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Following the route of the stress tensor we study the free energy of a fluid liquid-vapor interface in the van
der Waals approximation for planar, cylindrical and spherical interfaces. By performing a systematic expansion
in powers of the inverse of the curvature radii, and appropriately defining the Gibbs dividing surface, we find
unambiguous expressions for the surface tension, the spontaneous curvature, the bending rigidity and the

Gaussian rigidity.
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I. INTRODUCTION

Under the assumption that the interface between liquid
and vapor of a single component fluid can be viewed as a
continuum two-dimensional elastic object the interfacial free
energy has been proposed to have the so-called Helfrich’s
form [1],

Qs=fds(7—2KCOJ+ kJ? + KK) (1)

where dS is the element of area of the interface, J
=(1/R,)+(1/R,) is the local mean curvature, K=1/R R, is
the local Gaussian curvature, and R; and R, are the principal
radii of curvature at a given point on the surface. The coef-
ficients are, y the surface tension, k and k the bending and
the Gaussian, or saddle-splay, rigidities, and ¢, the spontane-
ous curvature. These coefficients are properties of the elastic
medium itself, and for a fluid interface, they should be ex-
pressible in terms of microscopic quantities of the fluid, such
as the intermolecular potential as well as in terms of thermo-
dynamic properties of the macroscopic state.

There are a variety of points of view to analyze the planar
liquid-vapor interface of a simple fluid [2,3] that lead to the
same value of the surface tension. However, when the sur-
face is curved the matter becomes more complicated and a
lot of theoretical work has been devoted to the determination
of the interfacial coefficients in the context of a more micro-
scopic theory [4-17], and it is remarkable that there still
exist discrepancies in the values of the rigidity constants. As
far as the surface tension is concerned, there is full agree-
ment of all the theories with the well-known Yvon-
Triezenberg-Zwanzig expression [18].
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One of the approaches that has an old tradition is one in
which the surface energy is analyzed in terms of the inverse
of the radius of curvature of the surface. This approach was
initiated by Tolman [19] in 1949, who calculated a first order
correction to the surface tension for a spherical drop. In a
later work Fisher and Wortis [20] used Landau theory to
analyze a spherical interface and they also obtained an ex-
pression for the first order correction of the surface energy
for the spherical interface. Then, Giessen et al. [15] extended
the study of Fisher and Wortis, and by a direct identification
of the surface energy using spherical and cylindrical geom-
etries, obtained the interfacial properties up to second order
corrections in the radii of curvature.

In the present paper we provide a systematic calculation
of the interfacial coefficients using the general approach of
density functional theory, through the route of the stress ten-
sor and within the van der Waals approximation [4-6]. As
we shall see, we find agreement with the results of Refs.
[15,20], which were calculated through different approaches.
We base our study on the most general expression of the
stress tensor, valid for any free energy density functional that
satisfies translational and rotational invariance [6]. As we
shall explain below, the free energy can be expressed in
terms of the stress tensor, and the obtained expression is then
compared with Helfrich’s form.

Besides the technical and systematic approach here used,
it is important to emphasize the role of the concept of the
“Gibbs dividing surface” [3] in this study. In an actual liquid-
vapor fluid coexistence state the interface is not really a two-
dimensional object but, rather, it is a very thin region of
molecular size (far away from the critical point) that is called
the interfacial region. Therefore, it is common to consider an
imaginary surface where the surface tension and the other
interfacial properties act.

In the present work, since the properties of the nonuni-
form fluid enter through the assumption of the existence of a
free energy density functional, the concept of a Gibbs divid-
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profile itself, which in turn is the result of the equilibrium
state. The theory that we follow here makes first an identifi-
cation of which part of free energy belongs to the bulk
phases and which other part belongs to the interfacial region.
One may call such a term simply the “surface” free energy.
When the surface is planar, one is lead to identify right away
a free energy per unit of surface, and this turns out to be the
well-known value for the surface tension [18], which is in-
dependent of the choice of the surface of tension. However,
when the surface is curved, there appears not to be an unam-
biguous way to define the “surface” and this may well be one
of the reasons for the discrepancies alluded above. The am-
biguity can be removed if one assumes that the size of, say,
the drop of liquid is large compared with the size of the
interfacial region. In such a case one can perform an expan-
sion in terms of the inverse of the radii of curvature and the
coefficients of those terms may then be identified with the
interfacial constants of the fluid. Because of the nature of the
expansion, those coefficients should be independent of the
choice of the surface; that is, they should be valid for any
value of the size of the drop. Thus, one must assume the
existence of an appropriate Gibbs dividing surface, and this
actually determines the values of the curvature radii. By fol-
lowing this procedure, which is essentially the same pro-
posed by Fisher and Wortis and used by Giessen et al. [15],
we arrive at unambiguous results for the surface properties.
Thus, the agreement of our work with those references indi-
cates that the different routes agree, first because correctly
isolate the interfacial contributions, and second because of
the appropriate choice of the Gibbs dividing surface in this
order of approximation. As a further verification, we also
provide the extreme limit of drops so large that the density
profile can be approximated by a steplike function, namely,
with an interfacial region of zero width, in which case the
Gibbs dividing surface is uniquely defined; we find that our
previous results reduce to the latter in the limit of very large
curvature radii.

The paper is organized as follows. Section II deals with a
brief review of the stress tensor and of the identification of
the interfacial free energy. In Sec. III the interfacial free en-
ergy is explicitly calculated, within the approximations men-
tioned above, and three geometries are analyzed, planar,
spherical, and cylindrical. With these three we can calculate
all the interfacial coefficients. We conclude in Sec. IV with a
brief summary.

II. THE STRESS TENSOR

For a fluid to be in thermodynamic equilibrium it must
satisfy thermal, chemical, and mechanical equilibrium. For a
homogeneous fluid, the latter is equivalent to the condition
that the pressure has the same value in all spatial points of
the fluid. However, for an inhomogeneous fluid the pressure
is no longer a constant everywhere neither is it isotropic. In
such a class of states the mechanical equilibrium condition is
now expressed in terms of the stress tensor [21],

V- F=—fou ©)

where & is the stress tensor and f,,, is the external force per
unit of volume. The divergence of the stress tensor is the

PHYSICAL REVIEW E 73, 021601 (2006)

force that the fluid exerts on itself and this is balanced by the
external force. In the absence of external forces (or when the
only existing external forces are those exerted at the bound-
aries by identical “walls” everywhere) the fluid is homoge-

neous within the volume and one recovers 6=—pf, with p
the hydrostatic pressure [22]. Below we discuss how one can
envisage an inhomogeneous liquid-vapor coexistence state to
be established by imposing appropriate boundary conditions,
which in turn, play the role of the external field.

According to the density functional theory [2,23] the
grand potential for a simple one-component fluid can be
written as

Qp(N]=Flp(M,T]- f dr(p = Ve (7)) p(r) (3)

where F[p,T] is the intrinsic Helmholtz free energy density
functional, also a function of the temperature 7', V,,, is the
potential of the external force, and u is the chemical poten-
tial.

At equilibrium, the grand potential is a minimum and the
solution to the ensuing Euler-Lagrange equation is the equi-
librium density profile py(7),

SF(p(r).T]

5p =M Vexl(;) . (4)

Po

We emphasize that the equilibrium profile is determined by
the external fields and the intensive thermodynamic variables
T and w. It has been shown by several authors [3,5,6,24,25]
that the Eq. (4) is completely equivalent to the equation for
mechanical equilibrium, Eq. (2). Romero-Rochin and Percus
[6,26], starting from Eq. (4), have derived an expression for
the stress tensor for an arbitrary free energy density func-
tional F[p]; this result will be used below.

In an inhomogeneous liquid-vapor state the equilibrium
density profile py(7) is uniform in each of its bulk liquid and
vapor phases and is nonuniform only in the interfacial region
that separates the two phases. In this region the density pro-
file changes abruptly from one of its bulk values to the other.
The experienced change is reflected in the gradient of the
density profile Vpo(7), which is zero everywhere except in
the interfacial region where it is sharply peaked [4—6]. The
geometry of the interface is thus ingrained in the density
profile. Therefore, we can use the family of surfaces
po(F)=constant as one of a set of curvilinear coordinates to
describe the system. The corresponding unit vectors are the
normal to the constant density surfaces,

GERLLI 5
[V po(7)]
and two other unit vectors tangential to the surfaces. Here,
we shall limit ourselves to the simple orthogonal sets Carte-
sian, spherical and cylindrical, but one can also consider
more complicated geometries [4].

Taking into account these geometrical considerations,
Romero-Rochin, Varea, and Robledo [5] showed that the
grand potential, Eq. (3), can be expressed solely in terms of
the normal component of the stress tensor,
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fdrUN(F) Jdr (P (6)

The quantity o”=7-&-7 is the full normal component of
stress tensor while and o), (7) is the part of the normal com-
ponent of the stress tensor that arises only if there is an
inhomogeneity. This will be explicitly written below. The
purpose here is to point out that if the inhomogeneity of the
fluid is of the form of a liquid-vapor interface, the second
term in the right-hand side (rhs) is different from zero only at
the interface. That is, far from the interface, o equals (mi-
nus) the hydrostatic pressure and o‘N on vanishes. Thus, all the
interfacial properties are described by the second term of Eq.
(6). We call such a part the interfacial contribution to the
grand potential and this is the subject of our present study,

Q= J drap,(F). (7)

To reiterate, the contribution to the free energy, or grand
potential, arising from the interfacial surface is completely
contained in the above expression. The purpose of this paper
is to explicitly calculate such a contribution for a (short-
range) fluid in a mean field approximation, for large curva-
ture radii, and for different geometries.

The mean-field, van der Waals free energy density func-
tional is given by

Flp(n)]= f drfo(p(r))

L(11) f f didF (7= P Dp(Pp), (8)

where fy(p(7)) is the local free energy density which in the
absence of inhomogeneities yields the repulsive part of the
van der Waals equation of state. w(|F—7"|) is the direct cor-
relation function of the fluid in the uniform phases and, in
this approximation, is the attractive part of the interaction
potential assumed to be of short range &g [2,3].

As mentioned above, a general expression for the stress
tensor for an arbitrary free energy density functional F[p] is
known [6]. Evaluating such an expression for the van der
Waals model yields the inhomogeneous part of the stress
tensor as

1 = 1 e =N~ (12
U&ﬁ(?}:—gfdr'f d\py(F = (1 =N )w(|F))r,
0

Lo ] L (!
XV gpo(r + )\rl)_EVVJ dr'f dNN
0

X ool — (1= Y7 )l
X[riV ,po(F+ NF") = 1V opo(F + NF')], 9)

where the greek indices indices Cartesian components. The
normal component is o}, =7 omhnB

Substitution of the normal component of the above tensor
into the expression for the interfacial grand potential, Eq. (7),
yields,
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1
—% f i f " f (7 DpolF— (1 = W)7)
0

XV o7+ N1 i PV o(7) = 2N )V i ()
+ NrpriAig(AV Jig(F) + Nrpriig(F)V jig(F)} (10)

Let us make a few observations. First, if the fluid is homo-
geneous everywhere, Vp,=0 and this contribution vanishes.
Second, we need to know the density profile in order to
evaluate the free energy, that is, we are supposed to have
solved the Euler-Lagrange equation. For the van der Waals
model it is known [27] that one can construct solutions to the
Euler-Lagrange equation for simple geometries that yield
planar, spherical or cylindrical interfaces. This can be done
by imposing boundary conditions in which the fluid is in the
liquid phase at one “extreme” and at the vapor phase in the
other one. These boundary conditions can be thought to arise
from appropriate external fields. The way we shall proceed is
to assume those solutions exist, and with general geometrical
considerations, we shall transform Eq. (10) in order to make
it appear as Helfrich’s free energy. This is explicitly per-
formed in the following sections.

II1. THE INTERFACIAL FREE ENERGY

Following the program explained above, we now consider
that the equilibrium density profile represents a liquid-vapor
interface with the geometries planar, cylindrical, and spheri-
cal. These coordinate sets have the property that their three
unit vectors are orthogonal everywhere, allowing for a sim-
plification of the interfacial free energy that yields exact ex-
pressions that can be further approximated.

Let us use the following notation for those coordinates,
respectively, (x,y,z), (R,¢,z)q, and (r,6,¢), with
R=(x*+y?)!"? the radial cylindrical coordinate. That the den-
sity profile has one of the said geometries means that

po=po(z) planar,

po=po(R) cylindrical,

py=po(r) spherical, (11)
and the corresponding normal unit vectors are k, R, and 7. It
turns out that for these geometries the interfacial grand po-
tential can be written in a very simple form. Referring to Eq.
(10), one notices that this expression seemingly depends on
the parameter N\, which would indicate a type of gauge de-
pendence. This is not so since the \ integral can be done. The
“trick” is to realize that, in general, the following identity is
true:

.o J ..
riV o po(F+ NF') = 51)0(” + 7). (12)

With this, the grand potential (10) can be transformed in any
of the two following expressions:
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1 [e2]
QS:—Zfdff d?’f ds 'V po(r) - Vpo (P )w(s + (5 = 7')?)
0

(13)

and

1
O N R R R P

= po([)V wpo(|7 = 7]}, (14)

where in both it is understood that the dependence of the
density is one with the corresponding symmetries given by
Eq. (11). These two expressions are the exact interfacial con-
tributions to the free energy for the symmetries at hand, for
the van der Waals model, Eq. (8). The first form will be
useful for the approximation of a “steplike” profile, whereas
the second one is more amenable for a systematic expansion
in terms of the inverse of the radii of curvature, as we now
discuss.

As we see from Egs. (13) and (14), in order to calculate
the interfacial grand potential we need to know “only’the
equilibrium density profile p,(7) in any of the forms given by
Eq. (11). Those solutions must be obtained from the Euler-
Lagrange equation which yields the minimization of the free
energy, for a given model of the kernel &(|7—7'|). In the
following section we make a small digression on the form
and general properties of those solutions.

A. The density profile

The equilibrium density profile p,(7) minimizes the grand
potential and is found as the solution of the Euler-Lagrange
equation,

07fo(P(;)’T) J 21~z _ 21\ gy —
—07p(7) + | dar'a(|F-r)p(r') — u=0. (15)

This equation must be supplemented by appropriate bound-
ary conditions that yield a density profile with the required
symmetry; accordingly, the chemical potential 4 must be ad-
justed. Thus, for planar symmetry one assumes py(z) such
that for z— -, p(z) — p; and for z— +, p(z) — p,, Where
p; and p, are the liquid and vapor coexisting densities given
by the bulk density van der Waals equation of state, i.e., by
the equal-areas Maxwell construction of the isotherm with
temperature 7. This is obtained by a particular value of the
chemical potential, that we denote by i, It can be shown,
by approximate methods [3] and by explicit numerical cal-
culations [27], that the width of the interface is of the order
of the range &z of the potential, namely, of the kernel
@(|r=7"|). For cylindrical symmetry, the boundary conditions
are at R=0, say p;—p; and at R—, pg— p; and for the
spherical one at r=0, say py— p; and at r—, pg—p;. In
both cases, the value of the chemical potential x cannot take
the value p .. it will be greater or lower depending on the
phase “inside” the drop. We are assuming here a drop of
liquid in its vapor and the the values of the bulk densities for
the spherical and the cylindrical symmetries differ from
those of the planar case. Since the bulk values correspond to
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a metastable liquid drop in equilibrium with a stable vapor,
an interfacial region of width &; will develop where the gra-
dient of the density becomes different from zero. The radius
R, of the drop is contained within this region. As the radius
R, of the drop grows indefinitely, all the mentioned differ-
ences vanish.

Thus, irrespective of the particular form of the kernel
@(|F=7"]), and following Fisher and Wortis [20] and Giessen
et al. [15], one can propose that the density profiles and the
chemical potentials for cylindrical and spherical symmetries,
in the limit of large radius of curvature, may be expanded in
a series of powers of the inverse of the radius of curvature.
Thus for the cylindrical symmetry one first makes the change
of variables R=z+R, and the expansion reads

. 1 1
Po(R) = py(z) + R—Cp‘l(Z) + 173’35(2) +e (16)

where R, is the radius of the cylindrical drop and now z may
take values from — to %. For the spherical case, the change
of variables is r=z+R,, with R, the radius of the spherical
drop and the expansion is now

1 1
po(r) = po(2) + —pi(2) + —=p3(2) + -+ . (17)
R‘Y Rs
The chemical potential must be expanded accordingly,
c 1 c 1 c
M =/Lcoex+R_Clul+I?zlu2+'” > (18)
) 1 Ay 1 s (1 9)
= + U+ St
M Mcoex RS M R% M2

The radii of curvature R, and R, determine the location of the
Gibbs dividing surface and its precise value is found as part
of the solution by demanding that the interfacial coefficients
must be independent of the location of the surface; this will
be done in detail below. As already mentioned, the radii of
curvature will be located within the region where the gradi-
ent of the density is different from zero. In the strict limit of
infinite radii the profile and the chemical potential must ap-
proach those of the planar profile.

In order to obtain the functions p{*(z) and p5°(z), one
would have to solve the Euler-Lagrange equation for a given
kernel @(|7—7"]). Very interestingly, Giessen et al. [15] have
found that in order to be consistent with the above expan-
sions in the limit of large curvatures, the functions p{*(z) and
p5°(z) are not independent but must obey

2p1(2) = pi(2) = pi(2) (20)

and
4p5(2) = p3(2) = pa(2). (21)

The demonstration of these equalities is by no means simple
and we refer the reader to Ref. [15] for details. These equali-
ties will prove to be essential for obtaining the interfacial
elastic coefficients.

A more radical approximation to the density profile, that
should be valid in the limit of very large radius of curvature,
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R> &5, may be obtained by assuming a “steplike” function,

po(2) = p0(zg — 2) + p, 0z — 20) (22)
for the plane,
Po(R) = p(R.—R) + p,6(R—R,), (23)
for the cylinder

po(r) = p6(R;—1) + p,6(r = Ry), (24)

and for the sphere. 6(x) is the step function, z, the location of
the interface in the planar geometry. In this approximation,
because the radii are very large, one can assume that the bulk
values of the coexisting densities are the same in the same
geometries and correspond to those of the Maxwell equal-
areas construction. The interfacial coefficients found from
employing the steplike approximation will be shown to be
the limit of the more detailed expansion in powers of 1/R,. .

In the following sections we analyze the different geom-
etries separately and from the results there obtained we shall
find the expressions for the interfacial properties v, k, k, and
Co-

B. A planar interface

In this case, the density profile is considered to depend
only on the z direction, py=p(z). Substituting into the inter-
facial grand potential, Eq. (13), one finds

1 . (7 d d .
Qsz—zfdrfdr’Jo dsd—zpo(z)d—z,po(z')ﬁ[s+(r—r')z].
(25)

With a change of variables and by making use of the follow-
ing identity:

fd2R|I$|2"f dswls +R*+(z-z7")?]

0

_ 1 2l pl2(n+1) ~( p2 )2
_2(n+1)de|R| BR+ (=) (26)

with n a positive integer and R=xi +yj a two-dimensional
vector, one readily obtains the interfacial free energy contri-
bution to the planar interface,

1 d d
Og=-5-| dz | dz'—po(2)—po(’
s 4f zf z dzpo(Z)dZ'pO(Z)
xfd2R|§|ZW[R2+(z—z’)2], (27)

where S=[d’R’ is the area of the planar interface. From this
equation one immediately identifies the surface tension

Y= 4 Z Z dzp()Z dZ,P()Z
X f R|RPHR* + (z-2)?]. (28)

This expression equals the celebrated exact expression of
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Yvon, Triezenberg, and Zwanzig [18] for the surface tension;
in this case, for the van der Waals model. It has also been
obtained by all the authors working in this field.

A simpler form can be obtained by assuming the “step-
like” profile, Eq. (22), yielding

d

—po(z) == Apdlzg—2), (29)
dz

where Ap=p,—p, is the difference of liquid and vapor bulk
densities. Substituting into Eq. (28) one finds the surface
tension for this approximation,

YO = _ E(Apyf drr?w(r?). (30)
2 0

The index (0) shall be used to denote the interfacial coeffi-
cients at this level of approximation. This expression has also
been found by several authors in the field.

C. A cylindrical interface

Now we suppose that we have an inhomogeneous fluid
system in the shape of a cylindrical “drop” of liquid of radius
R, in coexistence with its vapor. Although this case seems a
bit unrealistic the Euler-Lagrange equation admits such a so-
lution with the appropriate boundary conditions, as discussed
before.

We refer now to the expression given by Eq. (14) for the
grand potential. Assuming p,(r)=p{(R), we get,

1 > >y ~ | > cllp o/ c(|p
QS=EJerdr ra® (7' DPG(IR = R')Vaupi(IRI)

— 5 (IRDV .05(IR = R'])}, (31)

where r,, still denotes the three-dimensional vector. Our goal
is to make an expansion up to second order in 1/R,.. The
main point to realize here is that the kernel vanishes for
|F'|> &g, therefore, all the primed variables cannot become
greater than &, whereas the unprimed variables will mainly
contribute for |r]~R, since it is in that region where the
gradient of the density is different from zero. Thus, effec-
tively, |7’ | <|r|, and the small parameter for the expansion
turns out to be €=R’ cos ¢/(R—R’ cos ¢). Therefore, one
can proceed first with a systematic expansion of the inte-
grand in Eq. (31) up to third order in €. Next, we introduce
the change of variables R=z"+R,., which also changes the
differential of volume as

dF = RdRd dz = RC( 1+ %)dz"dq’)dz. (32)
Note that we can safely take 7’ — +% because the gradient of
the density vanishes everywhere, except at the interfacial re-
gion. Then, one makes the ansatz of the expansion of the
density in powers of 1/R, given by Eq. (16). This procedure
is straightforward and yields a formidable expression that we
do not write here. By a systematic expansion up to second in
powers of 1/R,, the interfacial grand potential is thus ob-
tained,

021601-5



J. G. SEGOVIA-LOPEZ AND V. ROMERO-ROCHIN

Q=S fdzfdz fdsz[R2+(z z )Z]K— ~R*p\(2)pi(2') -
R?

2
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2 4

po(z)pl(z )+ ———po(2)py(z")

R
128R;

R R? R?
@[ZPé(Z)pé(Z’) + Pf(z)p{(Z’)]> - (—(z +2)po(@po(z’) + R (z—2")?po(2)py(z') + 4—R3(z + z’)pé(z)pi(Z’))] ,

8R

where S=27R, [ dz is the area of an infinite cylinder of ra-
dius R.. The use of the identity Eq. (26) proved to be very
useful to arrive at the above result.

We note that the last three terms in Eq. (33) depend on the
particular choice of the Gibbs dividing surface of the planar
interface. This would imply that the grand potential itself
would depend on such a choice, and this cannot be possible.
Therefore, by demanding that these terms vanish, this in turn
defines the position R, of the surface of tension at which the
interfacial properties are attached. This requirement is essen-
tially the same used by Blokhuis and collaborators [13—15]
and is equivalent to demanding that the Laplace equation,
including the elastic contributions, acquires its phenomeno-
logical form. The latter condition was used by Fisher and
Wortis [20] to define the surface of tension and, as shall
indicate in the following section devoted to the spherical
symmetry, our choice leads to their same condition in the
appropriate limit. Summarizing, the location of the radius R,
is defined by demanding that the free energy is independent
of the choice of the Gibbs dividing surface, and is given by

fdzfdz’JdzRW[R2+(z—z')z]R2<%(Z+Z’)P6(Z)P(')(Z')
+ﬁ(z 2)2ph(2)pi(z’ HE(“Z )po(2)py (2’ ))
=0. (34)

The remaining terms of the interfacial grand potential (),
Eq. (33), can now be compared with Helfrich’s free energy,
Eq. (1), for a cylindrical surface of radius R, i.e., with

1 1
Q¢=|d —2Kkcy— +K— |, 35
S JS<7 KCORC KR?) (35)

where the Gaussian rigidity does not appear since the Gauss-
ian curvature vanishes for a cylinder. Thus, comparing Eq.
(33) with Eq. (35), one obtains first the surface tension y
which is exactly the same expression obtained in the planar
interface, Eq. (28).

The spontaneous curvature is found from the first order
term as

lfdfd'd L pole)

KCy=— — —

05 g ) @) G g P g Po
xfd2R|§|ZW[R2+(z—z’)2], (36)

which agrees exactly with the expression obtained by

(33)

Blokhuis and collaborators [13—15]. These authors have ar-
gued that this term, proportional to the first correction to the
surface tension is at the same time the so-called Tolman’s
length 6, that is, kcy=—"d. This point of view was also origi-
nally advocated by Fisher and Wortis [20].

The bending rigidity takes the value,

=JdzJdz’fdzRﬁ[R2+(z—z')2]<@|R|4 0(2)po(z")

- %lﬁlz[Zpé(z)pé(Z’) + pi(z)pi(Z’)]>. (37)

This is one of the main results of this paper. That is, we
claim that this is the bending rigidity in mean-field for a
liquid-vapor interface. Certainly, we expect that the higher
order corrections p,(z) and p,(z) contribute less than the pla-
nar profile p,, and, therefore, from the above equation one
finds that even if only the planar profile is known, a very
accurate expression may be found for the bending rigidity,
especially if the radius of curvature R, is sufficiently larger
than the range &g of the intermolecular potential. This is
further supported by the simple calculation with a steplike
profile, as we now show.

In the limit of the steplike profile for a cylinder, Eq. (23),
one can proceed by directly substituting such a profile into
the exact interfacial grand potential for cylindrical symmetry,
Eq. (31), yielding,

Q0 =— (Ap)zR de (R,) dzzf dsf —1w
-0 1(1-x%)2

><[s+( - 2)? +2R(1 - x)]

+ (Ap JdS(R)f dzzf dsf —W
-0 -1 (1-x%)2

X[s + (21 = 2)* + 2R2(1 +x)], (38)
where dS,(R.)=dz;R.d¢ is the surface differential of a cyl-
inder of radius R.. With the further changes of variables y
:2R3(1 —x) in the first integral and y' =2R5(1 +x) in the sec-
ond one, the above expression can be greatly simplified. One
finds integrals whose upper limit is proportional to R,.: since
the corresponding integrands fall to zero within &g, we can
safely extend those limits to infinity. The final result of the
grand potential in this limit is [28]
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2 oo
Q(so)=—JdS( (Af) 7Tf drrw(r?)

0

2 o
- 3é4A£3 WJO drrsﬁ(rz)). (39)

The surface tension takes the same value ¥'*) as in the planar
case, Eq. (30). The spontaneous curvature is

=0, (40)
and the bending rigidity is
K0 = 6—4 (Ap)*m L drrw(r?), (41)

which, indeed, are the limits of Egs. (36) and (37) when
p1(z)=p,(z)=0 and the planar profile py(z) is the steplike one
given by Eq. (22).

D. A spherical interface

In this case we assume that the density profile bears a
spherical symmetry, py=py(|7]), and that it represents a
liquid-vapor state. We consider the case of a spherical drop
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of liquid in its vapor. The procedure is completely analogous
to the cylindrical case. That is, we first consider the interfa-
cial free energy with spherical symmetry,

1
0= [ @ [ a7 Do~ 7109 007

= (Vo7 =)}, (42)

where F=xi+ yf+zl€ is the three-dimensional radial vector.
Again, because we assume R,> &g, we find that a small pa-
rameter is €=r' cos 6/(r—r' cos §) and a analogous expan-
sion to the cylindrical case can be performed. We use the
change of variables r=z"+R,, where R, is the radius of the
sphere, to be determined, and again z” may be extended to
+co. The differential of volume transforms now as

" n2
dr = sin 0d0d pr*dr = sin ad9d¢R§< 1+ 21% + ;—z)dz”.

s N

(43)

By a further substitution of the ansatz for the profile given by
Eq. (17) and expanding up to second order in 1/R,, one finds
the interfacial grand potential,

R2 4

R
Qs=S defdz fdzRW[R2+(z z )2]{(— —po(2)po(z’ )Rz—gpo(z)pl(z )+ 16R2po(z)po(z)
R2 ! 11 ! 1 3 6 ’ ! R2
- 4_133[2P0(Z)P2(Z ) +pi(2)pi ()] ] + 96R 2R Po(2)po(z') Rf(z—z )po(2)pi(z') — E(“Z )po(2)po(z")
R2 r ! ! ! 2R2 ’ ! ’ !
- @Zl Po(2)py(z’) = R—g(z +2")po(z )pl(z)}, (44)
|
where S:47TR? is the area of a sphere of radius R,. In a P B
similar fashion as in the cylindrical case, the last five terms Qg=| ds| y- 4R_ + P(“K +K) . (46)
s s

yield a dependence of the free energy on the location of the
Gibbs dividing surface. Thus, by imposing the vanishing of
those terms, the radius R, gets determined,

fdzfdz’fdzRW[R2+(z—Z’)2]

3
X<96—RR6p (2)py(z') - R—(z 2)po(2)pi(2')

2 2

R
-7 —(z+2")po(2)po(z') = RS "po(2)py(z")

2 2
—Ri(z+z’)p6(z’)pf(z)> =0. (45)

The remaining terms in Eq. (45) are to be compared with
the Helfrich’s free energy for a spherical surface,

We find that the surface tension 7, again, takes the same
value as in the planar and cylindrical symmetries, Eq. (28).
The spontaneous curvature ¢, (or Tolman’s length), takes
also the same value as in the cylindrical case, see Eq. (36),
and now, from this symmetry, we find an expression for the
combination 4+ k,

4
4K+ l?zfdzfdz’fdzRW[R2+(z—z’)z](%pé(z)pé(z’)
R2
- Z[Zpé(z)pé(Z’) + pi(Z)ﬁi(Z’)]) - (47)

Assuming that the expression for the bending rigidity « is
that found in the cylindrical case, Eq. (37), we can solve
from the previous equation for the Gaussian rigidity,
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E=_31_2 dzfdz’p(')(z)p(’)(z')fd2R|§|4W[R2+(Z—Z,)2]-
(48)

This is also one of the main results of this paper. It is the
Gaussian rigidity for the van der Waals liquid-vapor inter-
face. It is of interest to realize that it depends only on the
planar profile p(z). The result found by Blokhuis and col-
laborators [13-15] is also given only in terms of py(z) but it
is written in a very different form from Eq. (48). The proce-
dure by which those authors have arrived at their result is by
no means simple and we have not been able to reduce it to
our result; since their procedure yielded the same surface
tension and spontaneous curvature as ours, we expect the
rigidities to be also the same.

For completeness we present the results found in the ap-
proximation of a steplike profile such as that given by Eq.
(24). Again, we substitute such a profile into the interfacial
free energy (g, Eq. (42), finding

(AP)2 4 ] co 2 2
Qg=- 47TTRS 2| dxx| dsw(s+2R;—2R.x)|.
-1 0

(49)

By making the change of variable r= 2R3—2R§x one finds
integrals whose upper limit is proportional to Rf,. Since the
integrands falls off for lengths longer than &z, we can extend
those limits to infinity. The result can be cast as [28],

0y =- 477R2( g(Ap)z f drrWw(r?)
0

77- oo
-—(A zf drriw(r?) ). 50
g Rf( p) , (r) (50)
Comparing with Helfrich’s form, Eq. (46), one finds the sur-
face tension y*) already given by Eq. (30), the spontaneous

curvature in this approximation is cf)o), and the combination
4k9 4 O is

Ap)’m (7
4,0 4 20 _ (”%T f drrw(r?), (51)
0
which, needless to say, is the limit of Eq. (47). With the use
of k9 given by Eq. (41), we can solve for g%,

o0

1
K0=— —(Ap)*m f drrVw(r?), (52)

which, of course, can be found directly by taking a steplike
profile in the expression for k, Eq. (48).
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IV. FINAL REMARKS

Following the route of the stress tensor, with its general
expression for an arbitrary free energy density functional, we
have obtained the interfacial constants for the van der Waals
fluid, as a result of a power series in the inverse of the cur-
vature radii. These coefficients are, the surface tension vy, Eq.
(28), the spontaneous curvature ¢, Eq. (36), the bending
rigidity «, Eq. (37), and the Gaussian rigidity x, Eq. (48). We
have also found their corresponding values in the limit of a
steplike profile, Egs. (30), (40), (41), and (52).

We want to emphasize, nonetheless, that with the present
scheme one can obtain the exact interfacial contribution of
the free energy for the van der Waals fluid, and that for the
simple geometries here considered the expression is formally
the same, namely,

Qsz—j—lfdff d?’f:dsvp(f).Vp(F')w[s+(F—7’)2]-

(53)

Our approximations here are the leading order terms for any
other more accurate calculation. However, it is only in a
expansion in terms of the curvatures that one can identify the
interfacial coefficients.

Several results are important to point out. First, the well-
known dependence of the surface tension on the second mo-
ment of the direct correlation function [18] and the depen-
dence of the rigidities on its fourth moment are also here
verified [29]. The bending rigidity is found to be negative, in
agreement with numerical simulations [30], experiments
[31], and calculations by the route of the fluctuations [32,33].
Our results are more general than those obtained by square-
gradient and square-Laplacian theories, since the latter are
already approximations to the van der Waals free energy
given by Eq. (8). More importantly, perhaps, is the agree-
ment of our results with those of Blokhuis and collaborators
[13—15] and with Fisher and Wortis [20] at first order. The is
important because this field has been plagued by discrepan-
cies in the values of the elastic coefficients. The differences
are not easy to discern since different authors use different
approaches to identify interfacial coefficients [7,8,16,17].
The fact that the approach here used via the stress tensor is
different from that of Refs. [15,20] yielding the same results,
we believe, it is an indicative that the concept of the Gibbs
dividing surface, used in these works, leads to unambiguous
interfacial quantities.
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