
Dynamics of an active magnetic particle in a rotating magnetic field

A. Cēbers*
Institute of Physics, University of Latvia, Salaspils-1, LV-2169, Latvia

M. Ozols
University of Latvia, Zellu-8, Riga, Latvia

�Received 5 September 2005; revised manuscript received 21 October 2005; published 8 February 2006�

The motion of an active �self-propelling� particle with a permanent magnetic moment under the action of a
rotating magnetic field is considered. We show that below a critical frequency of the external field the trajec-
tory of a particle is a circle. For frequencies slightly above the critical point the particle moves on an approxi-
mately circular trajectory and from time to time jumps to another region of space. Symmetry of the particle
trajectory depends on the commensurability of the field period and the period of the orientational motion of the
particle. We also show how our results can be used to study the properties of naturally occurring active
magnetic particles, so-called magnetotactic bacteria.
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Active systems interacting with electromagnetic fields are
interesting from different points of view �1,2�. The pumping
of liquid without force due to the negative viscosity effect of
dielectric suspensions �3�, the flexible magnetic filaments in-
teracting with an ac magnetic field �4,5�, and their self-
propulsion in liquid �6,7� may also be mentioned here among
other examples. Active magnetic systems also exist in
nature—the magnetotactic bacteria have a biochemical ma-
chinery allowing them to produce ferromagnetic particles in-
side their bodies and use the particles to orientate in the
magnetic field of the Earth �8,9�.

Active magnetic systems have very interesting properties
which have not been completely investigated yet. In this pa-
per we consider an active particle with a permanent magnetic
dipole under the action of a rotating magnetic field. The
study of the behavior of magnetic particles in a rotating mag-
netic field has a rather long history �see, for example, Ref.
�10� for further references�. Among the most recent develop-
ments in this field we can mention Ref. �11�, where the mo-
tion of an anisotropic particle in the rotating optical field is
investigated. Several regimes of the particle motion in a ro-
tating magnetic field are established—synchronous motion at
frequencies below the critical and back and forth motion at
frequencies above it �12�. Interesting features occur in the
behavior of flexible magnetic particles under the action of
the rotating field �13,14�. In spite of this long-standing inter-
est in the behavior of different particles in ac magnetic fields,
active particles �self-propelled in a liquid� have never been
properly investigated. An indication that a lot of interesting
things can take place in this case can be found in the paper
�15�, where from the figures one can see that at the frequen-
cies above the critical frequency the character of magneto-
tactic bacteria motion changes drastically. Instead of motion
along the circles which occurs if the frequency is low
enough, the bacteria starts to jump between the circles of a
smaller radius at higher frequencies. Such a regime of the

particle motion has never been studied before. Here we
present a simple model of the behavior of an active particle
with a permanent magnetic moment in a rotating magnetic
field. It turns out that a simple combination of active prop-
erties of a particle with its capability to orientate along the
applied field leads to rather rich behavior which has interest-
ing possibilities for different practical applications among
which the determination of the physical properties of the
magnetotactic bacteria should be mentioned.

Let us introduce our model. The magnetic particle, due to
its self-propulsion, moves with velocity v in the direction of
its magnetic moment �this mechanism is used by magneto-
tactic bacteria for their survival in the environment �8,9,16��.
Keeping in mind magnetotactic bacteria, as the example, we
do not consider the possibility of their tumbling �17�. Al-
though some of them have only one flagella, nevertheless
there are exceptions �18�. Influence of tumbling on the mo-
tion of magnetotactic bacteria remains an interesting issue to
study in the future. Besides this the active particle is approxi-
mated by an axisymmetric body. It should be noted that heli-
coidal trajectories are observed for some magnetotactic bac-
teria due to their nonaxisymmetry �18�. Its influence on
motion of bacteria in the rotating field is an interesting issue
to study in the future also. The coupling of the translational
and rotational degrees of freedom of the bacteria are essen-
tial, for example, in their motion near solid walls �19�.

The magnetic moment orientates along the applied field
H. The kinetics of orientation is determined by the torque
balance acting on the particle,

− �
d�

dt
+ MH sin � = 0. �1�

Here M is the dipole moment of the particle, � is the rota-
tional friction coefficient, � is the particle orientation angle
with respect to some fixed direction, which we take to be the
x axis, and � is the angle between the magnetic field and
magnetic moment of the particle. Influence of the thermal
fluctuations on the orientational dynamics of the particle is*Electronic address: aceb@tesla.sal.lv
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neglected. Keeping in mind the magnetotactic bacteria as
active magnetic particles, it is justified by the large values of
their Langevin parameter already in the small magnetic fields
�16,20�.

In the case of a rotating field �=�t−� and the equations
of the particle motion are as follows:

dx

dt
= v cos � , �2�

dy

dt
= v sin � , �3�

− �
d�

dt
+ MH sin��t − �� = 0. �4�

Equation �4� can be put in the form

d�

dt
= � − �c sin � . �5�

Here,

�c = MH/� . �6�

Equation �5� has a stationary solution �=�0 at �
��c : sin �0=� /�c. If ���c then the particle cannot rotate
synchronously with the applied field and angle � is a peri-
odic function of time. A simple integration gives ��=�c /�
	1�,

� = 2 arctan�� + �1 − �2 tan��1 − �2��t − t0�/2�� . �7�

Since the time moment t0 can be chosen arbitrarily, we will
choose it to be zero.

Since the speed of the particle is constant its trajectory has
simple geometrical properties. Introducing tangent t� and nor-
mal n� of the trajectory, which are connected by the Frenet
formula dt�/dl=−kn� , where l is the natural parameter of the
trajectory �its contour length� but k is its curvature, we have

d�vt� �
dt

= − v2kn� �8�

and as a result

k =
1

v
�� −

d�

dt
	 . �9�

In a synchronous regime when d� /dt=0 we have k=� /v. It
means that the trajectory of a particle is a circle with a radius
which diminishes with the frequency of the rotating field. In
a nonsynchronous regime we obtain k=�c sin � /v. This
means that the trajectory consists of stages with alternately
changing direction of curvature. If �� ��2n�
; �2n+1�
�
then the curvature is positive �k�0�, but if �� ��2n+1�
;
�2n+2�
� then the curvature is negative �k	0�, where n
=0,1,…. Switching from one type of motion to another takes
place at time moments when sin �=0. If �	1 is close to 1
the trajectory of a particle looks like motion along many
circles with fast switching between them as may be seen
from the plot of the dimensionless curvature sin � �as it de-

pends on time�, which is shown in Fig. 1. There are photos in
this paper �15� that can serve as evidence that this type of
active particle motion indeed takes place. Thus for a long
period of time the trajectory of the particle has an almost
constant curvature and only during fast jumps from one
circle to another does the curvature change significantly and
becomes negative.

It is possible to find some characteristics of this motion. A
winding number Wn gives the change of the particle phase �
per period of its orientational motion. It reads

Wn =
��

2

=

�

2




0

2
 sin �d�

1 − � sin �
. �10�

A simple integration gives

Wn =
1

�1 − �2
− 1. �11�

Dependence of Wn on � is shown in Fig. 2. We see that a
particle at the rotating field frequency close to the critical
frequency makes a lot of turns before switching to the next
circular trajectory. For � values less than �3/2�0.866 the
Wn number is less than 1 and the particle does not make a
full turn before switching to another part of space. Charac-
teristic trajectories of the particle motion are illustrated in
Fig. 3 for several values of the parameter � : �1−�2= p /q
�q=25; p=2, 3, 4, 6, and 7�. We see that the numerator in the
ratio p /q, if p and q do not have a common divider, defines
the number of the parts of space which the particle visits

FIG. 1. Curvature of trajectory in dependence on time.
�=0.99.

FIG. 2. Winding number in dependence on �=�c /�.
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during its periodical regime of motion. In the case when the
numerator is equal to 1 the trajectory of the particle on av-
erage is a straight line �Fig. 4 �q=25; p=1,5�� and the wind-
ing number Wn is equal to q−1, as it should be.

It is easy to see that the type of particle motion depends
on the commensurability of the field period 2
 /� and the
period of the orientational motion T1= �2
 /�� /�1−�2. This
gives the condition of the periodicity: �1−�2= p /q is ratio-
nal. Examples of periodical trajectories which correspond to
q=25 and different p are shown in Fig. 3. In the case when
the periods are not commensurable, the trajectory covers the
accessible space region densely. Two close values of the pa-
rameter �1−�2 �p /q=�7/4 and p /q=2/3� are illustrated in
Fig. 5.

The distance Lf between the end points of the part of
trajectory with k	0, which characterizes the distance be-
tween the regions of space explored by a particle, can be
calculated by numerically integrating the equations of mo-
tion �2� and �3�. Lf in the units of v /�c—the radius of a
circle at a critical frequency—is shown in Fig. 6. We see that

at frequencies close to the critical frequency �c the distance
between two regions of the circular motion of the particle is
about the diameter of the circle. Less trivial and more inter-
esting is the dependence of the radius of circle R, which
encloses the region of space visited by an active particle, on
�c /�. From Fig. 3 and Fig. 4 it is clear that it should be
nonmonotonous. 1 /R in dependence on winding number Wn

FIG. 3. Trajectories of the particle for �1−�2=7/25 �1�; 6 /25
�2�; 4 /25 �3�; 3 /25 �4�; 2 /25 �5�.

FIG. 4. Trajectories of the particle for �1−�2=5/25 �1�; 1 /25
�2�.

FIG. 5. Trajectories of the particle for an incommensurable
�p /q=�7/4 �1�� and commensurable �p /q=2/3 �2�� ratio of
frequencies.

FIG. 6. Length of particle jumps in dependence on �=�c /�.
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is shown in Fig. 7. It should be noted that the resulting par-
ticle circulation inside the enclosing circle can be both clock-
wise and counterclockwise in dependence on Wn. The direc-
tion of the circulation is undefined if the particle goes
through the center of the explored region �see Fig. 8, Wn
=6.5538�. This takes place when the center coincides with
the position of the particle at the time moments �

+arccos �� /�1−�2+ iT1 �i is a natural number�. The distance
�r between the starting and final points of the particle tra-
jectory for the period of its orientational motion in depen-
dence on the winding number is shown in Fig. 9. For wind-
ing number values close to the critical �when trajectory goes
through the center� very fast circulation around the center
can be observed. From Fig. 9 one can see that the critical
values of the winding number are slightly above k+1/2,
where k is a natural number. Numerical calculations show
that Wn− �k+1/2� is close to 0.0538 for large k. One can set
Wn=n / �2n+1� which is always less than 1/2 and ap-
proaches it as n increases. For such a winding number, cir-

culation will be very fast and the particle will make n �the
numerator of Wn� turn around the center of the trajectory
until returning to the starting point. When Wn=k+n / �2n
+1�, where k is a natural number, the particle makes k small
turns in each symmetric piece of trajectory �in addition to the
fast circulation�.

The amount of available experimental data on motion of
active particles in the rotating field is very scarce. The only
data available to us are given in Ref. �15� where the photos
of the magnetotactic bacteria trajectory for the two frequen-
cies of the rotating field 0.1 Hz and 0.4 Hz are shown. In the
first case the trajectory of the bacteria is a circle, while in the
second case the jumps between the circles of the smaller
radius can be seen. From the radius of circle R0.1
�29.7 �m and the rotating field frequency, the velocity of
the bacteria according to the relation �9� can be determined
v=�R0.1�18.7 �m/s. This is a reasonable value for the
swimming velocity of the magnetotactic bacteria �16�. A ra-
tio of radii of the circles at 0.1 Hz and 0.4 Hz �R0.4

�9.4 �m� allows one to determine the critical angular fre-
quency of the rotating field: �c=�R0.1 /R0.4�2 Hz. Taking
for the magnetic moment of the magnetotactic bacteria M the
reasonable value 2
10−12 G cm3 �8,16� �let us note that the
magnetic moment of bacteria shown in Fig. 2 of �15� is
10–50 times less than the magnetic moment of magnetobac-
terium bavaricum containing more than 500 magnetosomes,
which were studied by a TEM microscopy in Ref. �15�� the
relation for the critical frequency �6� at the known value of
the magnetic field H=1.6 Oe allows us to determine the ro-
tational drag coefficient � of bacteria 1.6
10−12 erg s. Us-
ing the dependence of the rotational drag coefficient on the
long a and short b axes of the ellipsoidal body with volume
V in the liquid with viscosity � �we take �=1 cP for an
estimate�,

� = 8
�V
a2 + b2

a2n1 + b2n2
, �12�

where n1 and n2 are the depolarization coefficients of ellip-
soid with eccentricity e,

FIG. 7. Curvature of enclosing circle in dependence on winding
number Wn.

FIG. 8. Trajectory of the particle crossing the center of the ex-
plored region. Wn=6.5538.

FIG. 9. Distance between the starting and final positions of the
particle per period of its orientational motion in dependence on the
winding number.
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n1 =
2
�1 − e2�

e3 �ln
1 + e

1 − e
− 2e	 �13�

and

n2 =
1

2
�4
 − n1� . �14�

The value of the critical frequency gives a reasonable value
of the length of the bacteria with b=0.25 �m: 2a=7.7 �m.
The last estimate of the parameters of the effective ellipsoid
is rather illustrative since the shapes of magnetotactic bacte-
ria are not exact ellipsoids and an important contribution to
its rotational drag coefficient also comes from the attached
flagellas. Since the magnetic moments of bacteria can be
determined by magnetic measurements the investigation of
their motion in the rotating field can be used for the deter-

mination of the rotational drag coefficient, which is a rather
difficult problem.

In this paper we have shown that a simple model of an
active magnetic particle under the action of a rotating mag-
netic field can imitate the experimentally observed trajecto-
ries of magnetotactic bacteria. Since it is possible to make
such particles artificially �4,6,7�, rather interesting possibili-
ties of their application for the enhancement of mass transfer
arise. This problem has already attracted the attention of
other researchers �21�.
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