 6H + 3MH − 2H2�
12M + 6MH + 4H2 + H3 , �11�

and then, we substitute it into Eq. �10� to obtain the energy
per unit area as a a function of H and M,

E�H,M� =
12M2�2 + H� − 12MH�2 + H� − H3�4 + H�

2H2�6 + H��2 + H�
.

�12�

The density profile as a function of H ,Z, and M is obtained
by substituting Eq. �11� into Eq. �8�:

��H,Z,M�
�*

=
6M�2 + H��H + HZ − Z2� + H�H3 + 4H2�1 − Z� + 3HZ�Z − 4� + 6Z2�

H2�12 + 8H + H2�
. �13�

The dimensionless disjoining pressure is defined as follows �7,18,19�:

��H,M� = �−
�E

�H
�

M=const

and is given by
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��H,M� =
2�9M2�2 + H�2�4 + H� − 6MH�2 + H�2�3 + H� + H3�12 + 6H + H2��

H3�12 + 8H + H2�2 . �14�

It can easily be seen that for small H

��H,M� �
4M2

H3 .

For small film thickness this formula represents the clas-
sical H−3 equation for the disjoining pressure when electro-
magnetic retardation can be neglected �7,18–20�. This can be
treated as an indirect justification of our assumption �see Sec.
II� that volume energy can be neglected for the films of
thickness of several nanometers. The typical plot of the dis-
joining pressure isotherm �14� is shown in Fig. 1.

Now we are going to find how this disjoining pressure is
correlated with stress tensor components. Having the explicit
expression for the density �13� we can now calculate the
stress tensor for such a medium �8,10,12,13�. In the Carte-
sian coordinates �Oxz� the stress tensor in capillary fluids has
the following form �it will appear in Sec. V as well�:

T = − ���x
2 − ���� + 1

2 ����2� �x�z

�x�z �z
2 − ���� + 1

2 ����2� � .

�15�

In static equilibrium �when � /�x=0� we get

− T = ��− ���zz + 1
2�z

2� 0

0 1
2�z

2 − ��zz
� = �pxx 0

0 pzz � .

Since we neglect the gas or vapor atmosphere on the film
surface, we have to admit that the upper boundary � is free
of normal stresses. Thus the pzz component of the pressure
tensor −T should be zero at the free surface. It is easy to see
that pzz does not depend on z. Indeed,

dpzz

dz
= − ���zzz = 0

since the density profile is parabolic. Hence pzz should be
zero everywhere in the film.

Using Eq. �13� we obtain

pzz

p*
=

2�9M2�2 + H�2�4 + H� − 6MH�2 + H�2�3 + H� + H3�12 + 6H + H2��
H3�2 + H�2�6 + H�2

with p*=�1
2 /�. This is exactly the equation for the disjoining

pressure given by Eq. �14�. Thus disjoining pressure repre-
sents the normal to substrate component of stress tensor.

There are two roots M�H� where pzz=0. They are given
by

M =
12H + 6H2 + H3

3�8 + 6H + H2�
�16�

and

M =
H2

3�2 + H�
. �17�

That means, for a given mass M, there are two values of
possible equilibrium film thickness that fulfill the stress-free
boundary condition on a film surface. Additional arguments
are needed to decide which solution should be chosen.

IV. DETERMINATION OF THE SURFACE DENSITY

For a given mass M, in equilibrium the energy should be
minimal. The critical points of the energy �12� are defined by

� �E�H,M�
�H

�
M=const

= 0.

It corresponds to the disjoining pressure equal to zero. This
equation has two roots uniquely defined by Eqs. �16� and
�17�. One can prove that the first root �16� is stable �the
second derivative of the energy is positive� and the second
root �17� is unstable �the second derivative of the energy is
negative�. It is clearly visible in Fig. 1. Now, the fluid density
at the bottom is uniquely defined, and the equilibrium den-
sity profile in the layer of thickness H corresponding to the
stable root is
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��H,Z� = �*
�2 + H − Z�2

�2 + H��4 + H�
, Z =

z

h*
=

�2z

�
. �18�

It is shown in Fig. 2. The density profile ��H ,Z� is mono-
tonic and concave with respect to Z.

In particular, we obtain from Eq. �18� the fluid density at
the substrate and at the surface as functions of H,

�S�H� = �*
2 + H

4 + H
, ���H� = �*

4

�2 + H��4 + H�
.

If H→0, the density at the substrate and the density at the
surface are both equal to �1 /2�2. Then density at the sub-
strate is growing with H and density at the surface is decreas-
ing with H. When H→
, the density at the substrate is equal
to �1 /�2 which is the minimum of the surface energy at the
substrate ES=−�1�S+ 1

2�2�S
2, and the density at the surface is

equal to 0, which is the minimum of the surface energy at the
free surface E�= 1

2�2��
2 . The last limit has a purely math-

ematical sense, because when H→
 our basic assumption
that liquid bulk energy is negligible is incorrect.

V. DYNAMIC PROBLEM

The reversible equations of motion can be obtained from
the Hamilton principle of stationary action. The Lagrangian

for the liquid nanofilm of variable thickness looks as follows:

L =� 
�
0

h�t,x� ��
�u�2

2
− �

����2

2
�dz − ES − E��dx .

Here z=h�t ,x� is the equation of the upper boundary �
which is supposed to be a contact interface. The equations of
motion derived from this Lagrangian are

�t + � · ��u� = 0, �19�

��u�t + � · ��u � u − T� = 0.

Here u= �u ,w� is the velocity field and T is the stress tensor
defined previously in Eq. �15�,

− T = �
�� � �� − ���� +
1

2
����2�I� .

We denoted by I the unit tensor, and by � the tensor product.
We define −T as the pressure tensor.

We have shown in Secs. III and IV that in static equilib-
rium pzz is identically zero. This is in accordance with the
fact that the gas pressure is zero on the free surface. The
tangential to substrate pressure component pxx= pzz−��z

2=
−��z

2 depends on z and h. It can be calculated from Eq. �18�,

�pxx

�1
2 = −

4�2 + H − Z�2

�2 + H�2�4 + H�2 .

We see that pxx is negative, minimal at the bottom, and maxi-
mal at the upper surface. Therefore since the density is non-
uniform in the film, it creates tension in x direction �along
the substrate� which is nonhomogeneous �in the z direction�.

We can calculate the mean pressure in the nanofilm by the
following equation:

p̄ =
1

2
tr�− T̄� =

1

2
�pzz + pxx� , �20�

where

pzz =

�
0

h

pzzdz

h
= 0, pxx =

�
0

h

pxxdz

h
.

An explicit form of p̄ as a function of H is

p̄�H�
p*

=
�p̄�H�

�1
2 =

�pxx

2�1
2 = −

2�12 + 6H + H2�
3�2 + H�2�4 + H�2 .

One can see that the mean pressure is negative. It is shown in
Fig. 3.

VI. LONG WAVE APPROXIMATION

The nonconservative form of system �19� is

�t + � · ��u� = 0,

��u�t + � · ��u � u� = �� � ���� .

We will use now the approximation of “long waves” by em-
ploying that the vertical scale length �film thickness� is much

FIG. 1. The normalized disjoining pressure vs normalized film
thickness is shown for M =1. This curve represents a typical van der
Waals isotherm having the classical asymptotics: ��H��H−3 as
H→0.

FIG. 2. The normalized density profile is shown for the nanofilm
of thickness H=3.
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smaller than the horizontal scale length �wavelength of per-
turbation of the film�. This is reminiscent of the “shallow
water” approximation used in the theory of gravity waves
�see, for example, Ref. �23��. In this limit we obtain

�t + ��u�x + ��w�z = 0,

��u�t + ��u2�x + ��uw�z = ����zz�x,

0 = ���zz�z. �21�

The last equation in Eq. �21� can be integrated as follows:

��z� = �S + �1z + �2
z2

2
.

Here the constants �1 ,�2 are determined by Eq. �5�. Finally,
the density profile has the same form as in Eq. �18�. The
difference between the static equilibrium case considered in
Secs. II–IV and the case obtained now is that the position of
the surface � depends on time and space.

We integrate now system �21� with respect to the vertical
coordinate to obtain

��
0

h

�dz�
t

+ ��
0

h

�udz�
x

= 0,

��
0

h

�udz�
t

+ ��
0

h

�u2dz�
x

= ��
0

h

���zz�xdz = ���2�x�
0

h

�dz .

�22�

In this derivation we took into account that the surface z
=h�t ,x� is a contact surface, i.e., at this surface the kinematic
boundary condition

ht + uhx = w ,

and the boundary condition for the vertical velocity on the
solid substrate should be satisfied,

�w�z=0 = 0.

The last equation of Eq. �22� determines the driving pres-
sure pd�h� defined by

dpd�h�
dh

= − �
d�2�h�

dh

�
0

h

�dz

h
, pd → 0 as h → 
 . �23�

Next, we introduce the average velocity U defined by

U = ��
0

h

�udz�/��
0

h

�dz� .

Now mass conservation equation looks as follows:

��
0

h

�dz�
t

+ �U�
0

h

�dz�
x

= 0. �24�

To determine U we have to add friction into our system
through the classical solution of the Navier-Stokes equation
in which we neglect the liquid inertia in the momentum
equation,

U = −
h2

3�*
pd�h�x. �25�

Here �* is the effective liquid viscosity. It is known that
liquid viscosity in nanofilms is very different from its viscos-
ity in bulk liquid. Moreover, liquid slipage on the solid wall
is possible at the nanoscale. Current experimental and theo-
retical data about slip phenomena in liquid nanofilms are
controversial now �24–28�. That is why we use the effective
viscosity concept in this study, although more advanced vis-
cosity models can easily be incorporated at this point.

Taking into account that

�
0

h

�dz =
��1

�2
2 M�H� =

��1

�2
2

12H + 6H2 + H3

3�8 + 6H + H2�

the dimensionless driving pressure �pd /�1
2 �denoted as �d�

can be calculated from Eq. �23� in explicit form,

�d�H� = −
2

3

10 + 6H + H2

�8 + 6H + H2�2 . �26�

Finally, we can rewrite the evolution equation �24� in ex-
plicit form for dimensionless variable H,

„M�H�…t − � ��1
2

3�*�2
2H2M�H���d�H��x�

x

= 0, �27�

where M�H� is determined by Eq. �16�.
Equation �27� is parabolic with the diffusion coefficient of

“good” sign because

d�d�H�
dH

� 0

We compared the driving pressure defined by Eqs. �23�
and �26� �shown by a solid curve in Fig. 4� and the mean
pressure defined by formula �20� �shown by a dash line in
Fig. 4�. The results show that the curves are almost nondis-
tinguishable for large H. For large H both curves have the
same asymptotic,

FIG. 3. The mean pressure is a concave and monotonic function
of the film thickness H.

S. GAVRILYUK AND I. AKHATOV PHYSICAL REVIEW E 73, 021604 �2006�

021604-6



P̄�H� � �d�H� � −
2

3H2 .

So, the driving pressure can be seen as the average pressure
obtained as the averaged trace of the pressure tensor −T.

Since

d�d

dH
�0� =

3

32
,

for small H, the parabolic equation will look as follows:

Ht − � ��1
2

32�*�2
2H3Hx�

x

= 0.

Assuming that �* is approximately constant, we can ob-
tain in new dimensionless variables x and t �we denoted them
by the same letters� the equation

Ht − �H3Hx�x = 0.

This is the classical porous medium equation �see, for
example, Refs. �29,30��. In particular, it has the following
self-similar solution, which in our case may be used to de-
scribe the spreading of a nanodroplet on a substrate:

H = �t−1/5
C − 3
10� x

t1/5�2�1/3

, � x

t1/5�2

�
10
3 C

0, � x

t1/5�2

�
10
3 C � .

Here the constant C is determined by the total mass of the
nanodroplet.

VII. DISCUSSION

Let us calculate some characteristic parameters introduced
and employed in this study. For estimation, we consider a
liquid argon film on a pure silicon substrate. The masses of
liquid and substrate molecules are ml=59.78�10−27 kg and
ms=46.50�10−27 kg, respectively. The density of the sub-
strate is �sol=2330 kg/m3. The effective diameter of a liquid
molecule is 	l=0.34 nm. The effective diameter of a sub-
strate molecule can be estimated as 	s= �Ms / ��solNA��1/3

=0.27 nm, where Ms is the molecular weight of the substrate
and NA is the Avogadro number.

Then a characteristic film thickness h* �see Sec. II� may
be estimated as

h* =
�

�2
=

8�2

	l
= 2.19 nm.

A characteristic liquid density �* �see Sec. II� is

�* =
�1

�2
= �sol

ml

ms

Cls

Cll
= 2996

Cls

Cll
kg/m3.

A characteristic liquid pressure p* �see Sec. III� is estimated
as the following:

p* =
�1

2

�
=

3


288

	l�sol
2

�4ms
2

Cls
2

Cll
= 3158

Cls
2

Cll
Pa.

The constant Cll for the intermolecular potential can be
estimated from the attractive part of the classic Lennard-
Jones potential as follows: Cll=4�	l

6, where � is a character-
istic energy of the intermolecular interaction. For the argon
�=1.65�10−21 J, and one can get that Cll=10−77 J m6.

Since the information about the argon-silicon intermo-
lecular interaction is not available now, for rough estimation
purposes we take here Cls=Cll. Then we can get the follow-
ing values for the characteristic density and pressure: �*

=2996 kg/m3, p*=324 atm.
These characteristic values help to better read the plots

presented in Figs 2–4. Namely, Fig. 2 shows that in 7 nm
thickness, the argon film liquid density changes from
2100 kg/m3 at the substrate �higher than the liquid argon
bulk density� to 360 kg/m3 at the film free surface �lower
than the liquid argon bulk density�. For thicker films, the
liquid density at the substrate is gradually approaching its
limit of 2996 kg/m3, which is even higher than the density
of the substrate itself.

Figures 3 and 4 show that the liquid in a nanofilm ex-
presses a very strong tension along the substrate. For ex-
ample, in 7-nm-thickness film, the tension is about 7 atm.
The tension increases when the film thickness decreases and
approaches its upper limit at about 35 atm, when the film
thickness tends to zero.

The disjoining pressure is equal to zero everywhere in the
film, assuming that the atmospheric pressure is compensated
by the bulk component of pressure. Both of these pressures
are neglected in this study.

We have obtained evolution equation �27� for describing
the free surface of a nanofilm. This equation is basically a
nonlinear diffusion equation with a “good” sign of the diffu-
sion coefficient. That means a nanofilm driven solely by cap-
illary forces is unconditionally stable. It is found that the
nanofilm is driven by the tension along the substrate �a nega-
tive pressure�. It is proposed here that although the film is
unconditionally stable, such a strong tension may cause the
film to spontaneously break up.

In the case of very thin films, an effective film diffusion
coefficient is derived as

FIG. 4. The normalized driving pressure is shown by a solid line
and the normalized average pressure is shown by a dash line.
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� =
��1

2

32�*�2
2� h

h*
�3

. �28�

For given parameters of argon and silicon this coefficient is
calculated as

� =
5 � 10−12

�*
� h

h*
�3

m2/s. �29�

For example, for �*=10−2 kg/ �m s� and h=7 nm we get �
=1.35�10−8 m2/s.

It should be noted that the use of the self-similar solution
presented in Sec. VI is not systematic, because Eq. �27� de-
scribing the free surface evolution is derived only for the
case of finite depth of the film. More research is needed to
study the physics of the triple line in the frame of the pro-
posed approach.
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