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We present a Ginzburg-Landau theory of solvation of ions in polar binary mixtures. The solvation free
energy arising from the ion-dipole interaction can strongly depend on the composition and the ion species.
Most crucial in phase separation is then the difference in the solvation free energy between the two phases,
which is the origin of the Galvani potential difference known in electrochemistry. We also take into account an
image potential acting on each ion, which arises from inhomogeneity in the dielectric constant and is important
close to an interface at very small ion densities. Including these solvation and image interactions, we calculate
the ion distributions and the electric potential around an interface with finite thickness. In particular, on
approaching the critical point, the ion density difference between the two phases becomes milder. The critical
temperature itself is much shifted even by a small amount of ions. We examine the surface tension in the
presence of ions in various cases.
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I. INTRODUCTION

Charge effects have long been discussed extensively in
electrolytes, polyelectrolytes, gels, DNA, and so on �1,2�. In
most of the physics literature, charged particles interact via
the Coulombic potential in a fluid with a homogeneous di-
electric constant �. In the chemistry literature, on the other
hand, attention has been paid to the microscopic molecular
interactions between an ion and the surrounding solvent mol-
ecules �3,4�, which give rise to a chemical potential contri-
bution of ions dependent on the solvent density �composition
for mixtures� and the temperature T. For a microscopic ion,
such as Na+ or Cl− in a polar fluid, it is the so-called solva-
tion free energy �hydration free energy in water or aqueous
solutions� per ion arising from the ion-dipole interaction un-
der the influence of hydrogen bonding �5,6�. In this paper, it
will be called the solvation chemical potential and will be
written as �sol

i dependent on the ion species i. It is a crucial
quantity in understanding the degree of solubility of ions in
polar solvents �3,4�. Since �sol

i strongly depends on the sol-
vent density or composition and can much exceed kBT, it
should play various important roles particularly in the forma-
tion of inhomogeneous structures, which has been one of the
main subjects in soft matter physics.

As a classic example, the Born theory �7� takes into ac-
count polarization around an ion using the linear dielectric
constant � and gives the solvation free energy in the form,

��sol
i �Born = Z2e2/2�Rion

i , �1.1�

where Ze is the ion charge and Rion
i is the microscopic ion

radius �of order 1 Å for Na+� �3,8�. For water, � is of order 1
in gas and of order 100 in liquid at room temperatures, so its
density dependence is very strong �9�. For mixtures of two
fluid components, A and B, � changes from the dielectric
constant �B of the less polar component to that �A of the
more polar component with increasing the volume fraction �
of the more polar component �4,10�. However, it is well
known that the Born formula neglects electrostriction �3,11�
and nonlinear dielectric saturation �12–14� in the vicinity of

an ion and is in many cases an overestimation. For mixtures,
the former effect means that molecules of the more polar
component accumulate around an ion to form the solvation
shell �3,4�. The latter effect means that the effective dielec-
tric constant in the vicinity of an ion should be smaller than
in the bulk. Nevertheless, the Born formula demonstrates
strong dependence of �sol

i on the solvent density or compo-
sition.

Let a fluid be phase separated into a highly polar phase �
and a less polar phase �. Generally, �sol

i takes different val-
ues in the two bulk phases and these values depend on the
ion species i �Na+ or Cl−, for example�, so they are written as
�sol

i� and �sol
i� . In the electrochemistry literature �15–19�, the

chemical-potential difference

����
i = �sol

i� − �sol
i� �1.2�

between the two phases is called the standard Gibbs transfer
energy �usually per mole, but per ion in this paper�. Using
data of ����

i on water+nitrobenzene �17� �with � being a
water-rich phase�, we estimate ����

i /kBT as 13.6 for Na+,
10.6 for K+, 11.3 for Br−, and 7.46 for I−, where we set T
=300 K. Notice that if ����

i �kBT, there arises a large dif-
ference in the ion density between the two phases. Further-
more, since ����

i depends on the ion species, there can be an
electric double layer at the interface, which then leads to an
electric potential difference across the interface, called the
Galvani potential difference. We also note that ����

i is a
parameter dramatically influencing the nucleation process
when a small amount of ions are doped in a metastable polar
fluid �20,21�. Recently, ����

i was calculated between gas-
eous water �phase �� and liquid water �phase ��, which is
much larger than kBT far below the critical point �22�.

It has also long been known that the surface tension of a
water-air interface increases with increasing the salt density
�23–30�. The ion density nearly vanishes in the air region,
obviously due to very large ����

i /kBT. Here, phase � is salty
water and phase � is air. It has been argued that ions in water
should be repelled away from the interface by the image
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charges in air �24,25�. This leads to a depletion of the ion
density near the interface and an increase of the surface ten-
sion,

�� = kBTnsalt	s, �1.3�

where nsalt is the salt density in the bulk water and 	s is the
effective thickness of the ion-free layer. This is in marked
contrast to the role of surfactant molecules, which serve to
decrease the surface tension �31�. For example, 	s is about 6
Å for NaCl at room temperatures �29�. The image interaction
comes into play in 	s at low salt densities, where �� itself is
small, however. Here, we mention microscopic calculations
of the ion distributions at a water-air interface �6� �see dis-
cussions in Sec. III�.

We stress that the strong density or composition depen-
dence of �sol

i gives rise to a number of unexplored physical
effects, particularly in two-phase states. As a paper in this
direction, we will examine the ion distributions around an
interface in the scheme of Ginzburg-Landau theory
�22,32,33�. In Sec. II, we will present our scheme accounting
for electrostatics with inhomogeneous �, solvation effects,
and image forces. In Sec. III, we will explain our numerical
scheme and show profiles of the electric field in a parallel-
plate capacitor. In Sec. IV, we will present a number of gen-
eral relations and show numerical results of the interface
structure. In Appendix A, we will summarize the calculations
of the structure factor of the composition fluctuations and the
effective interaction potentials among the ions in near-critical
one-phase states.

II. GINZBURG-LANDAU THEORY

Let us consider a polar binary mixture with a small
amount of salt composed of two species of ions. The volume
fraction of the more polar component A will be written as
��r�. The ion densities are n1�r� and n2�r�. In the continuum
limit, �, n1, and n2 are smooth variables coarse-grained on
the microscopic level, and we will set up the Ginzburg-
Landau free energy F as a functional of these variables. We
will assume that the ion densities are small and will neglect
formation of dipole pairs �2,34�. We divide F into three parts
as

F = Fe + Fch + Fim �2.1�

and will explain each term in the following.

A. Electrostatics

We assume that the dielectric constants �A and �B of the
two components are significantly different and concentration
dependence of the dielectric constant of the mixture may be
expressed as �10�

���� = �0 + �1� , �2.2�

where �0 and �1 are positive constants with �35�

�0 = �B, �1 = �A − �B 
 0. �2.3�

Empirically, � can be expressed roughly as a linear function
of the concentration in many mixtures investigated so far

�4,10�. Hereafter, E=−�� is the electric field and D=�E is
the electric induction, where � is the electric potential. They
satisfy

� · D = − � · ���� � � = 4�
 . �2.4�

The charge density 
�r� is written as


 = e�Z1n1 − Z2n2� , �2.5�

where e is the elementary charge and the two ion species
have charges, Q1=Z1e and Q2=−Z2e.

As a typical experimental geometry, our fluid system is
inserted between two parallel metal plates with area S and
separation distance L as shown in Fig. 1. We assume S1/2

�L and neglect the effects of edge fields, for simplicity. The
z axis is taken perpendicularly to the plates. The surface
charge densities at the upper plate at z=L and the lower plate
at z=0 are �L and �0, respectively. The total charges on the
plates are QL=S�L and Q0=S�0, respectively. The charge
neutrality condition is written as

QL + Q0 +� dr
 = 0, �2.6�

where the space integral �dr�¯� is within the fluid region
�0�z�L�. In this paper, we fix �L and �0 and consider the
electrostatic free energy dependent on inhomogeneous � and

 �33,36�,

Fe =� dr
����
8�

E2 =� dr
1

8�
E · D . �2.7�

On the plates at z=0 and L, � takes laterally homogeneous
values �0 and �L, and

Dz�0� = 4��0, Dz�L� = − 4��L. �2.8�

The potential difference �L−�0 is a functional of ��r� and

�r�. We next change ��r� and 
�r� infinitesimally by ���r�
and �
�r� and use the relation,

���E2� = − E2�� + 2E · �D = − E2�� − 2 � · ���D�

+ 8���
 . �2.9�

Because �Dz should vanish on the boundaries at fixed sur-
face charges, we find

FIG. 1. Ionic fluid between parallel metal plates with space-
dependent dielectric constant � and charge density 
. Surface
charges QL and Q0 are fixed.
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�Fe =� dr�−
1

8�
E2�� + ��
� . �2.10�

Under Eqs. �2.2� and �2.5�, the above relation yields

�Fe

��
= −

�1

8�
E2, �2.11�

�Fe

�n1
= Z1e�,

�Fe

�n2
= − Z2e� . �2.12�

B. Solvation interaction

In Eq. �2.1�, the second term Fch is the chemical part,

Fch =� dr	 f��� +
1

2
C
��
2 + �

i=1,2
�kBTni„ln�v0ni� − 1…

+ ni�sol
i ����� . �2.13�

The free energy density f = f��� is given by the Hildebrand
�or Bragg-Williams� expression �31,37�,

v0f

kBT
= � ln � + �1 − ��ln�1 − �� + ���1 − �� , �2.14�

where v0 is the molecular volume and � is the interaction
parameter dependent on the temperature T. The molecules of
the two components have a common size

a = v0
1/3 �2.15�

on the order of a few angstroms. Here the volume fraction of
the ions is neglected �38�. The critical-point values of � and
� in the absence of ions are

�c = 1/2, �c = 2, �2.16�

respectively, in the mean-field theory. That is, as �→2, 2
−�=A�T−Tc

0� with A being a constant and Tc
0 being the criti-

cal temperature without ions. It is convenient to define the
order parameter by

� = � − 1/2, �2.17�

which vanishes at the critical point without ions. The coeffi-
cient C of the gradient term is of order kBT /a and we will
use a simple form �31�,

C = kBT�/a . �2.18�

Near the critical point, we may well use the expansion form
f =��2 /2+u�4 /4 �see Eq. �4.49� below�.

In the second line of Eq. �2.13�, �sol
i ��� �i=1, 2� are the

chemical potential contributions of ions due to interactions
between the ions and the solvent molecules and depend on �
and T. In this paper, we simply assume the linear depen-
dence,

�sol
i ��� = �c

i − kBTgi� �i = 1,2� . �2.19�

The first terms are irrelevant constants in F when the ion
numbers are conserved quantities. It follows the relation

����
i =kBTgi�� with �� being the composition difference

between the two phases. The linear dependence here and that
in ���� in Eq. �2.2� are adopted to gain the physical conse-
quences in the simplest manner and should not be taken too
seriously. We then have the bilinear solvation interaction
���ni� in F among the ions and the composition fluctuations
�32,39�. In aqueous solutions, the coupling constants gi are
positive for hydrophilic ions and can much exceed unity for
small ions such as Li+ or Na+, while they should be negative
for hydrophobic organic ions �14�. They should be larger for
small multivalent ions such as Mg2+ or Al3+. As will be
summarized in Appendix A, we recently examined the effect
of this solvation interaction in near-critical one-phase states
�32�. In this work, its effect will be examined in two-phase
states. In addition, 1 /���� in the Born formula Eq. �1.1� may
be expanded in powers of � near the critical point to give
�33,40�

�gi�Born = Zi
2e2�1/2kBT�c

2Rion
i , �2.20�

where �c is the dielectric constant at the critical composition
and Rion

i is the ion radius of the species i. However, because
of the defects of the Born theory, we will treat gi as free
parameters not using Eq. �2.20�.

Hydrophilic ions and several water molecules �those of
the more polar component in a mixture� form a complex
structure and its effective radius Rshell

i , called the solvation
�hydration� shell radius, can be a few angstroms and is larger
than the bare ion radius Rion

i �3,4�. In a number of experi-
ments, water molecules have been extracted together with
hydrophilic ions in a less polar phase with a small water
concentration. In nitrobenzene �NB� -water at room tempera-
tures, the number of coextracted water molecules in a NB-
rich phase was estimated to be 4 for Na+, 6 for Li+, and 15
for Ca2+ �14�. For liquid-vapor systems, where ions are ab-
sent in vapor, Levin and Flores-Mena �27� argued that ions in
liquid cannot approach the interface within the distance of
Rshell

i in the thin interface limit �→0. In our theory, Rshell
i

does not appear explicitly, but ions in the more polar region
are strongly repelled from the interface outside the distance
of � for large gi. Therefore, our present treatment is justified
in the case ��Rshell

i .

C. Image interaction

As will be discussed in Appendix B, the last term Fim
arises from a deformation of the self-interaction of ions due
to inhomogeneous �. It originates from the discrete nature of
ions, while the electric field � in Eq. �2.4� is produced by the
smoothly coarse-grained charge density 
. If an ion is close
to an interface, the chemical potential contribution �im

i

=�Fim/�ni is the so-called image potential in the previous
papers �24–26�. This interaction can be important close to an
interface far below the critical point or a boundary wall.

In this paper, assuming weak or moderate spatial varia-
tions of �, we derive the following integral form,

Fim =� � drdr�m�r���I�r,r�� · ����r�� , �2.21�

where ��=� /�r�. We define a new variable,
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m = Z1
2n1 + Z2

2n2, �2.22�

which coincides with the total ion density,

n = n1 + n2, �2.23�

in the monovalent case Z1=Z2=1. If the boundary effects are
neglected, the functionI�r ,r�� depends only on the difference
r−r� as

I�r,r�� =
B0


r − r�
2
e−2�
r−r�
. �2.24�

Near the critical point, the coefficient B0 is given by

B0 = e2�1/8��c
2, �2.25�

where �c=�0+�1 /2 is the dielectric constant at the critical
point and � is the Debye-Hückel wave number. When the ion
densities vary significantly in space in a phase-separated
state, � may be taken as the space-dependent local value �see
sentences below Eq. �3.8�� �24� or the value in the more
polar phase �25�.

In our numerical analysis, we will set �1=4�0 /3 or �1
=4�c /5 for �c=1/2. Then 
�1�
 /�c is at most 0.4 in strong
segregation of composition. Our one-dimensional form of
Fim to be presented in Eq. �3.7� below overestimates the
usual expression in the case �1��0 �25� by a factor of 2 in
strong segregation. See Appendix B.

D. Chemical potentials and equilibrium

We calculate the chemical potentials �1=�F /�n1 and �2
=�F /�n2 of the ions and h=�F /��. Here h= ��A−�B� /v0 in
terms of the chemical potentials �A and �B of the two com-
ponents of the mixture �37�. Using Eqs. �2.11� and �2.12�, we
obtain

�1 = kBT ln�v0n1� + Z1e� + �sol
1 + �im

1 ,

�2 = kBT ln�v0n2� − Z2e� + �sol
2 + �im

2 . �2.26�

From Eqs. �2.11�, �2.13�, and �2.19�, we find

h = f���� − C�2� −
�1

8�
E2 − kBT �

i=1,2
gini + him,

�2.27�

where f�=�f /��. In these expressions, the last two terms
arise from the solvation and image interactions, respectively,
and we define

�im
i =

�Fim

�ni
, him =

�Fim

��
. �2.28�

If Eq. �2.24� is used with a constant �, we have

�im�r� 
 �im
i /Zi

2 =� dr���I�r,r�� · ����r�� ,

him�r� =� dr���I�r,r�� · ��m�r�� . �2.29�

In our numerical analysis, we have used these expressions in
Eqs. �2.26� and �2.27� for simplicity �see Eq. �3.7��.

In equilibrium, �1, �2, and h are constants in space. The
ion distributions are written in terms of the potential � and
the order parameter �=�−1/2 as

n1 = n1
0 exp�g1� −

Z1

kBT
�e� + Z1�im�� ,

n2 = n2
0 exp�g2� +

Z2

kBT
�e� − Z2�im�� , �2.30�

where we have used Eq. �2.19� for �sol
i and Eq. �2.29� for

�im
i . The coefficients n1

0 and n2
0 are determined from the con-

ditions N1=�drn1=const. and N2=�drn2=const.

III. NUMERICAL METHOD AND ONE-DIMENSIONAL
PROFILES WITH BOUNDARIES

We consider one-dimensional equilibrium situations in
which all the quantities in F depend only on z. We introduce
normalized ion densities by

c1�z� = v0n1�z�, c2�z� = v0n2�z� . �3.1�

As typical values, if n1=10−4 mole/cm3 and a=3.1 Å, we
obtain c1=1.8�10−3. We simply call c1 and c2 as concentra-
tions, supposing Rshell

i �a. We also introduce a dimensionless
electric potential,

U�z� = e��z�/kBT . �3.2�

In Appendix C, we will write down the equilibrium equa-
tions for �=�−1/2, c1, c2, and U. There appears a param-
eter A representing the strength of the charges,

A = �e2/4a�ckBT = ��Bc/4a , �3.3�

where a=v0
1/3 is the molecular size and

�Bc = e2/�ckBT �3.4�

is the Bjerrum length at the critical dielectric constant.
Our numerical calculations are all in the monovalent case

Z1=Z2=1. We integrated the time-dependent equations,

��

�t
= −

�F

��
+ � �F

��
� , �3.5�

�U

�t
= � · � � U + 4�
 , �3.6�

until steady solutions were nearly reached, where �¯� is the
space average. Notice that h in Eq. �2.27� becomes equal to
the space average ��F /��� in equilibrium. Thus the steady
solutions of Eqs. �3.5� and �3.6� are the equilibrium solu-
tions. We used him in Eq. �2.29� as �Fim/�� in �F /�� and n1
and n2 in Eq. �2.30� to calculate m=n and 
. These equations
do not represent the real dynamics, but conveniently give the
equilibrium solutions.

In �im�z� and him�z� in Eq. �2.29� we replace exp�−2�
r
−r�
� in I�r ,r�� by exp�−2�
z−z�
� for simplicity and inte-
grate over x� and y� to obtain
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�im�z� = 2�B0� dz�

z − z�
e−2�
z−z�
 d

dz�
��z�� , �3.7�

where B0 is given in Eq. �2.25�. See Eq. �B9�. The him�z� is
obtained if ��z�� is replaced by m�z�� in Eq. �3.7�. We ne-
glected the image interaction in the regions z�20a and L
−z�20a close to the boundaries. As the Debye-Hückel wave
number in Eq. �3.7�, we used its local value in the monova-
lent case,

��z� = �4�n�z�e2/�„��z�…kBT�1/2. �3.8�

We also performed numerical analysis by setting � equal to
the bulk value �� in Eq. �4.2�. A noticeable difference can be
seen only in the long-distance behavior of the electric poten-
tial � in the phase � at very small ion densities �see Fig. 13
below�. The calculated values of the excess surface tension
are different between these two choices only by a few per-
cents.

In Fig. 2, we show numerically calculated profiles of the
normalized electric potential U�z�, for �=3, g1=4, g2=2, and
A=4 in the geometry of Fig. 1 with L=200a. The space
averages are ���=0 and �c1�= �c2�=0.001. The three curves
correspond to the surface charge densities given by �0=
−�L=0 �a�, 2.5�10−3e /a2 �b�, and −2.5�10−3e /a2 �c�. Note
that Dz=−�d� /dz satisfies the boundary condition in Eq.
�2.8�. On the composition deviation �=�−1/2, we impose
the boundary condition �41�,

� = ± �2�2�−1a�� + 0.5, �3.9�

where ��=d� /dz, + is for z=0, and − is for z=L. Under Eq.
�3.9�, the boundary walls are wetted by the more polar phase.
The electric potential exhibits a jump near the interface,
whose spatial scale is of the order of the screening length
1/� longer than the interface thickness � in the present case.
This suggests the presence of an electric double layer at the

interface, as will be discussed in Sec. IV B. The surface
charges �0 and �L are screened by a fraction of the ions in
the fluid.

IV. PLANAR INTERFACE

From Fig. 2, we can see that the interface is not affected
by the surface charges and the wetting layer as long as the
distances to the boundaries are much longer than the screen-
ing length. We focus our attention to a planar interface sepa-
rating two phases � and �. The volume fraction �� in the
phase � is larger than that �� in the phase �, so the dielectric
constant is larger in the phase � than in the phase �,

�� = �c + �1�� 
 �� = �c + �1��. �4.1�

The interface structure is determined by the six dimension-
less parameters, �, g1, g2, �1 /�c, A, and the bulk ion concen-
tration c1� in the phase �. In this paper, we set �1 /�c=0.8,
but the other parameters are varied.

A. General relations

We assume that there are significant ion densities in the
two phases such that the bulk screening lengths 1/�� and
1/�� in the two phases are shorter than the cell length L.
Here,

�K
2 = 4�e2�Z1

2n1K + Z2
2n2K�/�KkBT

= 16A�Z1
2c1K + Z2

2c2K�/�̂Ka2, �4.2�

where A is defined by Eq. �3.3� and �̂K=�K /�c. Hereafter, the
subscript K stands for � or �. The ion densities in the two
bulk phases are written as

n1K = v0
−1c1K, n2K = v0

−1c2K. �4.3�

Far from the interface, the charge density 
�z� tends to zero
and the electric potential ��z� tends to constants, �� and ��.
The charge neutrality conditions far from the interface in the
two bulk phases are written as

Z1n1K = Z2n2K. �4.4�

Since �im
i vanish far from the interface, the ion densities

in the two bulk phases are written as

n1K = n1
0 exp�− �Z1e�K + �sol

1K�/kBT� , �4.5�

n2K = n2
0 exp��Z2e�K − �sol

2K�/kBT� . �4.6�

We define the solvation chemical potentials in the bulk,

�sol
1K = �sol

1 ��K�, �sol
2K = �sol

2 ��K� . �4.7�

The charge neutrality condition �4.4� yields

�� − �� =
1

�Z1 + Z2�e
�����

2 − ����
1 �

=
kBT

�Z1 + Z2�e
�g1 − g2��� . �4.8�

Use has been made of the definition �1.2�. The composition
difference is written as

FIG. 2. Normalized electric potential U�z�=e��z� /kBT between
parallel plates with L=200a, where we set ��0�=0. The surface
charge �0�=−�L� is 0 �a�, 2.5�10−3e /a2 �b�, and −2.5�10−3e /a2

�c�. The curve of ��z�=��z�−1/2 �broken line� indicates the pres-
ence of an interface in the middle and a wetting layer in contact
with the wall at z=L.
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�� = �� − �� 
 0. �4.9�

The first line in Eq. �4.8� is the general expression for the
potential difference �15–19�, while the second line is a sim-
plified expression under the assumption �2.19�. This potential
difference depends on the ion density only through �� and
�� �see Eq. �4.38� below�. Notice that the potential differ-
ence arises in the asymmetric case �g1�g2� only and van-
ishes in the symmetric case �g1=g2�. More strongly in our
model, we find ��z�=
�z�=0 even around the interface for
g1=g2.

Furthermore, the charge densities in the phase � are re-
duced as

n1�

n1�

=
n2�

n2�

= exp�−
�r

kBT
� . �4.10�

The degree of the ion-density reduction is represented by the
energy �r written as

�r =
Z2

Z1 + Z2
����

1 +
Z1

Z1 + Z2
����

2

=
kBT

Z1 + Z2
�Z2g1 + Z1g2��� . �4.11�

The second line holds under Eq. �2.19� as in the second line
of Eq. �4.8�. For example, if ����

1 /kBT=����
2 /kBT=10 and

60, the ion reduction factor becomes e−10=2.4�10−4 and
e−60=0.67�10−26, respectively, in the monovalent case. In
the latter case, the ion density is virtually zero in the phase �.
The Debye-Hückel wave numbers in Eq. �4.2� satisfy

��/�� = ���/���1/2 exp�− �r/2kBT� . �4.12�

If �r /kBT is considerably larger than unity, we have n1�

�n1�, n2��n2�, and 1/���1/��. On the other hand, as we
approach the critical point, �� and �r /kBT eventually be-
come small, where the heterogeneity in the ion distributions
is weak. If g1 and g2 are large, this crossover occurs very
close to the critical point.

We show numerical results in the monovalent case. In
Figs. 3–5, we set �=2.3, g1=4, g2=2, A=4, and ���=0 with
L=100a. At the boundaries at z=0 and L, we impose the
conditions,

�� = 0, �� = 0. �4.13�

If ��L�1, we may realize the interface profiles not affected
by the boundary effects. Figure 3 displays the ion densities
and the charge density for c1�=1.75�10−3. The charge den-
sity changes rather abruptly between the maximum and the
minimum on the scale of � �42�, but slowly tends to zero
outside the interval of them on the scale of 1 /�� or 1/��. We
can also see a rounded peak in c1�z� in the phase �. The latter
is due to the factor exp�−U� where U=e� /kBT decreases by
0.2 on the left of the interface. This peak tends to disappear
for larger gi. For three values of c1�, Figs. 4 and 5 illustrate
the electric potential ��z� and the composition deviation
��z�, respectively. They are consistent with Eq. �4.8�. For
example, for the case �b� with c1�=0.018 in Figs. 4 and 5, we
numerically obtain ��=0.3374, ��=−0.3137, and �U

=e���−��� /kBT=0.6410 to confirm the coincidence of the
left-hand and right-hand sides of Eq. �4.8�. Furthermore, the
ion reduction factor in Eq. �4.10� is exp�−3���=0.146 for
this case, which is consistent with the numerical value c1�

=0.002 64.
Near a water-air interface without ions in air, the micro-

scopic calculations �6� showed a difference between the cat-
ion and anion distributions, which decreases in the order of
the series: NaI�NaBr�NaCl�NaF in agreement with the
order of the depletion-layer-thickness 	s in Eq. �1.3�. The
distributions are most different for NaI and almost coincide
for NAF. This suggests that the hydration chemical potentials
are most different for Na+ and I− and are nearly equal for
Na+ and F−. See the sentences around Eq. �4.20�.

B. Charge density and electric potential

Emergence of a charge density around an interface gives
rise to a change of the electric potential across the interface.
To show this in the case ��L�1, we integrate Eq. �2.4� to
obtain the electric induction,

FIG. 3. Normalized ion densities c1�z� and c2�z� around an in-
terface where c1�=c2�=1.75�10−3 and c1�=c2�=0.29�10−3.

FIG. 4. Normalized electric potential U�z�=e��z� /kBT for three
cases of c1�=1.75�10−3, 0.018, and 0.037, where we set ��50a�
=0.
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D�z� = − ��z����z� = 4��
−�

z

dz�
�z�� , �4.14�

where the lower bound is pushed to −�. The z dependence of
� stems from that of �. To ensure D���=0, we need to
require the total charge neutrality condition �−�

� dz
�z�=0.
Dividing Eq. �4.14� by � and integrating it, we obtain

��z� = �� − 4��
−�

z

dz�
�z�����z� − ��z��� , �4.15�

where we introduce

��z� = �
zint

z

dz�
1

��z��
. �4.16�

The right-hand side of Eq. �4.15� is independent of the lower
bound zint in Eq. �4.16�. However, it is convenient to choose
zint as the interface position in the Gibbs construction �43�
�see Eq. �4.42� below�; then, ���z−zint� /�K far from the
interface where K=� or � in the � or � region. Here
z�−�

z dz�
�z���z���z� should tend to zero for large z �since

�z��e−��z as z→��, we have

�� − �� = − 4��
−�

�

dz�
�z����z�� , �4.17�

where the upper bound is also pushed to infinity. We are
interested in the potential value at the interface position,

�� − ��zint� = − 4��
−�

zint

dz�
�z����z�� . �4.18�

As can be inferred from the profile of c1−c2=a3
 /e in Fig.
3, � should decrease from the maximum to the minimum
point of 
 by a small amount ����sol�n1� �42�. For g1


g2�1 with ���1, it is estimated as

����sol � en1��2 ln�g1/g2�/��. �4.19�

If ��a, we obtain e����sol /kBT�c1�A ln�g1 /g2�.

In view of the inequality 

�z�
�2eZ1n1�, it is surprising
that ��−�� in Eq. �4.8� remains nonvanishing even in the
dilute limit of ions. In the low density limit of the ions,
therefore, 
 should change over the screening length outside
the interval between the extremum points of 
. Furthermore,
if �����, the typical variation of � in the � region should
be smaller than that in the � region by the factor ���� /����

owing to the continuity of D�z� in Eq. �4.14�. In the case
�������−1, the potential decrease Eq. �4.18� behaves as

�� − ��zint� � ����sol + 2
����

����

kBT

e
sinh��U

2
� ,

�4.20�

where �U=e���−��� /kBT. See discussions below Eq.
�4.56�. The electric field on the left-hand side of the maxi-
mum point of 
 in the � region is negligible in the limit n�

→0. In accord with this result, 
=�=0 was assumed in the
water region in the previous papers �24–27�.

C. Grand potential density

We consider the grand potential density in one-
dimensional equilibrium situations,

��z� = f +
C

2

��
2 − h� +

�

8�
E2 + m�im

+ �
i=1,2

ni�kBT„ln�v0ni� − 1… + �sol
i ��� − �i� ,

�4.21�

where �im is defined by Eq. �2.29� and h, �1, and �2 are
constants �Lagrange multipliers�. The grand potential is
given by

� =� dr� = F −� dr�h� + �
i=1,2

�ini� , �4.22�

where F is the Helmholtz free energy �2.1�. If we minimize
� as a functional of �, n1, and n2, we are led to Eqs. �2.26�
and �2.27� with Eq. �2.28�. To obtain an interface, we impose
the boundary condition �→�K �K=�, �� with ��
�� far
from the interface.

For the interface solution, we can prove the relation,

d

dz
�� − C
��
2 − m�im� = − n1��im

1 − n2��im
2 − ��him,

�4.23�

where the prime denotes taking the derivative d /dz. We may
see that the z integration of the right-hand side of Eq. �4.23�
vanishes. In fact, if we shift z in ��z�, ni�z�, and ��z� to z
+��, the incremental change of Fim is

�Fim =� dr�n1��im
1 + n2��im

2 + ��him��� . �4.24�

For constant ��, we have �Fim=0 from the translational in-
variance of the interface position. This is justified if the in-
terface is located very far from the boundary walls. Then

FIG. 5. Order parameter profile ��z�=��z�−1/2 for three cases
of c1�=1.9�10−4 �a�, 0.018 �b�, and 0.037 �c�. For the smallest c1�,
��z� is almost equal to the profile without ions.
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integration of Eq. �4.23� indicates coincidence of the bulk
values of ��z�

�� = f���� − h�� − kBTn�

= f���� − h�� − kBTn�. �4.25�

Here, n� and n� are the bulk values of n=n1+n2. We have
eliminated �1 and �2 with the aid of �ini��i−kBT ln ni

−�sol
i �→0 far from the interface which follows from Eqs.

�2.26� and �4.4�. The homogeneity of h in Eq. �2.27� yields

h = f����� − kBT�g1n1� + g2n2��

= f����� − kBT�g1n1� + g2n2�� . �4.26�

Now Eqs. �4.25� and �4.26� supplemented with Eqs. �2.14�
and �4.10� constitute a closed set of equations that determine
the equilibrium compositions �� and ��, as will be exam-
ined in Sec. IV G.

D. Surface tension

In terms of the grand potential density in Eq. �4.21�, the
surface tension is written as

� =� dz���z� − ��� , �4.27�

where the integrand tends to zero away from the interface
owing to Eq. �4.25�. We eliminate �1 and �2 in ��z� using
Eq. �2.29� to have a simpler expression,

��z� = f +
C

2

��
2 − h� − kBTn +

�

8�
E2 − 
� . �4.28�

Use of Eq. �2.4� gives

� =� dz� f��� +
C

2

��
2 − h� − kBTn −




2
� − ��� .

�4.29�

On the other hand, the surface tension without ions is ex-
pressed as

�0 =� dz� f��0� +
1

2
C
�0�


2 − f0� , �4.30�

where �0�z� is the interface solution without ions, tending to
�0� and �0� as z→ ��, respectively. It satisfies �37�

f���0� − C�0� = 0

f��0� −
1

2
C
�0�


2 = f0 = const. �4.31�

at any z so that f0= f��0��= f��0��. For the special form of f
in Eq. �2.14�, we have h=0 �in the zeroth order� and �0�

+�0�=1 �48�.
Let us consider the excess surface tension,

�� = � − �0. �4.32�

In Fig. 6, we show the normalized excess surface tension
a2�� /kBT versus c1� at A=4 for �=3, 2.3, and 2.05, for

which a2�0 /kBT=0.498, 0.103, and 0.0773, respectively.
Here �0 are very different for these values of �. We set g1
=4 and g2=2 for the curves �a�, �b�, and �c� �solid lines�,
while g1=10 and g2=5 for the curves �d�, �e�, and �f� �broken
lines�. We generally find that �� increases with increasing gi.
The linear dependence ���c1� roughly holds at relatively
large c1�, but the curves depend on the various parameters in
a rather complicated manner at smaller c1�. The characteris-
tic length 	s defined by Eq. �1.3� is obtained from 	s /a
= �a2�� /kBT� /c1�. Then we can see that 	s /a�2 for the
curves in Fig. 6.

E. Approximations in dilute electrolytes

When n1 and n2 are very small, we set

��z� = �0�z� + ���z� , �4.33�

where the deviation ���z� is assumed to be small. From Eq.
�4.31� and the relation f���0K�=0 the deviations

f��K� − f0 =
1

2
kBTrK��K − �0K�2 + ¯ �4.34�

at z= ±� are of second order in ��, where

rK = f���0K�/kBT . �4.35�

For our f in Eq. �2.14�, we have r�=r�, as can be seen from
Eq. �A2�. Now Eq. �4.25� gives

h � − kBT�n/�� , �4.36�

where �n is the ion-density difference,

�n = n� − n� = n��1 − exp�− �r/kBT�� . �4.37�

From Eq. �4.26�, the composition deviations far from the
interface are written as

FIG. 6. Normalized excess surface tension a2�� /kBT vs c1� for
�=3 �a�, 2.3 �b�, and 2.05 �c� with g1=4 and g2=2 �solid lines�, and
for �=3 �d�, 2.3 �e�, and 2.05 �f� with g1=10 and g2=5 �broken
lines�.
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�K − �0K �
1

rK
�g1n1K + g2n2K −

�n

��
� , �4.38�

where K=�, �. This relation is consistent with the results in
Fig. 5.

We next devise an approximate formula for �� in the
dilute case starting with Eq. �4.29�. From Eq. �4.31�, we have

f��� +
C

2

��
2 = f��0� +

C

2

�0�


2 + C
d

dz
��0���� + ¯ ,

�4.39�

where the contributions of second order in �� are not writ-
ten. Since the third term on the right-hand side of Eq. �4.39�
vanishes on integration, we obtain

��

kBT
�� dz�n� − n�z� −

�n

��
„�� − ��z�…� �4.40�

to linear order in ��. The integrand tends to zero for large 
z
.
We introduce the normalized integrand of Eq. �4.40�

 �z� = v0„n� − n�z�… − v0��n/���„�� − ��z�… . �4.41�

In Fig. 7, we show  �z� for three cases with A=4 and c1�

=10−3. It is positive mostly, but has a small negative tail in
the phase � �in the region z /a�55 here�. Numerical values
of 	s /a are 1.84 from Eq. �4.29� and 1.96 from Eq. �4.40� for
the curve �a� with �=2.3, g1=4, and g2=2. They are 4.86
and 4.62 for �b� with �=2.3, g1=10, and g2=5, and are 3.86
and 3.68 for �c� with �=3, g1=10, and g2=5, respectively.
The differences between these two values are of order 5% at
c1�=10−3; thus, the approximate formula �4.40� is not very
precise at this ion density. Increases in 	s or �� with increas-
ing g1 and g2 are again observed. However, for g1=10 and
g2=5, 	s is larger for �b� with �=2.3 than for �c� with �=3,
since  �z� is more broadened for �b� than for �c� in Fig. 7.
The same tendency can also be found between the two
curves �a� and �b� and between the two curves �d� and �e� at
small c1� in Fig. 6. Additional comments are as follows. �i�

The contributions from the integral −�
� /2=−�dz�E2 /8�
in Eq. �4.29� are at most a few percent of the total contribu-
tion in all the calculations. �ii� In the right-hand sides of Eqs.
�4.29� and �4.40�, we have used the same � and n1K for finite
ion densities.

F. Repulsion of ions from an interface

It is convenient to define the interface position zint by

��zint + ���L − zint� = �
0

L

dz��z� , �4.42�

which is the Gibbs construction of the interface position
�43�. We use the boundary condition �4.13�, which allows the
neglecting of the wetting layer. When the distances zint and
L−zint are much longer than the interface thickness and the
screening length, Eq. �4.40� may be expressed as

��

kBT
� �

−�

zint

dz�n� − n�z�� + �
zint

�

dz�n� − n�z�� , �4.43�

where the lower and upper bounds are pushed to infinity.
Here, the first term is positive and the second term is nega-
tive, with the sum being positive, in our calculations. The
second term becomes negligible for small n�z� in the � re-
gion z
zint. This occurs in strong ion segregation with con-
siderably large g1 and g2. The characteristic length 	s in Eq.
�1.3� is then the thickness of the effective ion-depletion layer
in the � region z�zint. In the previous literature, only the
first term in Eq. �4.43� has been considered in the thin inter-
face limit �→0.

We illustrate how the two terms in Eq. �4.43� can be in-
terpreted graphically. In Figs. 8–10, we display the normal-
ized ion density n�z� /n�, the composition ��z�, and the im-
age factor defined by

Fima�z� = exp�− �im�z�/kBT� , �4.44�

which appears in n1 and n2 in Eq. �2.30� or Eq. �C2� in the
monovalent case. In these figures, the areas of the left and

FIG. 7. Normalized integrand  �z� of Eq. �4.41� for �=2.3, g1

=4, and g2=2 �a�, for �=2.3, g1=10, and g2=5 �b�, and for �=3,
g1=10, and g2=5 �c�. Its integral with respect to z /a is equal to
a2�� /kBT in the approximate formula �4.40�.

FIG. 8. Normalized ion density n�z� /n�, composition ��z�, and
image factor Fima�z� for �=2.3, g1=4, g2=2, and c1�=10−3. The
gray regions correspond to the two terms in Eq. �4.45�.
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right gray regions divided by a2 are equal to the first term
and the negative of the second term in Eq. �4.43�, respec-
tively. The ion density n�z� is shifted to the left of the inter-
face at z=zint�50a. This means that the ions are repelled
from the interface in the phase �.

We furthermore mention detailed characteristic features.
�i� In Fig. 8, we set �=2.3, c1�=10−3, g1=4, g2=2, and A
=4, where the ion density is relatively large and the ion
reduction factor ��e−1.8� is not very small. The first term in
Eq. �4.43� is then 158% of the total �� /kBT=2.03a−2c1�,
while the second term is −58%. In this case, Fima�z��1 at
any z so that the image interaction is not important. �ii� In
Fig. 9, we set �=3, c1�=2�10−4, g1=4, g2=2, and A=4,
where � is increased and c1� is decreased. The first term of
Eq. �4.43� is 138% of the total �� /kBT=2.55a−2c1� and the
image interaction causes considerable reduction of n�z�. �iii�
In Fig. 10, we set �=3, c1�=2.1�10−5, g1=10, g2=5, and
A=10, where gi and A are increased, the ion density is very

small, and 1/��=13.3 is rather long. The first term of Eq.
�4.43� is 103.5% of the total a2�� /kBT=7.32c1� and the role
of the image factor is much intensified.

We discuss the relation between our theory and the
Onsager-Samarus theory �25�. For zint−z��, the image fac-
tor behaves as

Fima�z� � exp�− DIe
−2��
z−zint
/�zint − z�� , �4.45�

where DI=aA�1�� /��c in our approximation. The image
interaction can be important in the � region for DI�� or

A�1��/�c � �/a , �4.46�

under which Fima�z� is considerably smaller than unity at
zint−z��. If �1 /�c, ��, and � /a are of order unity away
from the critical point, this condition becomes A��Bc /a
�1. Moreover, if DI���1 in the dilute limit, the integral of
n�−n�z� in the region DI�zint−z�1/�� becomes
n�DI ln�1/DI��� and that in the region ��zint−z�DI is of
order n�DI. Thus,

��/kBT � n�DI�ln�1/DI��� + EI� , �4.47�

where EI is a dimensionless constant of order unity. If DI is
set equal to the classical value e2 /4��kBT in the case ��

���, the above result reduces to that by Onsager and Sama-
ras �see Appendix C�.

G. Approaching criticality in two-phase states

We are interested in the coexistence curve in the presence
of ions in the �−T��−�� plane �44–46�. We assume the
stability of the system against formation of a mesoscopic
phase or �p�1 �see Appendix A� �32,39�. We seek the solu-
tion of Eqs. �4.25� and �4.26� supplemented with Eq. �4.10�
to calculate ��=��−1/2 and ��=��−1/2. As a parameter
representing the amount of the doped ions, there can be
many choices. It is convenient to introduce an ion density
�50�,

n̄ = �n�n��1/2. �4.48�

In the monovalent case, we have v0n̄=2�c1�c1��1/2 in the
dimensionless form so that n1�=exp��r /2kBT�n̄ /2 and n1�

=exp�−�r /2kBT�n̄ /2. We treat n̄ and 2−� as small control
parameters characterizing two-phase states with a macro-
scopic planar interface. If the system is close to the critical
point, we may use the Landau expansion f /kBT=��2 /2
+u�4 /4+const., where our free energy density Eq. �2.14�
gives

� = �4 − 2��/v0, u = 16/3v0. �4.49�

We also expand the ion reduction factor in Eq. �4.10� in
powers of �r /kBT���=��−��. Some calculations show
that the critical condition ��→0 is attained at �=�c

ion with

�c
ion = ��g1Z2 + g2Z1�/�Z1 + Z2��2n̄ . �4.50�

Here, �c
ion=2−�c

ionv0 /2 and n̄= �n��=space average� at the
critical point, so the above relation is consistent with Eq.
�A5�. If � is slightly smaller than �c

ion, �−�c
ion represents the

reduced temperature at fixed n̄ and that �� and �� behave as

FIG. 9. Normalized ion density n�z� /n�, composition ��z�, and
image factor Fima�z� for �=3, g1=4, g2=2, and c1�=2�10−4.

FIG. 10. Normalized ion density n�z� /n�, composition ��z�, and
image factor Fima�z� for �=3, g1=10, g2=5, and c1�=2.1�10−5.
For these parameters, the role of the image factor on n�z� is more
dominant than that of the solvation interaction.
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�� + �� � ��g1Z2 + g2Z1�/�Z1 + Z2��3 n̄

3u
, �4.51�

�� = �� − �� � 2���c
ion − ��/u�1/2. �4.52�

The first line is the shift of the critical composition multi-
plied by 2. The second line is the usual mean-field expres-
sion.

We next approach the critical point numerically with de-
creasing � in two-phase states. As an example, let us set g1
=4, g2=2, A=4, and v0n̄=0.02. Then the parameter �p in Eq.
�A6� becomes 0.29 and the critical value of � becomes �c

ion

=2−4.5�c1+c2�=1.91 from Eq. �4.50�. In Fig. 11, we show
the profiles of ��z� for �=2, 1.95, and 1.92 or for �c

ion−�
=0.09, 0.04, and 0.01 as the curves �a�, �b�, and �c�. Evi-
dently, the interface thickness increases as �→�c

ion. For these
cases, Eqs. �4.51� and �4.52� yield ��+��=0.0375 and ��
=1.22��ion−��1/2 with the aid of Eq. �4.49�. For �a�, �b�, and
�c�, numerical values are ��+��=0.0291, 0.0314, and
0.0303 and �� / ��ion−��1/2=1.19, 1.20, and 1.12, respec-
tively. Therefore, Eqs. �4.51� and �4.52� nicely hold, al-
though n� and n� are considerably different for �a� and �b�.
On the other hand, the normalized potential difference �U
=e���−��� /kBT is 0.357, 0.240, and 0.112, respectively, in
agreement with Eq. �4.8�. For ��1.91 there can only be a
solution representing a uniform one-phase state. In Fig. 12,
we show c1�z� and c1�z�−c2�z�. When the interface thickness
� much exceeds the screening length, the ion distributions
have transition regions with a thickness of order �, as it
should be the case. The electric double layer at the interface
diminishes on approaching the criticality. In addition, the
surface tension exhibits the usual mean-field behavior �
� ��−�ion�3/2 near the ion-induced criticality in the mean-
field theory.

H. Slow decay of electric potential at small ��

When the ion density is very small in the phase �, the
potential ��z� slowly changes over the distance of 1 /�� in
the region z
zint. Figure 13 displays U�z�=e��z� /kBT at

c1�=5�10−4 with �=2.3, g1=10, g2=5, and A=4. We use
the boundary conditions in Eq. �4.13� with L=200a. Since
��=0.800 and ��=0.203, the ion reduction factor in Eq.
�4.10� is 0.012, and c1�=5.9�10−6, resulting in 1/��

=5.07a and 1/��=40.0a.
In the � region not close to the interface �z−zint���, the

composition deviation ��z�−�� may be neglected and the
normalized potential obeys

U��z� = ��
2Fima�z�sinh„U�z� − U�… , �4.53�

where U�=d2U /dz2 and U�=e�� /kBT. The image factor de-
fined in Eq. �4.44� behaves as

FIG. 11. Composition profiles with varying � for g1=4, g2=2,
A=4, and v0n̄=0.02, for which �c

ion=1.91.
FIG. 12. Normalized ion density c1�z� and normalized charge

density c1�z�−c2�z� �multiplied by 100� with varying � with the
same parameter values as in Fig. 11.

FIG. 13. Normalized electric potential U�z�=e��z� /kBT �solid
line� at small ion density c1�=5�10−4 with �=2.3, g1=10, g2=5,
and A=4. Here c1�=5.9�10−6 and ��=2.5�10−2. It is compared
with the Poisson-Boltzmann solution, Eqs. �4.55� and �4.56�, with-
out the image interaction. Also shown are composition profile ��z�
and the scaled charge density 103�c1�z�−c2�z��.
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Fima�z� � exp�DIe
−2��
z−zint
/�z − zint�� , �4.54�

where DI=aA�1�� /��c, as in Eq. �4.45�, and DI=0.61a in
Fig. 13. For example, this factor is equal to 1.038 at z−zint
=10a in Fig. 13.

If the image factor is set equal to unity, Eq. �4.53� be-
comes the well-known Poisson-Boltzmann equation which
neglects the solvation and image interactions. Its solution,
written as UPB


 , is given by

UPB

 �z� = U� + 2 ln�1 + d�e−��
z−zint


1 − d�e−��
z−zint
� , �4.55�

in the region z
zint. If � is changed to � in Eq. �4.55�, the
Poisson-Boltzmann solution is also obtained in the � region,
which is written as UPB

� . We require the continuity of the
electric potential and the electric induction, UPB


 =UPB
� and

��dUPB

 /dz=��dUPB

� /dz, at z=zint. We then connect the two
one-sided solutions,

UPB�z� = UPB

 �z� �z 
 zint�

= UPB
� �z� �z � zint� , �4.56�

which decreases from U� at z=−� to U� at z=� by �U
=e���−��� /kBT. In Fig. 13, we plot UPB thus obtained with
d�=0.328. If ���� /�����1, d� and U�−UPB�zint� are given
by sinh��U /4� �close to the above value� and the first term
on the right-hand side of Eq. �4.20� multiplied by kBT /e,
respectively.

Comparing U and UPB, we recognize the following. �i� In
the � region, U relaxes to U� slightly faster than UPB due to
the image factor in Eq. �4.54�. �ii� The curve of U is shifted
into the � region, as compared to UPB, and the decrease of U
in the � region U�−U�zint� is considerably larger than that of
UPB in Eq. �4.56�. These are due to the charge density cre-
ated by the asymmetric solvation interaction near the inter-
face, �see Eqs. �4.19� and �4.20��. �iii� Nevertheless, the
small negative tail of the charge density 
�z���−���� /4��
in the � region �at least for z−zint�1/��� is correctly de-
scribed by the Poisson-Boltzmann theory.

In Fig. 14, we plot the potential reduction ratio Rp

���−��zint�� / ���−���= �U�−U�zint�� /�U in the � re-
gion as a function of c1� with A=4 for three cases. It is
around 0.4 for weak ion segregation at �=2.3, g1=4, and
g2=2 on the curve �a�. However, it decreases with decreasing
c1� for strong ion segregation with g1=10 and g2=5 on the
curves �b� and �c�.

I. Hydrophilic and hydrophobic ions

If hydrophilic and hydrophobic ions are in aqueous solu-
tions, we have ����

1 
0 and ����
2 �0 �14,17� or g1
0 and

g2�0 under Eq. �2.19�. With decreasing g2, the potential
difference �4.8� becomes larger and �r in Eq. �4.10� can even
change its sign for this case. In Fig. 15, we set g1=4 and
g2=−4 with c1�=10−3, where �r=0 and the bulk ion densities
far from the interface coincide. We can see that c1 exhibits a
maximum in the � region and a minimum in the � region,
while c2 has extremums in the reverse regions. Thus the
relative charge density �c1−c2� /c1� is more intensified than

in the case of g1
g2
0. Interestingly, the integral of the
deviation c1+c2−2c1� is positive due to the image interac-
tion in the � region in this case. That is, the ions are ab-
sorbed onto the interface on the average and 	s in Eq. �1.3�
becomes −3.54a.

V. SUMMARY AND REMARKS

We have introduced the solvation effects at low ion den-
sities into electrolyte theory in the simplest manner, neglect-
ing ion association �2�. We have then examined the ion dis-
tributions, the electric potential, and the composition profile
around an interface in polar binary mixtures in the Ginzburg-
Landau scheme. We have derived a number of general rela-
tions. They are worth experimental investigation particularly
near the critical point. Numerical calculations have been per-

FIG. 14. Potential reduction ratio in the � region Rp= ���

−��zint�� / ���−��� versus c1�, where �=2.3, g1=4, and g2=2 �a�,
�=2.3, g1=10, and g2=5 �b�, and �=3, g1=10, and g2=5 �c�.

FIG. 15. Normalized ion densities c1 and c2 around an interface,
where g1=4, g2=−4, �=2.3, and A=4. The first species is hydro-
philic and the second one is hydrophobic. Also shown are c1−c2

=a3
 /e and c1+c2=a3n. A marked electric double layer is formed
here.
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formed in one dimension and in the monovalent case only.
The ingredients of our theory are as follows.
�i� The dielectric constant in Eq. �2.4� is dependent on the

composition and is inhomogeneous. Though we have treated
a moderate case of �1 /�0=4/3, the ratio �1 /�0 can be of
order 80 in aqueous solutions. Such very strong composition
dependence should lead to various effects not well recog-
nized so far. We mention a paper pointing out its relevance in
first-order swelling transition of charged gels �51�.

�ii� The solvation effects are taken into account in Eq.
�2.13� with the composition-dependent solvation chemical
potentials in Eq. �2.19�. The resultant interaction in the free
energy F is bilinear and characterized by dimensionless pa-
rameters gi dependent on the ion species i. A shift of the
coexistence curve of the composition follows from this cou-
pling �32�. Intriguing is the asymmetric case g1�g2, where a
potential difference arises at an interface. In one-phase states,
this asymmetry can lead to a peak in the structure factor of
the composition fluctuations at an intermediate wave num-
ber, as summarized in Appendix A. There can even be a
mesoscopic phase �39�, which can possibly occur in the case
of strongly asymmetric salt with large g1−g2 �say, salt com-
posed of small cations and relatively large anions with dis-
tinctly different solvation powers� �32�. Notice that gi can be
negative for hydrophobic ions. Also we stress that the critical
fluctuations give rise to attractive interactions among the
ions as shown in Eqs. �A7� and �A8�, whose physical conse-
quences should be examined in future.

�iii� The image interaction is shown to arise from general
inhomogeneous dielectric constant and is expressed in the
integral form in Eq. �2.21� or Eq. �3.7�, though our expres-
sion can be used only for weak or moderate inhomogeneity.
As discussed in Sec. III, it can dominate over the solvation
interaction for A�1, at very small ion densities, and far
below the critical point.

The charge effects become very complex with these new
ingredients and our present results are still fragmentary. We
mention related problems.

�i� There can be an electric double layer and a potential
difference at an interface in general charged systems, includ-
ing low-molecular-weight fluids �as in this paper�, complex
fluids, gels, and even liquid metals. In particular, solvation
effects in microemulsion systems and charged colloidal sys-
tems are of great interest.

�ii� Wetting transitions should be greatly influenced by
ions �52,53�. If the wetting layer is more polar than the outer
fluid, ions can even be confined in the layer for ����

i

�kBT �see Eq. �1.2��.
�iii� We mention dynamical problems. Time evolution of

the ion distributions is a slow process due to slow ion diffu-
sion �19�. Phase-separation processes should also be influ-
enced by ions which are more strongly segregated than the
solvent composition for large gi. We already examined the
effect of a very small amount of ions on nucleation in a
metastable fluid in a less polar phase. There, the nucleation
barrier is decreased by ����

i in Eq. �1.2� for shallow quench-
ing �22�. Ion-induced nucleation plays a decisive role in at-
mospheric phenomena.

�iv� Recently, we examined solvation effects of charged
particles in liquid crystals �33,54�. In nematic states, the di-

electric tensor is anisotropically dependent on the director
orientation and, as a result, the electric field of ions distorts
the orientation over long distances and sometimes create na-
nometer scale defects.
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APPENDIX A: FLUCTUATIONS IN ONE-PHASE STATES

We consider small plane-wave fluctuations in a near-
critical one-phase state, where the inhomogeneity in the di-
electric constant can be neglected ��=�c� to leading order.
Retaining the Fourier components with wave numbers much
larger than the inverse system size 1/L, we first write the
fluctuation contributions to F in the bilinear order as �32�

�F = �
q
�1

2
�f� + Cq2�
�q
2 +

2�

�cq
2 

q
2 + kBT

� �
i=1,2

� 
niq
2

2ni
− �gi − Zi

2Iq�niq�q
*�� , �A1�

where �q¯ = �2��−3�dq¯ denotes the integration over the
wave vector q and

f� =
�2f

��2 =
kBT

v0
� 1

��1 − ��
− 2�� �A2�

in our model. The correlation length is given by �
= �C / f��1/2 for the case without ions. The �q, niq, and 
q are
the Fourier transformations of ��r�, ni�r�, and 
�r�, respec-
tively. The ni in the last term of Eq. �A1� are the average ion
densities satisfying Z1n1=Z2n2 from the charge neutrality.
The terms proportional to Iq arise from the image interaction,
where Eq. �2.24� yields

Iq = �4�B0/kBT�q tan−1�q/2�� , �A3�

so that Iq�q2 for q��. The terms from the image interaction
are negligible at any q in one-phase states, so they will be
omitted hereafter.

Elimination of the ion-density fluctuations yields the com-
position structure factor in the mean-field theory,

kBT

S�q�
= f� − �rion + Cq2�1 −

�p
2�2

�2 + q2� , �A4�

where � is the Debye-Hückel wave number and �rion is the
ion-induced shift,

�rion = kBT�Z2g1 + Z1g2�2n/�Z1 + Z2�2. �A5�

The shift becomes significant for large gi even for small n
=n1+n2. This is consistent with the experimental fact that
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even a small amount of salt greatly shifts the liquid-liquid
coexistence curve �44–47�. The dimensionless parameter �p
represents the asymmetry of the solvation in the two compo-
nents,

�p = 
g1 − g2
�kBT/4�C�B�1/2/�Z1 + Z2�

= 
g1 − g2
/�4�Z1 + Z2���A� , �A6�

where we have used Eqs. �2.18� and �3.3� in the second line.
For �p
1, S�q� is maximum at an intermediate wave num-
ber and formation of a mesoscopic phase can be predicted
below the transition point �32,33,39�. For �p�1, S�q� is
maximum at q=0 and the usual critical point still exists.

We may also eliminate the critical fluctuations in F by
setting �f�+Cq2��q=kBT�i=1,2giniq. The resultant free en-
ergy Fion for the ions only is expressed in the real space as

Fion = kBT� dr�
i

ni�ln�v0ni� − 1� +
1

2
� dr� dr�

��
i,j

Vij�
r − r�
�ni�r�nj�r�� , �A7�

where the first entropic terms are not expanded with respect
to the ion-density deviations and Vij�r� are the interaction
potentials,

Vij�r� = QiQj
1

�cr
−

�kBT�2

4�C
gigj

e−r/�

r
, �A8�

with Q1=Z1e and Q2=−Z2e. The second term in Eq. �A8� is
the effective interaction mediated by the critical fluctuations.
Among the ions of the same species �i= j� it is attractive and
dominates over the first Coulomb repulsive term in the inter-
mediate range a!r!� if

gi
2 
 4�CZi

2e2/�c�kBT�2 � 4�Zi
2�Bc/a . �A9�

Under the above strong solvation condition, there should be
a tendency of aggregation even among ions of the same spe-
cies. This effect might explain a number of observations of
microheterogeneities in near-critical binary mixtures contain-
ing salt �47�.

APPENDIX B: IMAGE POTENTIAL
AND GENERALIZATION

�i� First, let two fluid phases � and � with dielectric con-
stants �� and �� be separated by a planar interface with the
phase � in the region z�0. Here ��
�� and the thin inter-
face limit is taken. We place an ion with charge Q at a posi-
tion r0= �x0 ,y0 ,z0� in the phase � �z0�0�. The resultant elec-
tric potential " should satisfy the surface condition,

��"��− 0� = ��"��+ 0� , �B1�

where "�=d" /dz. Then, " in the phase � �z�0� is written
as �49�

"�r,r0� =
Q

��
r − r0

+

�� − ��

�� + ��

Q

��
r − r̄0

, �B2�

where r̄0= �x0 ,y0 ,−z0� is the image position in the phase �.
The second term is produced by the polarization of the di-

electric medium. As r→r0, it follows the repulsive potential
of the ion dependent on z0��0�,

���z0� =
�� − ��

2��� + �����

Q2


z0

, �B3�

which tends to Q2 /4��
z0
 in the case �����. For the elec-
trolyte, Onsager and Samaras �25� argued that the other ions
give rise to a decaying factor exp�−2�
z0
�, where � is the
Debye-Hückel wave number in the bulk phase � and the
image potential should be changed to

���z0� =
�� − ��

2��� + �����

Q2


z0

e−2�
z0
. �B4�

�ii� Second, we place a charge in the less polar phase
� �z0
0�. This situation is relevant when there are appre-
ciable ions in the phase � or for not very small ion reduction
factor in Eq. �4.10�. Exchange of � and � in Eq. �B4� gives
the image potential in the phase �,

���z0� = −
�� − ��

2��� + �����

Q2

z0
, �B5�

which is attractive to the interface and tends to −Q2 /4��z0 in
the case �����. The coefficient in Eq. �B5� is larger than
that in Eq. �B4� by the factor �� /��, which can be very large.
However, Eq. �B5� should be much reduced in the presence
of a solvation shell composed of polar molecules of the spe-
cies A �12–14�. See the discussion below Eq. �2.20� for the
background of this picture. In electrostatics �49�, a polar
spherical layer enclosing a charge weakens the electric field
acting on the charge by the factor 3�� / �2��+�A� �, leading to

���z0� = −
�� − ��

2��� + �����

3��

2�� + �A�

Q2

z0
, �B6�

where �A� ���A� is the effective dielectric constant in the
layer. The coefficient in Eq. �B6� is of the same order as that
in Eq. �B3� in the case ����A� ��A���.

�iii� Third, we should recognize that an image potential
�I arises generally when the dielectric constant � varies in
space. We demonstrate it near the critical point, where the
deviation ��=�−�c from its critical value �c is small. Ne-
glecting the boundary effect, we solve � ·��"=−4�Q��r
−r0� in powers of ��. The deviation �"="−Q /�c
r−r0

reads

�"�r,r0� =
Q

4��c
2 � dr�

�����r��

r − r�


· ��
1


r� − r0

�B7�

to linear order in ��. Taking the limit r→r0, we find the
image potential,

�I�r0� =
Q2

8��c
2 � dr������r�� · ��

1


r� − r0
2
. �B8�

In particular, if a planar interface with thickness � is located
at z�0, ��z� depends only on z and the integrations over x�
and y� are performed to give
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�I�z0� =
Q2

4�c
2 � dz�

1

z0 − z�

d

dz�
���z�� , �B9�

where we use �dx�dy�x2+y2+z2�−2=� /z2. For 
z0
��, the
above expression becomes

�I�z0� = −
�� − ��

4�c
2

Q2

z0
, �B10�

which is applicable both in phases � and �. In the electro-
lyte, the two functions in Eq. �B7�, 1 / 
r�−r
 and 1/ 
r�−r0
,
should be replaced by e−�
r�−r
 / 
r�−r
 and e−�
r�−r0
 / 
r�−r0
,
respectively, resulting in Eq. �3.7�. See the discussion on the
choice of � below Eq. �3.7�.

In passing, we note that the electric potential in a finite
system can be expressed in terms of the Green’s function
satisfying �2G�r ,r��=−4���r−r�� under the given boundary
conditions. At fixed surface charges, its derivative with re-
spect to z vanishes at z=0 and L in the geometry of Fig. 1,
where G�r ,r��=G�z ,z� ,s� with s= �x−x� ,y−y��. Its Fourier
transformation Gk�z ,z��=�dsG�z ,z� ,s�eik·s is calculated as

Gk�z,z�� =
2�

k
e−k
z−z�
 +

4�

k��2 − 1�
�cosh�k�z − z���

+ � cosh�k�z + z� − L��� , �B11�

where �=ekL. It is obvious that 1 / 
r�−r0
2 in Eq. �B8� should
be replaced by G�r� ,r0�2.

APPENDIX C: DIMENSIONLESS EQUATIONS

We write down the dimensionless equilibrium equations
in one-dimensional cases. Here, the z coordinate is measured
in units of a. Using Eq. �2.14�, we rewrite Eq. �2.27� as

v0h

kBT
= ln�1 + 2�

1 − 2�
� − 2�� − ��� −

�̂1

32A
U�2 − �g1c1 + g2c2�

+ A�̂1Îc . �C1�

For Z1=Z2=1, Eq. �2.30� becomes

c1 = c1
0 exp�g1� − U − A�̂1Î�� ,

c2 = c2
0 exp�g2� + U − A�̂1Î�� , �C2�

where �̂1=�1 /�c, A is defined by Eq. �3.3�, ��=d2� /dz2, and
U�=dU /dz. The v0h /kBT, c1

0, and c2
0 are constants in equi-

librium. Here, Î is the linear operator arising from the image
interaction

�Î���z� =� dz�

�

e−2�a
z−z�


z − z�

d��z��
dz�

. �C3�

From Eq. �2.4�, we obtain the equation for U,

−
d

dz
�1 + �̂1��

d

dz
U = 16A�c1 − c2� . �C4�
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