PHYSICAL REVIEW E 73, 021304 (2006)

Transport coefficients for an inelastic gas around uniform shear flow: Linear stability analysis
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The inelastic Boltzmann equation for a granular gas is applied to spatially inhomogeneous states close to
uniform shear flow. A normal solution is obtained via a Chapman-Enskog-like expansion around a local shear
flow distribution. The heat and momentum fluxes are determined to first order in the deviations of the hydro-
dynamic field gradients from their values in the reference state. The corresponding transport coefficients are
determined from a set of coupled linear integral equations which are approximately solved by using a kinetic
model of the Boltzmann equation. The main new ingredient in this expansion is that the reference state /©)
(zeroth-order approximation) retains all the hydrodynamic orders in the shear rate. In addition, since the
collisional cooling cannot be compensated locally for viscous heating, the distribution f©) depends on time
through its dependence on temperature. This means that in general, for a given degree of inelasticity, the
complete nonlinear dependence of the transport coefficients on the shear rate requires analysis of the unsteady
hydrodynamic behavior. To simplify the analysis, the steady-state conditions have been considered here in
order to perform a linear stability analysis of the hydrodynamic equations with respect to the uniform shear

flow state. Conditions for instabilities at long wavelengths are identified and discussed.
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I. INTRODUCTION

The understanding of granular systems still remains a
topic of interest and controversy. Under rapid flow condi-
tions, they can be modeled as a fluid of hard spheres dissi-
pating part of their kinetic energy during collisions. In the
simplest model, the grains are taken to be smooth so that the
inelasticity of collisions is characterized through a constant
coefficient of normal restitution, a<1. Energy dissipation
has profound consequences on the behavior of these systems
since they exhibit a rich phenomenology with many qualita-
tive differences with respect to molecular systems. In par-
ticular, the absence of energy conservation yields subtle
modifications of the conventional Navier-Stokes equations
for states with small gradients of the hydrodynamic fields.
The dependence of the corresponding transport coefficients
on dissipation may be determined from the Boltzmann ki-
netic equation conveniently modified to account for inelastic
binary collisions [1,2]. The idea is to extend the Chapman-
Enskog method [3] to the inelastic case by expanding the
velocity distribution function around the local version of the
homogeneous cooling state: namely, a homogeneous state
whose dependence on time occurs only through the tempera-
ture. In the first order of the expansion, explicit expressions
for the transport coefficients as functions of the coefficient of
restitution have been obtained in the case of a single gas [4]
as well as for granular mixtures [5], showing good agree-
ment the analytical results with those obtained from Monte
Carlo simulations [6].

Although the Chapman-Enskog method can be in prin-
ciple applied to get higher orders in the gradients (Burnett
and super-Burnett corrections, etc.), it is extremely difficult
to evaluate those terms especially for inelastic systems. In
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addition, questions about its convergence remain still open
[7]. This gives rise to the search for alternative approaches to
characterize transport for strongly inhomogeneous situations
(i.e., beyond the Navier-Stokes limit). One possibility is to
expand in small gradients around a more relevant reference
state than the (local) homogeneous cooling state. For ex-
ample, consider states near a shearing reference steady state
such as the so-called uniform (simple) shear flow (USF) [8].
Such an application of the Chapman-Enskog method to a
nonequilibrium state requires some care as recently dis-
cussed in Ref. [9]. The USF state is probably the simplest
flow problem since the only nonzero hydrodynamic gradient
is du,/ dy = a=const, where u is the flow velocity and a is the
constant shear rate. Due to its simplicity, this state has been
widely used in the past for both elastic [7] and inelastic gases
[8] to shed light on the complexities associated with the non-
linear response of the system to the action of strong shear-
ing. However, the nature of this state for granular systems is
different from that of the elastic fluids since the source of
energy due to the macroscopic imposed shear field drives the
granular system into rapid flow and a steady state is achieved
when the amount of energy supplied by shearing work is
balanced by the lost one due to the inelastic collisions be-
tween the particles. As a consequence, in the steady state the
reduced shear rate a” «a/\T (which is the relevant nonequi-
librium parameter of the problem) is not an independent
quantity but becomes a function of the coefficient of restitu-
tion, . This means that the quasielastic limit (¢— 1) natu-
rally implies the limit of small shear rates (a"<1) and vice
versa. The study of the rheological properties of the USF
state has received a great deal of attention in recent years in
the case of monocomponent [10-20] and multicomponent
[21-26] systems.

The aim of this paper is to determine the heat and mo-
mentum fluxes of a gas of inelastic hard spheres under
simple shear flow in the framework of the Boltzmann equa-
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tion. The physical situation is such that the gas is in a state
that deviates from the simple shear flow by small spatial
gradients. The starting point of this study is a recent approxi-
mate solution of the Boltzmann equation which is based on
Grad’s method [22,23,27]. In spite of this approach, the rel-
evant transport properties obtained from this solution com-
pare quite well with Monte Carlo simulations even for strong
dissipation [18,22,28], showing again the reliability of
Grad’s approximation to compute the lowest-velocity mo-
ments of the velocity distribution function. Since the system
is slightly perturbed from the USF, the Boltzmann equation
is solved by applying the Chapman-Enskog method around
the (local) shear flow state rather than the (local) homoge-
neous cooling state. This is the main feature of this expan-
sion since the reference state is not restricted to small values
of the shear rate. One important point is that, for general
small deviations from the shear flow state, the zeroth-order
distribution is not a stationary distribution since the colli-
sional cooling cannot be compensated locally for viscous
heating. This fact gives rise to conceptual and practical dif-
ficulties not present in the previous analysis made for elastic
gases to describe transport in thermostatted shear flow states
[29]. Due to the difficulties involved in this expansion, here
general results will be restricted to particular perturbations
for which steady-state conditions apply. In the first order of
the expansion, the generalized transport coefficients are
given in terms of the solutions of linear integral equations.
To get explicit expressions for these coefficients, one needs
to know the fourth-degree moments of USF. This requires us
to consider higher-order terms in Grad’s approximation for
the reference distribution function, which is quite an intricate
problem. In order to overcome such difficulty, here I have
used a convenient kinetic model [31] that preserves the es-
sential properties of the inelastic Boltzmann equation but
admits a more practical analysis. The mathematical and
physical basis for this model as a good representation of the
Boltzmann equation has been discussed in Ref. [31]. In par-
ticular, it is worth noting that the results derived from this
model coincide with those given from the Boltzmann equa-
tion at the level of the rheological properties [18,31]. Fur-
thermore, recent computer simulation results [28] have also
shown good agreement between the kinetic model and the
Boltzmann equation for the fourth-degree moments, covering
this agreement a wide range of values of dissipation (say, for
instance, @=0.5). This good agreement extends that previ-
ously demonstrated for Couette flow in dilute gases [30] and
for USF in dense systems [20] and shows the reliability of
the kinetic model to capture the main trends of the Boltz-
mann equation, especially those related to transport proper-
ties.

Knowledge of the above generalized transport coefficients
allows one to determine the hydrodynamic modes from the
associated linearized hydrodynamic equations. This is quite
an interesting problem widely analyzed in the literature. As
noted by the different molecular dynamics experiments car-
ried out for the USF problem [16,25,32], the development of
inhomogeneities and formation of clusters as the flow
progresses becomes apparent. Consequently, the USF state is
unstable for long enough wavelength spatial perturbations. In
order to understand this phenomenon, several stability analy-
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ses have been undertaken [33-37]. Most of them are based
on Navier-Stokes equations [33-35] and, therefore, they are
limited to small velocity gradients, which for the USF prob-
lem means small dissipation. Another alternative has been to
solve the Boltzmann equation by means of an expansion in a
set of basis functions [36,37]. The coefficients of this expan-
sion are then determined by using also an expansion in pow-
ers of the parameter e= V1-a2, which is assumed to be
small. All these analytical results have shown that the USF
becomes unstable for certain kinds of disturbances. My ap-
proach is different from previous works since the conditions
for stability are obtained from a linear stability analysis in-
volving the transport coefficients of the perturbed USF state
instead of the usual Navier-Stokes coefficients. Furthermore,
the analysis is not restricted to the low-dissipation limit since
the reference state goes beyond this range of values of a.
Two different perturbations to the reference state have been
considered here: (i) perturbations along the velocity gradient
(y direction) only and (ii) perturbations along the vorticity
direction (z direction) only. The results show that the USF is
linearly stable in the first case while it becomes unstable in
the second case. These results agree qualitatively with those
previously derived [33,35] in the context of the Navier-
Stokes description. On the other hand, at a quantitative level,
the comparison carried out here shows significant differences
between the Navier-Stokes description and the present re-
sults as the collisions become more inelastic. In addition, our
results also confirm that the instability is confined to long
wavelengths (small wave numbers) and so it can be avoided
for small enough systems.

The plan of the paper is as follows. In Sec. II, the Boltz-
mann kinetic equation is introduced and a brief summary of
relevant results concerning the USF problem is given. In Sec.
I, the problem we are interested in is described and the set
of generalized transport coefficients characterizing the trans-
port around USF is defined. Explicit expressions for these
coefficients are provided in Sec. IV by using a kinetic model
of the Boltzmann equation. The details of the calculations are
displayed along several Appendixes. Section V is devoted to
the linear stability analysis around the steady USF state and
presents the form of the hydrodynamic modes. The paper is
closed in Sec. VI with a discussion of the results obtained
here.

II. BOLTZMANN KINETIC EQUATION AND UNIFORM
SHEAR FLOW

Let us consider a granular gas composed by smooth
spheres of mass m and diameter o. The inelasticity of colli-
sions among all pairs is accounted for by a constant coeffi-
cient of restitution 0<a=1 that only affects the transla-
tional degrees of freedom of grains. At low density, a
simultaneous interaction of more than two particles is highly
unlikely and so can be neglected. Consequently, in a dilute
gas the interactions among the particles reduces to a succes-
sion of binary collisions. In a kinetic theory description all
the relevant information on the state of the system is given
by the one-particle velocity distribution function f(r,v,).
For an inelastic dilute gas, the Boltzmann equation [1,2]
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gives the time evolution of f(r,v,7). In the absence of an
external force, it has the form

(g +v- v) f(r,v,1) = JIv|f(0), £(D)], (1)

where the Boltzmann collision operator is
f.fl=0 f defdfr@(&' g2)(o-g)

X [a"zf(r,vi)f(r,vé,t) —f(l',Vl,t)f(r,Vz,t)].
2)

Here, & is a unit vector along their line of centers, © is the
Heaviside step function, and g=v,;—V, is the relative veloc-
ity. The primes on the velocities denote the initial values
{v{,v}} that lead to {v,,v,} following a binary collision:

Jv,

! 1 — A ~ ! 1 — A A
Vi=v - E(l +a)(6-g)b, Vi=v,+ E(l +a )6 g)0.

3)

The first five velocity moments of f define the number den-
sity

n(r,1) = f dvf(r,v,1), 4)
the flow velocity
1
u(r,f)=—— f dvvf(r,v,1), (5)
n(r,t)
and the granular temperature
m 2
T(r,1) = dvVi(r,0)f(r,v,1), (6)
3n(r,1)

where V(r,f)=v—u(r,s) is the peculiar velocity. The mac-
roscopic balance equations for density n, momentum mu,
and energy %nT follow directly from Eq. (1) by multiplying
with 1, mv, and %mv2 and integrating over v:

Dn+nV -u=0, (7)
Du;+ (mn)_lePij =0, ®)

2
DI+ (V- ar PN )=t O

where D,=d,+u-V. The microscopic expressions for the
pressure tensor P, the heat flux q, and the cooling rate { are
given, respectively, by

P(r,1) = J dvmVVf(r,v,1), (10)

q(r,0) = J dv%mszf(r,V,t), (11)

(r,t)=— ! D f dvmV2I[r,v|f(1)].  (12)

3n(r,n)T(r,
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We assume that the gas is under uniform (or simple) shear
flow (USF). This idealized macroscopic state is characterized
by a constant density, a uniform temperature, and a simple
shear with the local velocity field given by

M[=a,-jrj,

ix9jy»

where a is the constant shear rate. This linear velocity profile
assumes no boundary layer near the walls and is generated
by the Lee-Edwards boundary conditions [38], which are
simply periodic boundary conditions in the local Lagrangian
frame moving with the flow velocity. For elastic gases, the
temperature grows in time due to viscous heating and so a
steady state is not possible unless an external (artificial) force
is introduced [7]. However, for inelastic gases, the tempera-
ture changes in time due to the competition between two
(opposite) mechanisms: on the one hand, viscous (shear)
heating and, on the other hand, energy dissipation in colli-
sions. A steady state is achieved when both mechanisms can-
cel each other and the fluid autonomously seeks the tempera-
ture at which the above balance occurs. Under these
conditions, in the steady state the balance equation (9) be-
comes

3
ECP, (14)

aP,,=-
where p=nT is the hydrostatic pressure. Note that for given
values of the shear rate a and the coefficient of restitution «,
relation (14) gives the temperature T in the steady state as a
unique function of the density n.

The USF problem is perhaps the nonequilibrium state
most widely studied in the past few years both for granular
and conventional gases [7,8]. At a microscopic level, it be-
comes spatially homogeneous when the velocities of the par-
ticles are referred to the Lagrangian frame of reference co-
moving with the flow velocity u [39]. Therefore, the one-
particle distribution function adopts the uniform form
f(r,v)—f(V) and the Boltzmann equation (1) reads

aV, = V) = JIVIf A, (15)

This equation is invariant under the transformations

VZ = Vz’ (Vx7v ) e (Vx, ‘/})a (Vx’a) - (_ Vx,_ a)-

(16)

The elements of the pressure tensor provide information
on the relevant transport properties of the USF problem.
These elements can be obtained by multiplying the Boltz-
mann equation (15) by mV,V; and integrating over V. The
result is

The exact expression of the collision integral A;; is not
known, even in the elastic case. However, a good estimate
can be expected by using Grad’s approximation:
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£V) Hfo(V){l + 2%(;1 - @j) v,-vj], (18)

where
Fo(V) = n(m/2wT)*? exp(- mV?/2T) (19)

is the local equilibrium distribution function. When Eq. (18)

is substituted into the definition of A;; and nonlinear terms in

Pl-j/nT— é}j are neglected, one gets [23]
A== [B(P;—pd;) + f*Pij], (20)

V(T)ZE}'ZO'ZN/W_T (21)
5 m

is an effective collision frequency,

where

=—(1-a) (22)

is the dimensionless cooling rate evaluated in the local equi-
librium approximation, and

1+« l-«a
A== (“T)~ 23)

The set of coupled equations for P;; can now be easily solved

when one takes into account the approach (20). The expres-
sions for the reduced elements P:-;:P,- i/ p are

Pam3=20n Po=Pumg o0 D= g

(24)

where the (reduced) shear rate a“=a/v is given by

a _\/2[3([3+§). (25)

Expression (25) clearly indicates the intrinsic connection be-
tween the (reduced) velocity gradient and dissipation in the
system. In fact, in the elastic limit (=1, which implies a"
=0), the equilibrium results of the ordinary gas are
recovered—i.e., P;:&ij. This means that @ (or a”) can be
considered as the relevant nonequilibrium parameter of the
problem. The analytical results given by Egs. (24) and (25)
agree quite well [22,27] with Monte Carlo simulations of the
Boltzmann equation [22,28], even for strong dissipation.

III. SMALL PERTURBATIONS FROM UNIFORM SHEAR
FLOW: TRANSPORT COEFFICIENTS

In general, the USF state can be disturbed by small spatial
perturbations. The response of the system to these perturba-
tions gives rise to additional contributions to the momentum
and heat fluxes, which can be characterized by generalized
transport coefficients. This section is devoted to the study of
such small perturbations.

In order to analyze this problem we have to start from the
Boltzmann equation with a general time and space depen-
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dence. Let ug=a-r be the flow velocity of the undisturbed
USF state. Here, the only nonzero element of the tensor a is
aij:aﬁixc?jy. In the disturbed state, however, the true velocity
u is in general different from u, since u=uy+ du, du being a
small perturbation to u,. As a consequence, the true peculiar
velocity is now c=v—-u=V-du, where V=v—u,. In the La-
grangian frame moving with u,, the Boltzmann equation can
be written as

7 d
E‘f—aVya—fo+ (V+uy) - Vf=J[V

1., (26)

where here the derivative Vf is taken at constant V. The
corresponding macroscopic balance equations associated
with this disturbed USF state follow from the general equa-
tions (7)-(9) when one takes into account that u=ug,+ Su.
The result is

dn+uy-Vn=-V-(ndu), (27)

dou+a-du+(uy+du)-Véu=—(mn)"'V -P, (28)

3 3 3
Eno”,T+ En(uo +ou)-VT+aP,,+V-q+P:Vou=- Epg“,

(29)

where the pressure tensor P, the heat flux q, and the cooling
rate { are defined by Egs. (10), (11), and (12), respectively,
with the replacement V—c.

We assume now that the deviations from the USF state are
small, which means that the spatial gradients of the hydro-
dynamic fields,

A(r,t) ={n(r,1),T(r,1), ou(r,1)}, (30)

are small. Under these conditions, a solution to the Boltz-
mann equation (26) can be obtained by means of a generali-
zation of the conventional Chapman-Enskog method [3]
where the velocity distribution function is expanded about a
local shear flow reference state in terms of the small spatial
gradients of the hydrodynamic fields relative to those of
USE. This type of Chapman-Enskog-like expansion has been
considered in the case of elastic gases to get the set of shear-
rate-dependent transport coefficients [7,29] in a thermostat-
ted shear flow problem, and it has also been recently consid-
ered [9] in the context of inelastic gases.

To construct the Chapman-Enskog expansion let us look
for a normal solution of the form

fe,V.0) = f(A(r,0),V). €2V

This special solution expresses the fact that the space depen-
dence of the reference shear flow is completely absorbed in
the relative velocity V and all other space and time depen-
dence occurs entirely through a functional dependence on the
fields A(r,z). The functional dependence can be made local
by an expansion of the distribution function in powers of the
hydrodynamic gradients:

@, V.0 =fOAr,0, V) + fAX,), V) + -, (32)

where the reference zeroth-order distribution function corre-
sponds to the USF distribution function but taking into ac-
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count the local dependence of the density and temperature
and the change V—V—4u(r,?) [see Egs. (D3) and (D4) for
the explicit form of A” in the steady state given by a kinetic
model of the Boltzmann equation]. The successive approxi-
mations f“‘) are of order & in the gradients of n, T, and du but
retain all the orders in the shear rate a. This is the main
feature of this expansion. In this paper, only the first-order
approximation will be considered. More details on this
Chapman-Enskog-like type of expansion can be found in
Ref. [9].

The expansion (32) yields the corresponding expansion
for the fluxes and the cooling rate when one substitutes Eq.
(32) into their definitions (10)—(12):

P=pPOpM 4 . q=q(0)+q(l)+ .
(={0+V+ . (33)

Finally, as in the usual Chapman-Enskog method, the time
derivative is also expanded as

G=d0+ V4 ¢ -, (34)

where the action of each operator &ik) is obtained from the
hydrodynamic equations (27)—(29). These results provide the
basis for generating the Chapman-Enskog solution to the in-
elastic Boltzmann equation (26).

A. Zeroth-order approximation

Substituting the expansions (32) and (34) into Eq. (26),
the kinetic equation for A% is given by

d
4010 ~av, O = JVIFO. 1. (35)

To lowest order in the expansion the conservation laws give

2
4% =0, T=- 3—aP§j3? -1¢°, (36)
n )
050)5u[+aij5uj=0. (37)

As said before, for given values of a and «, the steady-state
condition (14) establishes a mapping between the density
and temperature so that every density corresponds to one and
only one temperature. Since the density n(r,t) and tempera-
ture T(r,t) are specified separately in the local USF state, the
viscous heating only partially compensates for the collisional
cooling and so 07( T+# 0. Consequently, the zeroth-order dis-
tribution £ depends on time through its dependence on the
temperature. Because of the steady-state condition, Eq. (14)
does not apply in general locally, the reduced shear rate a”
=a/v(n,T) depends on space and time so that ¢* and o must
be considered as independent parameters for general infini-
tesimal perturbations around the USF state. Since f1” is a
normal solution, then
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dJd

dOT +
T ' ddu;

2 J J
=—|=aP¥+T °>)— )~ a;6u;——f©
(3na x Pl i Géu;

2 J J
=— (—aP)(g) + T§(0)>a_7_f<0) + aij&tjgf(o), (38)

3n

(9(0) f{O

where in the last step we have taken into account that f©)
depends on du only through the peculiar velocity ¢. Substi-
tuting Eq. (38) into Eq. (35) yields the following kinetic
equation for

2 J
- (—ang,)+ T§(0)> gﬂo)—ac — 0)—J[V|f(0) JOT.

3n
(39)

The zeroth-order solution leads to q®=0. On the other hand,
to solve Eq. (39) one needs to know the temperature depen-
dence of the zeroth momentum flux P . A closed set of
equations for P is obtained when one considers Grad’s
approximation (18):

2 J
- (3—aP§f;’ + Tg“”)&—TPg?) +ay P +a;PYY)

=—[B(PY) - ps,) + P, (40)

where
{="—=—(1-2a). (41)

The steady-state solution of Eq. (40) is given by Eqs. (24)
and (25). However, in general Egs. (40) must be solved nu-
merlcally to get the dependence of the zeroth-order pressure
tensor P, 0)(T) on temperature. A detailed study of the un-
steady hydrodynarmc solution of Eq. (40) has been carried
out in Ref. [27]. In what follows, Pl(.;.) (T) will be considered
as a known function of 7.

B. First-order approximation

The analysis to first order in the gradients is worked out in
Appendix A. Only the final results are presented in this sec-
tion. The distribution function f!) is of the form

V=X, -Vn+X; - VT+X,:Véu, (42)
where the vectors X, and X; and the tensor X,, are functions

of the true peculiar velocity ¢. They are the solutions of the
following linear integral equations:
:|Xn,i
T| 2a

+—{—(1-nan)ng)-50>]xT,.=Yn,., (43)
n|3p g ’ ’

2 ]
- (—aP)(CO,) + T§(0)>6’T+ ac,— - L
3n ¥ Y dc,
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2 3
- (—aP§°> + Tg“))) + —T(aTP(O)) +=0
3n v 2
vac, X, =y (44)
acy, o Ti=TYri>

X

2 J
- {(3—’1611);‘;) + Tg“)))aT +ac,” - E}XMM — a8y X, .
X

- gu,ka&Tf(O) = Yu,k(v (45)

where Y,(c), Yy(c), and Y,(c) are defined by Egs. (A9),
(A10), and (A11), respectively, and {, ;¢ is defined by Eq.
(A14). While the Y functions are given in terms of the ref-
erence state distribution £, Luxe 1s a functional of the un-
known X, ;¢. In addition, £ is the linearized Boltzmann col-
lision operator around the reference state:

£X = - U9, x1+ Jx,£9)). (46)

A good estimate of , ;¢ can be obtained by expanding X, ;¢
in a complete set of polynomials (for instance, Sonine poly-
nomials) and then truncating the series after the first few
terms. In practice, the leading term in these expansions pro-
vides a very accurate result over a wide range of dissipation.
This contribution is obtained in Appendix B and is given by
Eq. (B9).

With the distribution function f{!) determined by Eq. (42),
the first-order corrections to the fluxes are

dou
P(l) =— 7. —k’ 47
ij Tijie 07}"( ( )
&T on
m__ = 48
qi z] arj Ml] 0rj ’ ( )
where
ijke =~ f demeiciX, ge(c), (49)
m
Kij: - f chCZCiXT,j(c)9 (50)
m
Mij =~ f dc;czc,-xn,j(c). (51)

Upon writing Egs. (47)—(51) use has been made of the sym-
metry properties of X, ;, X7;, and X, ;. In general, the set of
generalized transport coefficients 7,4, ;j, and w;; is com-
posed of nonlinear functions of the coefficient of restitution,
a, and the reduced shear rate a”. The anisotropy induced in
the system by the shear flow gives rise to new transport
coefficients, reflecting broken symmetry. The momentum
flux is expressed in terms of a viscosity tensor 7;;¢(c) of
rank 4 which is symmetric and traceless in ij due to the
properties of the pressure tensor PIQ). The heat flux is ex-
pressed in terms of a thermal conductivity tensor «;;(a) and a
new tensor u,;(a).
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C. Steady-state conditions

As shown in the above subsections, the evaluation of the
complete nonlinear dependence of the generalized transport
coefficients on the shear rate and dissipation requires the
analysis of the hydrodynamic behavior of the unsteady ref-
erence state. This involves the corresponding numerical inte-
grations of the differential equations obeying the velocity
moments of the zeroth-order solution. This is quite an intri-
cate and long problem. However, given that here we are
mainly interested in performing a linear stability analysis of
the hydrodynamic equations with respect to the steady state,
we want to evaluate the transport coefficients in this special
case. As a consequence, 850)T=O and so the condition

sk 3 #
aP,=- Eg (52)

applles In Eq. (52), it is understood that " and P
—P / p are evaluated in the steady state; namely, they are
glven by Egs. (24) and (25), respectively. A consequence of
Eq. (52) is that the first term on the left-hand side of the
integral equations (43)—(45) vanishes. In addition, the depen-
dence of the pressure tensor Pi(.) on density and temperature
occurs explicitly through p=nT and through its dependence
on a". In this case, the derivatives d, P(O) and &TP(O) can be
written more explicitly as

n&nPl(-;)) =nd,pPa’) =p<1 -a —*>Pij(ll ), (53)
: a

To;PY) = TorpP;(a") = p<1 -—a —*>P,~(a ). (54)

/ 2 da ) Y
The dependence of Pf on a" near the steady state is deter-
mined in Appendix C so that all the terms appearing in the

integral equations are explicitly known in the steady state.
Under the above conditions, Egs. (43)—(45) become

E R

+a 8 P )XT,[ = Yn,[',

a xy

d 2aT
—acy,—+L|X,;+ ——(P
ac, " 3n

(55)

(— acy; - ga(ny —a ,P,)+ E)Xr,i =Yr;, (56)

Jd 0)
- acya_ +L Xu,k«”, - aﬁk_vXu,x( - gu,keTaTﬂ =Ty kes

Cx

(57)

where it is understood again that in Egs. (55)-(57) all the
quantities are evaluated in the steady state. Henceforth, I will
restrict my calculations to this particular case.

Given that in the steady state the coefficient of restitution
and the reduced shear rate are coupled, the usual Navier-
Stokes transport coefficients for ordinary gases are recovered
for elastic collisions (a”=0). Thus, when a— 1 the coeffi-
cients become
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where 7,=p/v and ky=157,/4m are the shear viscosity and
thermal conductivity coefficients given by the (elastic) Bolt-
zmann equation.

IV. RESULTS FROM A SIMPLE KINETIC MODEL

The explicit form of the generalized transport coefficients
Wij» K;j» and 77, requires one to solve the integral equations
(55)—(57). Apart from the mathematical difficulties embodied
in the Boltzmann collision operator £, the fourth-degree ve-
locity moments of the distribution % are also needed to
determine u;; and k;; and they are not provided in principle
by the Grad approximation. Nevertheless, an accurate esti-
mate of these moments from the Boltzmann equation is a
formidable task since it would require at least to include the
fourth-degree moments in Grad’s solution. In this case, to
overcome such difficulties it is useful to consider a model
kinetic equation of the Boltzmann equation. As for elastic
collisions, the idea is to replace the true Boltzmann collision
operator with a simpler, more tractable operator that retains
the most relevant physical properties of the Boltzmann op-
erator. Here, I consider a kinetic model [31] based on the
well-known Bhatnagar-Gross-Krook (BGK) [7] model for
ordinary gases where the operator J[f,f] is [40]

J[f’f]_’_VBGK(f_fO)"'g&i'(Cf)- (59)
c

Here, vpgr*nT"? is an effective collision frequency, f, is
the local equilibrium distribution (19), and ¢ is the cooling
rate defined by Eq. (12). As said before, an estimate of { to
first order in the gradients has been derived in Appendix B.
The collision frequency vggk can be considered as an adjust-
able parameter to optimize the agreement with the Boltz-
mann equation. In this paper, the a dependence of vpgk is
chosen to reproduce the rheological properties of USF de-
rived from Grad’s approximation (18). This leads to take

VpGK a8

VpGk = VB = (L a)éZ +a) v, (60)

where v and S are given by Egs. (21) and (23), respectively.
It must be remarked that the expression of the Navier-Stokes
shear viscosity coefficient derived from the model with the
choice (60) also agrees with the one obtained from the true
Boltzmann equation [4]. A slightly different choice for
vggk—hamely, vpgr=v(1+a)/2—is considered in Ref.
[28].

By taking moments with respect to 1, ¢, and ¢2, the model
kinetic equation (59) yields the same form of the macro-
scopic balance equations for mass, momentum, and energy,
Egs. (7), (8), and (9), as those given from the Boltzmann
equation. When a=1, then vggg=v, {=0, and so the kinetic
model (59) reduces to the BGK equation whose utility to
address complex states not accessible via the Boltzmann
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FIG. 1. Fourth-degree velocity moment {(c*) relative to its local
equilibrium value as a function of the coefficient of restitution. The
solid line is the prediction of the kinetic model while the symbols
are simulation results [28].

equation is well established for elastic gases [7]. In the case
of granular gases, as said before, it is easy to show that the
kinetic model leads to the same results for the pressure tensor
in the USF problem as those given from Grad’s solution to
the Boltzmann equation, Egs. (24) and (25). This result,
along with those of Refs. [20,30], confirms the reliability of
the kinetic model for granular media as well. A summary of
the USF results derived from the kinetic model is provided in
Appendix D. In particular, beyond rheological properties, re-
cent computer simulations [28] have confirmed the accuracy
of the kinetic model to capture the dependence of the fourth-
degree velocity moments (whose expressions are needed to
get the coefficients w;; and «;;) on dissipation in the USF
state. To illustrate it, in Fig. 1 we plot the fourth-degree
moment

(= f dec*f(e) (61)

relative to its local equilibrium value (c*),=15nT?/m>. The
symbols refer to the numerical results obtained from the
DSMC method [28]. It is quite apparent that the analytical
results agree well with simulation data (the discrepancies be-
tween both results are smaller than 3%), showing again that
the reliability of the kinetic model goes beyond the quasi-
elastic limit.

Let us consider the perturbed USF problem in the context
of the kinetic model. By using the model (59), the integral
equations (55)—(57) still apply with the only replacements
being

0
LX = vBX = (cX) (62)

in the case of X, ; and X7; and

(0) ..
9 (ex) =il 0 (o) (63)
2 de

LXjj— vBXij— = - (eXy

in the case of X, ;;. In the above equations, £ is the zeroth-
order approximation to { which is given by Eq. (41). With
the changes, Egs. (62) and (63), all the generalized transport
coefficients can be easily evaluated from Egs. (55)—(57). De-
tails of these calculations are also given in Appendix B; a
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FIG. 2. Plot of the reduced coefficients (a) ,u,;y and (b) /.L;V as a
function of the coefficient of restitution a.

more complete listing can be obtained on request from the
author.

The dependence of the generalized transport coefficients
on the coefficient of restltutlon a 1s 1llustrated in Flgs 2-4
for the (reduced) coefficients ,u,w, :U“yw Ty nxm, nyyy\’ 77”;&\”
and nx)w Here, ,LLlj—I’l/,LU/TKO, Klj—K /Ky, and Mijre
= Nijce! Mo, Where my=p/v and ko=57,/2m are the elastic
values of the shear viscosity and thermal conductivity coef-
ficients given by the BGK kinetic model. In general, we
observe that the influence of dissipation on the transport co-
efficients is quite significant.

With all the transport coefficients known, the new consti-
tutive equations (47) and (48) are completed and the corre-
sponding set of closed hydrodynamic equations (27)-(29)
can be derived. They are given by

dn+uy-Vn+V-(ndu)=0, (64)

(9,5”1‘ + Cll]5M] + (uO + 5].1) . V5u,

1 9 dou
+— | pO_ —k>=0, 65
mn (9!']-( ij nljké’ (9]’( ( )
3 3 dou;
5n<9,T+ En(uo +ou) - VT —an,,; o,
J ( on &T) (P(O) Muk)
; + K|+ \
T ar\Migr, T g 7 o
du; 3 du;
i 0 _ _ =~
aP\) =— nT - nT 66
L vaPy) L (66)

J

Note also that consistency would require one to consider the
term aPiz) which is of second order in gradients, and so it
should be retained. Given that this would require one to de-
termine the second-order contributions to the fluxes, this
term will be neglected in our study. A similar problem occurs
in calculations of the transport coefficients for the homoge-
neous cooling state of a granular gas since the true Navier-
Stokes equations require one to consider the second-order
contributions {2 to the cooling rate [4,41]. Given that {? is
very small, it is usual to neglect its contribution to the
Navier-Stokes equations. As in the homogenous case, the
same type of approximation is accepted here and so one ne-
glects the term aP @) in Eq. (66). Since P ) is of second order
in gradients, one expects that its contribution to the pressure
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FIG. 3. Plot of the reduced coefficients (a) K:t), and (b) K;V as a
function of the coefficient of restitution .

tensor is negligible as compared with Pi(;) and Pily). An im-
portant feature of the linearized hydrodynamic equations
(64)—(66) is that they are not restricted to small values of the
(reduced) shear rate or, equivalently, to small inelasticity.
This allows us to go beyond the usual Navier-Stokes hydro-
dynamics. The hydrodynamic equations (64)—(66) are the
starting point of the linear stability analysis of the USF of the
next section.

V. LINEAR STABILITY ANALYSIS OF THE STEADY
SHEAR FLOW STATE

As said in the Introduction, computer simulations [32]
have clearly shown that the USF state is unstable with re-
spect to long enough wavelength perturbations. These results
have also been confirmed by different analytical results
[33-36], most of them based on the Navier-Stokes descrip-
tion that applies to first order in the shear rate. However,
given that USF is inherently non-Newtonian [27], the full
nonlinear dependence of the transport coefficients on the
shear rate is required to perform a consistent linear stability
analysis of the nonlinear hydrodynamic equations (64)—(66)
with respect to the USF state for small initial excitations.
This analysis allows one to determine the hydrodynamic
modes for states near USF as well as the conditions for in-
stabilities at long wavelengths. A growth of these modes sig-
nals the onset of instability, which is ultimately controlled by
the dominance of nonlinear terms. Note also that while all
the works have been mainly devoted to dense systems, much
less attention has been paid to dilute gases.
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05 0.6 0.7 08 08 1.0
- 4

FIG. 4. Plot of the reduced coefficients (a) nnv}, (b) nmv, (c)
77“}\’ and (d) nmy} as a function of the coefficient of restitution, a.
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Let us assume that the deviations &x,(r,f)=x,(r,?)
—X,(r) are small, where dx,(r,?) denotes the deviation of
{n,u,T} from their values in the USF state {ng,uy,7,}. The
quantities in the USF verify

Vno = VTO = 0, Uy = a-r, (9,TO =0. (67)
Now, let us linearize Egs. (64)—(66) with respect to
{ox,(r,0)} = {6n(r,1),51(r,1), Su(r,0)}. (68)

The resulting set of five linearized hydrodynamic equations
follows from Egs. (64)—(66):

J
§,6n+ay[?—5n+n0- ou=0, (69)
X

3 J
~1nod,6T + ay— 8T + a6, bu, + a[(ﬁnP(O)) Sn + ((QTP(O)) ST
2 ox Xy xy

+(PY 2, Lo ot
-a - Mij — Kijj
k€ Mxyke (97'(/ Mij ariﬁrj ¥ &ri&rj
3§ . (2511 3 6T> 3 . . déuy (70)
=—={mn —+-—|-=n s
5 $0oto no 2T, 200u,k€&r€
9 1
9,0uy, + ay— Ouy + ady, ou, + —
ox Tomngy
aén 96T & u;
PO == + (9P — - —} =
[( ke)(m (9rPy() dre nk“(?reo’?rj
(71)

Here, it is understood that the pressure tensor P;?) and its
derivatives with respect to n and T, the cooling rate ,, and
the transport coefficients 7., ;> and k;; are evaluated in
the steady USF state.

To analyze the linearized hydrodynamic equations

PHYSICAL REVIEW E 73, 021304 (2006)

_ 1 ikr’ _ ik(t)-
5%, (k1) = f dr'e™™ ox,,(r,1) = f dre® T8y (r,1),

(72)

where in the second equality k(t)=k;(8;;—ta;;). Periodicity
conditions require that k;=2n;7/L;, where n; are integers and
L; are the linear dimensions of the system. In this Fourier
representation, the resulting set of five linear equations de-
fines the hydrodynamic modes—i.e., linear response excita-
tions to small perturbations. If at least one of the modes
grows in time, the reference USF state is linearly unstable.
Given the mathematical difficulties involved in the general
problem, for the sake of simplicity, here I consider two kinds
of perturbations: (i) perturbations along the velocity gradient
direction only (k,=k,=0, k,# 0) and (ii) perturbations in the
vorticity direction only (k,=k,=0, k, # 0). In both cases, the
linearized hydrodynamic equations have time-independent
coefficients.

A. Perturbations in the velocity gradient direction
(ky=k;=0, k,#0)
Let us consider first perturbations along the y direction

only. In this case, Eqs. (69)—(71) in this Fourier representa-

tion can be written in the matrix form
* &
375)?#+FM,,5)ZV=0, (73)

where the dimensionless quantities 7=yt and 5)22
= {pk, Gk,wk}, with

L ST Su 74
=, =, W, = -,
P n’ Ty NTo/m

have been introduced. The matrix F,,,, is
F,,=2C8,,8,1+C8,30,,+a 8,38,,— ik G,,+k’H,,
(75)
where a"=alv,, v, is the collision frequency (21) of the
reference state, and k" =€k, €,=\T,/m/ v, being of the order

of the mean free path. In addition, we have introduced the
coefficient

(69)—(71) it is convenient to transform to the local Lagrang- 1, e
ian frame, r{ =r;—ta;r;. The Lees-Edwards boundary condi- Cla) =~ 3¢ (1+ad,)P,, (76)
tions then become simple periodic boundary conditions in
the variable r’ [29]. A Fourier representation is defined as and the square matrices
|
0 0 0 1 0
0 0 g(ny —da nxyxy) + gx ) E(Py_\: —a nxyy_\r) + gyy 0
G=| (1-d"9,)P, ( 1-=ad"9, )Pf;y 0 0 0 |, (77)
(1-d"3,)P}, (1 ~a aa*>Pjy 0 0 0
0 0 0 0 0
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have been also introduced. Here, PZ:PE?)/ noTy and

== &(1 = @) (P = 810) Meeij- (79)

The eigenvalues A ,(k, @) of the matrix F(k, @) determine
the time evolution of é“ (k t). In the case that the real parts
of the eigenvalues A ,(k, a) are positive, then the USF state
will be linearly stable. Before considering the general case, it
is convenient to consider some special limits. Thus, in the
elastic limit (a=1), the hydrodynamic modes of the Navier-
Stokes equations (for the particular case considered here and
in the context of the BGK model) are recovered [42]:
namely, two sound modes, a heat mode, and a twofold-
degenerate shear mode. To second order in k* they are given
by

Nka=1)— {i\/;k' +k 2,—i\/;k +E2 Kk 2},

(80)

and consequently, excitations around equilibrium are
damped. It is also quite illustrative to get the modes by set-
ting k=0—namely, consider small, homogeneous deviations
from the steady shear flow state. In this case, it is easy to see
that p; and w, are constant and

wol(7) = w i (0) —amw, 4 (0), (81)

0(7) = 0,(0)e "= 2p,(0). (82)

The mode associated with w, ; is unstable to an initial per-
turbation in w,, leading to an unbounded linear change in
time. However, stability is still possible at finite k if this
behavior is modulated by exponential damping factors. With
respect to the temperature field, initial disturbances decay at
7—o0 if the coefficient C(a)>0. Figure 5 shows that the
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FIG. 6. Dispersion relations for a granular gas with «=0.8 in the
case of perturbations along the velocity gradient direction. Only the
real parts of the eigenvalues are plotted.

coefficient C is positive for any value of «, and so this mode
is (marginally) stable with a finite decay constant.

The analysis for k#0 requires to get the eigenvalues
N (k «) with the full nonlinear dependence of k*. However,
the structure of F(k,a) shows that the perturbation b“*
o dit, is decoupled from the other four modes and hence can
be obtained more easily. This is due to the choice of gradi-
ents along the y direction only. The eigenvalue associated
with this mode is positive and is simply given by

_B
B+
where " is defined by Eq. (22). The remaining modes cor-
respond to p;, 6;, and the components of the velocity field,
wyy and w, ;. They are the solutions of a quartic equation
with coefficients that depend on k" and «. The results show
that Re\ M(k ,a) >0 for all values of the coefficient of resti-
tution, «, and consequently, the flow remains stable to this
kind of perturbation. As an illustration, the dispersion rela-
tions for a gas with «=0.8 are plotted in Fig. 6. It is apparent
that all real parts of the eigenvalues A\, are positive in the
range of values of wave number k* considered. Our conclu-
sion agrees with previous stability analyses [33,35] based on
the Navier-Stokes constitutive equations where a minimum
value of the solid fraction (around 0.156) below which the
USF is stable was found. Given that our system is a dilute
gas (zero density), the present results confirm previous find-
ings when one uses the improved transport coefficients.

\s(k,a) = 77—y7) *2’ nzvzy= (83)

B. Perturbations in the vorticity direction
(ky=ky,=0, k,#0)

The variation of the hydrodynamic modes with wave
number k=k, in the vorticity direction is considered next.
This situation has not been widely studied in the literature
since most of the studies have been focused on two-
dimensional (2D) flows due to the relative computational
efficiency with which they can be analyzed. Here, for the
sake of simplicity, I consider perturbations for which du,
=6u,=0, and so the eigenvalues \ ,(k", a) obey a cubic equa-
tion. The analysis is similar to the one carried out in the
previous section, and so details will be omitted. For a given
value of a, it can be seen that this dispersion relation has one
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FIG. 7. Stability lines kj(a) corresponding to the perturbation
along the vorticity direction. The solid line corresponds to the re-
sults derived here while the dashed line refers to the results ob-
tained from the Navier-Stokes approximation. The region above the
curve corresponds to the stable domain, while the region below the
curve corresponds to the unstable domain.

real root and a complex conjugate pair of damping modes.
The instability arises from the real root since this mode
N, (k*,@)>0 if k" is larger than a certain threshold value
k(). This value can be obtained by solving N ,(k", @)=0. As
a consequence, the USF state is linearly stable against exci-
tations with a wave number k" >k, (@). The stability line
k(a) is plotted in Fig. 7 as a function of the coefficient of
restitution. Above this line the modes are stable, while below
this line they are unstable. For comparison, the correspond-
ing stability line obtained from the approximations made in
previous works [33,35] is also plotted. This line can be for-
mally obtained from the results derived in this paper when
one replaces the expressions of the coefficients 7;;x¢, x;;, and
ij by their corresponding Navier-Stokes expressions [4]. It
is apparent that the Navier-Stokes approximation captures
the qualitative dependence of k: on «, although as expected
quantitative discrepancies between both descriptions appear
as the dissipation increases. Thus, for instance, for =0.8 the
discrepancies between both approaches are about 22% while
for «=0.5 the discrepancies are about 49%. The prediction
of a long-wavelength instability for the USF state has been
observed in early molecular dynamics simulations [32] and
qualitatively agrees with the previous analytical results based
on the Navier-Stokes equations [33-36]. At a quantitative
level, the lack of numerical results from the Boltzmann equa-
tion prevents us from carrying out a more detailed compari-
son to confirm the results derived from this kinetic model.
We hope that the results offered here will stimulate the per-
formance of such computer simulations.

VI. SUMMARY AND DISCUSSION

The objective of this paper has been to study the transport
properties of a granular gas of inelastic hard spheres for the
special nonequilibrium states near the uniform (simple) shear
flow. Although the derivation of the Navier-Stokes equations
(with explicit expressions for the transport coefficients ap-
pearing in them) from a microscopic description has been
widely worked out in the past [4,5], the analysis of transport
in a strongly shearing granular gas has received little atten-
tion due perhaps to its complexity and technical difficulties.
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Very recently, a generalized Chapman-Enskog method has
been proposed to analyze transport around nonequilibrium
states in granular gases [9]. In the case of the USF state, due
to the anisotropy induced in the system by the presence of
shear flow, tensorial quantities are required to describe the
momentum and heat fluxes instead of the usual Navier-
Stokes transport coefficients [4,5]. In this paper we have
been interested in a physical situation where weak spatial
gradients of density, velocity, and temperature coexist with a
strong shear rate. Under these conditions, the corresponding
generalized transport coefficients characterizing heat and
momentum transport are nonlinear functions of both the (re-
duced) shear rate " and the coefficient of restitution, «.. The
determination of such transport coefficients has been the pri-
mary aim of this paper.

Due to the difficulties embodied in this problem, a low-
density gas described by the inelastic Boltzmann equation
has been considered. Although the exact solution to the Bolt-
zmann equation in the (steady) USF is not known, a good
estimate of the relevant transport properties can be obtained
by means of Grad’s method [22,23,27]. The reliability of this
approximation has been recently assessed by comparison
with Monte Carlo simulations of the Boltzmann equation
[22,28]. Assuming that the USF state is slightly perturbed,
the Boltzmann equation has been solved by a Chapman-
Enskog-like expansion where the shear flow state is used as
the reference state rather than the local equilibrium or the
(local) homogeneous cooling state. Due to the spatial depen-
dence of the zeroth-order distribution f(0> (reference state),
this distribution is not in general stationary and only in very
special conditions has a simple relation with the (steady)
USF distribution [9]. Here, since one of the main goals has
been to address a stability analysis of the USF state, for
practical purposes my results have been specialized to the
steady state; namely, when the hydrodynamic variables sat-
isfy the balance condition (52). In this situation, the (re-
duced) shear rate @ is coupled with the coefficient of resti-
tution, « [see Eq. (25)], so that the latter is the relevant
parameter of the problem. In the first order of the expansion
the momentum and heat fluxes are given by Egs. (47) and
(48), respectively, where the components of the set of gener-
alized transport coefficients 7, p;j» and k;; are given in
terms of solutions of the linear integral equations (55)—(57).
As expected, there are many new transport coefficients in
comparison to the case of states near equilibrium or cooling
state. These coefficients provide all the information on the
physical mechanisms involved in the transport of momentum
and energy under shear flow.

Practical applications require one to solve the integral
equations (55)—(57), which is in general quite a complex
problem. In addition, the fourth-degree velocity moments of
USF [whose evaluation would require one to consider
higher-order terms in Grad’s solution (18) of the Boltzmann
equation] are needed to determine the coefficients «;; and u;;.
To overcome such mathematical difficulties, here a kinetic
model of the Boltzmann equation [31] has been used. This
kinetic model can be considered as an extension of the well-
known BGK equation to inelastic gases. Although the kinetic
model is only a crude representation of the Boltzmann equa-
tion, it does preserve the most important features for trans-
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port, such as the homogeneous cooling state and the macro-
scopic conservation laws. The model has a free parameter
Vpgk to be adjusted to fit a given property of the Boltzmann
equation. Here, vggk is given by Eq. (60) to get the same
results for rheological properties in the USF problem as
those derived from the Boltzmann equation by means of
Grad’s method. In addition, with the choice (60), the model
reproduces quite well the a dependence of the Navier-Stokes
transport coefficients of an inelastic gas [4], even for not
small values of dissipation. On the other hand, given that the
model does not intend to mimic the behavior of the true
distribution function beyond the thermal velocity region, dis-
crepancies between the kinetic model and the Boltzmann
equation are expected beyond the second-degree velocity
moments (which quantify the elements of the pressure ten-
sor). Nevertheless, a recent comparison with Monte Carlo
simulations of the Boltzmann equation [28] have shown the
accuracy of the kinetic model predictions for the fourth-
degree moments. As illustrated in Fig. 1, the semiquantitative
agreement between theory and simulation is not restricted to
the quasielastic limit (@=0.99) since it covers values of
large dissipation (@=0.5). The use of this kinetic model al-
lows one to get the explicit dependence of the generalized
transport coefficients on the coefficient of restitution. This
dependence has been illustrated in some cases showing that
in general the deviation of the transport coefficients from
their corresponding elastic values is quite significant.

With these new expressions for the fluxes, a closed set of
generalized hydrodynamic equations for states close to USF
has been derived. A stability analysis of these linearized hy-
drodynamic equations with respect to the USF state has been
also carried out to identify the conditions for stability in
terms of dissipation. Two different kinds of perturbations to
the USF state have been analyzed: (i) perturbations along the
velocity gradient only (k,#0) and (ii) perturbations along
the vorticity direction only (k, # 0). In the first case, previous
results [33,35] have shown that the USF is stable for a dilute
gas while the USF becomes unstable in the second case for
all « [43]. These results agree with these findings, and the
USF is unstable for any finite value of dissipation at suffi-
ciently long wavelengths when disturbances are generated in
the orthogonal direction to the shear flow plane. On the other
hand, as expected, quantitative discrepancies between our re-
sults and those given [33,35] from the Navier-Stokes ap-
proximation become significant as the dissipation increases.
These differences are illustrated in Fig. 7 for the stability
line. Although the instability of the USF has been exten-
sively studied for many authors by using a Navier-Stokes
description [33-35] as well as solutions of the Boltzmann
equation in the quasielastic limit [36,37], T am not aware of
any previous solution of the hydrodynamic equations where
the generalized transport coefficients describing transport
around USF were taken into account. The analytical results
found in this paper allow a quantitative comparison with
numerical solutions to the Boltzmann equation for finite dis-
sipation. As happens for the USF problem for elastic
[29,44,49] and inelastic [22,28] gases, one expects that the
results reported here compare well with such simulations,
confirming again the reliability of the kinetic theory results
to characterize the onset and first stages of evolution of the
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clustering instability. We hope to carry out these simulations
in the near future.

It is apparent that the results presented here are relevant to
make a comparison with numerical simulations. Granular
gases are notorious for the difficulties they pose to the ex-
perimenter. However, a variety of experimental methods
have been employed in this field in the last few years which
have allowed one to make some comparisons with theories.
Among the recent additions to the experimental tool kit in
the field of granular gases are NMR methods [45,46], the
positron emission particles tracking method [47], and ul-
trafast video recording systems [48]. Although some experi-
mental results are known for the simple shear flow problem
[8], from my knowledge there are no data on the transport
coefficients near USF. Since in many cases the experimen-
talists are now able to follow the motions of most of the
grains, I hope that the results derived here encourage experi-
mentalists to carry out studies where the present theory can
be tested against suitable experimental data. Previous com-
parisons between kinetic theory and NMR experiments [46]
have shown the reliability of theory to describe transport in
granular systems.

On the other hand, the stability analysis performed here
has only considered spatial variations along the y and z di-
rections. More complex dynamics is expected in the general
case of an arbitrary direction for the spatial perturbation.
This will be worked out elsewhere along with a comparison
with direct Monte Carlo computer simulations of the Boltz-
mann equation. Another possible direction of study is the
extension of the present approach to other physically inter-
esting reference states, such as nonlinear Couette flow. This
is a more realistic shearing problem than the USF state since
combined heat and momentum transport appears in the sys-
tem. Given that an exact solution to the kinetic model used
here is known for the Couette flow problem [30], the refer-
ence distribution for the Chapman-Enskog-like expansion is
available. Finally, it would be also interesting to extend the
analysis made in this paper for a single gas to the intriguing
and important subject of granular mixtures. Given the diffi-
culties associated with multicomponent systems, self-
diffusion could be perhaps a good starting point to provide
some insight into the general problem. Work along these
lines will be carried out in the near future.
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APPENDIX A: CHAPMAN-ENSKOG EXPANSION

Inserting the expansions (32) and (34) into Eq. (26), one

gets the kinetic equation for £,
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(ﬁﬁ‘” - aVyaiVX + L‘)f“) [V + (V+up) - V][O,
(A1)
where £ is the linearized Boltzmann collision operator:
£X = - (LA, x1+ X, (A2)

The velocity dependence on the right side of Eq. (A1) can be
obtained from the macroscopic balance equations to first or-
der in the gradients. They are given by

851)n+u0~Vn=—V-(n5u), (A3)

1
dVéu+(ug+du)-Vou=——-V .pO (A4)
p

3 3 3
5n¢7§”T+ En(uo +6u)-VT+ ancly) +PO:Véu=- Epg“m,

(A5)
where p=mn is the mass density,
Py = f demeic;fV(e), (A6)
and
1
§('>=—Jdcmczﬁf“). (A7)
3p

Use of Egs. (A3)—(A5) in Eq. (A1) yields

0 9 ﬂ°
a§>—avyW+L AR =Y, Vn+ Y, VT

+Y,:Véu, (A8)
where
af”  19f%oPY
Yni——LCi‘l‘_L_lL, (Ag)
' n pddu; on
J
af® 190 oPY
Yri=- ﬂ ci+— / - (A10)
' aT pdou; T
o aﬂ(’ 297
Yuii=n——=8;— PY —an,,;).
wij =1t on Y (9514 3 (9T( anxw)
(A1)

According to Egs. (A9) and (A10), Y, ; has the same sym-
metry properties (16) as the distribution function £ while
Y, and Y, are odd functions in the velocity c.

The solution to Eq. (A8) has the form

-

Note that in Eq. (All) the coefficients 7, are defined
through Eq. (49). Substitution of the solution (A12) into

Xn’,-(c)vln +XT,['(C)V[T+ Xu’j[(c)vi(suj. (A12)
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the relation (A7) allows one to write the cooling rate in the
form

f(l) =8, Vin+ L, VT+(,;;Véu;, (A13)
where
gn,i 1 Xn,i
i |l=— f demcL| Xr; (A14)
3p ’
gu,ij Xu,ij

However, given that X, ; and X7; are odd functions in ¢ [see,
for instance, Eqs. (A19) and (A20) below], the terms propor-
tional to Vn and VT vanish by symmetry—i.e.,

gn,i = é,T,i =0. (Als)
Thus, the only nonzero contribution to ¢! comes from the
term proportional to the tensor V;du;:
(= 8jiViou;. (Al6)
An estimate of the tensor £, ;; has been made in Appendix B
by considering the leading terms in a Sonine polynomial
expansion of the distribution f!). Its expression is given by
Eq. (B9). As expected, {,;; vanishes in the elastic limit («
=1).
The coefficients X,,;, X7;, and X, ;; are functions of the
peculiar velocity ¢ and the hydrodynamic fields. In addition,

there are contributions from the time derivative (950) acting on
the temperature and velocity gradients given by

2a O
n n

2 3
- (—aaTP 0) —b‘”)v T (A17)
3 2

Substituting (A16) into (A8) and identifying coefficients of
independent gradients gives the set of equations

2 J
- {(—aP)(g) + T50)>&T+ ac,—— — E]X,,y,»

3n " dc,

T| 2a
+—{—(1—na,,)Pff;)—g(O)]XT,-:Yn,-, (A19)
n| 3p ’ ’

2
- [(3—4110(") +T¢9 )ar+ —T(&TP(O )+ g
n

J
+acy(9_ _£:|XT,i= YT,i’ (AZO)
Yac,
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o) J
_ [ (;ang) + T§(0)> dr+ac,~ = £:|Xu,k( — ady Xt
X

~ Lune TV =Y, g (A21)

Upon writing Egs. (A19)-(A21), use has been made of the
property

X oX 2 oX
AOX = —dOT+ —d”u;= - <—apff” + Tg@)) —
aT Adu; 3n v ar

i
where in the last step we have taken into account that X
depends on du through ¢=V - du.

APPENDIX B: EVALUATION OF THE COOLING RATE

In this appendix the contribution ¢, ;; to the cooling rate
W is evaluated by expanding X,;j as series in Sonine poly-
nomials and taking the lowest-order truncation. The tensor
{uij 1s given by

1
é/u,ij:gfdclmc%‘cxu,ij

1
e f deymei{Iei|f 0. X, 51+ e X, /T

(B1)

A useful identity for an arbitrary function A(c;) is

Jdclh(cl)j[clf’g]zolfdcljdczf(cl)g(CZ)

Xj do®(o - g)(o - g)h(c]) —h(e))],

(B2)

where g=c¢;—¢, and

" 1 A A
c1=c1—5(l+a)((r-g)(r. (B3)

Using Eq. (B2), Eq. (B1) can be written as

guyijZ%Oz(l —az)Jdclfdcz]‘(O)

X (€)X, ;(c) f doO®(o-g)(o-g)°. (B4)

The integration over & in Eq. (B4) yields

gu,ij=%’n-o—2(l _az)fdcldeZﬂO)(cl)Xu,ij(cz)~
(B5)

This equation is still exact. To perform the integrals over ¢,
and ¢, one takes the Grad approximation (18) to f{” and
expands X, ;; in Sonine polynomials. In this case and accord-
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ing to the anisotropy of the USF problem, one takes the
approximation

1
X xe(€) — = WDU Mijkefo(c), (B6)
where
m \32 ( mcz)

=n| — -— B7
Jole) n<2’7TT> P\T o7 B7)

is the Maxwellian distribution and

1,

DIJ(C) =m Cicj - EC 5” . (BS)

Next, change the variables to the (dimensionless) relative
velocity g '=(c;—¢,)/vy and center of mass G =(c,
+¢,)/2v,, where v0=y"m is the thermal velocity. A
lengthy calculation leads to

Cuig== ¢ a1 =) f dg f 4G g e et

X G*G*(;*G*—L 2G84, 001 + iy Ory)
ke mn 18g km Ptn knYem

1 T Pmn
+ 1 Sk8e8mSn [\ T O | Mieeij

1 T P
=— E02 \/ m—T(l - az)(ﬁ - 5ke) Mkt

Of course, when a=1, then $u,i=0.

(B9)

APPENDIX C: BEHAVIOR OF THE ZEROTH-ORDER
VELOCITY MOMENTS NEAR THE STEADY STATE

This appendix addresses the behavior of the velocity mo-
ments of the zeroth-order distribution f*) near the steady
state. Let us start with the elements of the pressure tensor
Pl@. In the context of the Boltzmann equation and by using
Grad’s approximation (18), they verify the equation

2 J
(0) 0) | 2 50 (0) (0)
_ (—3nany + T >) pFi +aiPie +ajcPi
=— V[ﬁ(P(O) —p5ij) + §*PS))]

)

(C1)

Since we are interested in the hydrodynamic solution, the
temperature derivative term can be written as

) * L9 ) p
TPy =TopPy=p\1-a'~ 5 |Py, (C2)

where PZ:PEQ)/ p. Upon deriving Eq. (C2), use has been
made of the flact that the dimensionless pressure tensor P;
depends on T only through its dependence on the reduced
shear rate a*=a/v(n,T). In dimensionless form, the set of
equations (C1) becomes
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(2 .t f)(l 1.9
— — ‘+ —_— —
3¢ o 2% da

=-[B(P;- &) + P, (C3)
where
0 s
=== (C4)

Let us consider the elements P;:y and P;V=P:Z. From Eq.
(C1), one gets )

—(ga ny+§><1—5a $>ny+a Py ==(B+{)P,,

(C5)

—(ga Py +{ )(l—za &a*>Pyy=—(ﬂ+§)Pyy+B.

(Co6)

This set of equations has a singular point corresponding to
the steady-state solution—i.e., when a"‘(T):cz;k where aj(a)
is the steady-state value of a” given by Eq. (25). Since we are
interested in the solution of Egs. (C5) and (C6) near the
steady state, we assume that in this region P;, and P;y be-
have as

IPL\ . .
ny=Pm+<—f}> @ -a)+ -, (C7)
m i\ aat )T
. aPs N\ L,
o ¥ *
Pyy—PyN+< P ) (@ -a)+ -, (C8)
s

where the subscript s means that the quantities are evaluated
in the steady state. Substitution of Egs. (C7) and (C8) into
Egs. (C5) and (C6) allows one to determine the correspond-
ing derivatives. The result is

P . ‘C+ P,
(—L) —4p) e ms (C9)
da" ) 24 C+6B+3¢

where C= (&Piy/ da”), is the real root of the cubic equation

2a.'C3+ 1242 + B)C? + 2(75‘2 + 140 B+4pHC
+9B8(L + P2 2B -2L7 - BL). (C10)

Equations (C9) and (C10) can also be obtained a different
way. Let us write the set of equations (C5) and (C6) as

2P 2P* (,3 2P* )

" - - ——P_a

&P ! yy *5xy 3 Xy

= ? 5 . (c1)
f* + ga*ny
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* 2 s
2,8—2Pyy(ﬁ— 3Fua )

all +§a ny

In the steady-state limit (a*—>aj), the numerators and de-
nominators of Egs. (C11) and (C12) vanish. Evaluating the
corresponding limit by means of 1’'Hopital’s rule, one reob-
tains the above results (C9) and (C10). This procedure can be
used to get the behavior of the remaining velocity moments
near the steady state.

The behavior of the fourth-degree velocity moments of
the distribution f©) near the steady state is also needed to
determine the transport coefficients u;; and k;; associated
with the heat flux in the first-order solution. To evaluate this
behavior we use the Boltzmann kinetic model (59). Let us
introduce the velocity moments of the zeroth-order distribu-
tion:

oP

da

%
3
*

(C12)

M= [ deccdyoe. ey

These moments verify the equation

2 0 0 0
— (gapiy) + T§(0)>&TMI((1?](2,/(3 + akll‘ll((l)_l)](2_'_1’](3

0)
0 & o
=" 7’:3(1‘4/&,?1%,/{_3 - Nkl,kz,k3) —k ) Ml(cl?kz,ky (C14)

where k=k,+k,+k; and Ni, ky kg A€ the velocity moments of
the Gaussian distribution f;,. As before, the derivative

0) .
orM ( can be written as
TV k) Kok

kI2
0 * *
ToM, i = T&m(;) My (@)

2T k/21 . . .
=n<;) E(k—a aa*)Mkl,kz,k3(a ).
(C15)

In dimensionless form, Eq. (C14) becomes

- (ga Py+{ )E(k—a &a*)Mkl,k2!k3+kla My 1 gy iy

kL) .
+ (B+ Eg )Mkl‘kZ'kS - BI\/](1J<2J{3 = O, (Cl6)

where N, ky kyky AT€ the reduced moments of the Gaussian dis-

tribution given by
ki+1\[k+1\[k3+1
(A e
2 2 2

if k;, ko, and k5 are even, being zero otherwise. Equation
(C16) gives the expressions of the reduced moments
le’kz’kys in the steady state. To get aa*MZpkz’ka in the steady
state, we differentiate with respect to a” both sides of Eq.
(C16) and then take the limit @ — a,. In general, it is easy to
see that the problem becomes linear so that it can be easily
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solved. To illustrate the procedure, let us consider for sim-
plicity the moment M, which obeys the equation

- (ga P +{ )(2— 24 aa*>M040+ (B+2L )My

3
-—B=0. C18
2P (C18)
From this equation, one gets the identity
2 s % e 1 * *
- ga P+ )0\ 2= 5 A | Mo
2 * * * l * *

- E[ny +a (JP)]| 2~ 24 A | M o0
+(B+2L)3,Myyy=0. (C19)

In the steady-state limit, Eq. (52) applies and the first term on
the left-hand side vanishes. In this case, one easily gets

(iM* ) _LM* (C20)
da” ) T aly +2B+4L MOV
where
2 o P
=Z| P, +a —"XH C21
Xs 3|: Xy,s as( da ; ( )
is a known function and
* 3 B
Myos=—""""">=. (C22)
4B+2¢

Proceeding in a similar way, all the derivatives of the form
d,#M" can be analytically computed in the steady state.

APPENDIX D: KINETIC MODEL RESULTS IN THE
STEADY STATE

In this appendix, I display the results obtained from the
model kinetic equation chosen here for the determination of
the generalized transport coefficients. In the model, the Bolt-
zmann collision operator is replaced by the term [31]

A== B =f) + 5. (D)
C

where v and B are given by Egs. (21) and (23), respectively,
fo is the local equilibrium distribution (19), and ¢ is the cool-
ing rate (12).

1. Steady-state solution for the (unperturbed) USF

Let us consider first the steady-state solution to the (un-
perturbed) USF problem. In this case, Su=0 and so ¢=V.
The one-particle distribution function f(V) obeys the kinetic
equation
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(0)
~aV, (V) == Bl - )+ S (V).

2 dV (b2)

where here { has been approximated by its local equilibrium
approximation (*) given by Eq. (22). The main advantage of
using a kinetic model instead of the Boltzmann equation is
that the model lends itself to an exact solution [7,28]. It can
be written as

32
m . m
V)= . . 5 = _V7 D3
fV) n<2T> @, & T (D3)
where the reduced velocity distribution function f* is a func-
tion of the coefficient of restitution, «, and the reduced pe-
culiar velocity &:

©

f(@=m" f dse™ 17302 expl- 8 (¢ + 53 - §)7].

0
(D4)

Here, a=a/(vB) and ={"/(vB). It has been recently
shown that the distribution function (D4) presents an excel-
lent agreement with Monte Carlo simulations in the region of
thermal velocities, even for strong dissipation [28].

The explicit knowledge of the velocity distribution func-
tion allows one to compute all the velocity moments. We
introduce the moments

My gy by = J AVVIVRVSA(V). (D5)

According to the symmetry of the USF distribution (D4), the
only nonvanishing moments correspond to even values of
ki+k, and k5. In this case, after some algebra, one gets [28]

(D6)

where the reduced moments M; .. are given by
172203

kq Z ~(1+q) k!
F ogn _z ¢ _kt

g+kj=even

XF(k'_q+1)F<k2+q+I)F<k3+l>,
2 2 2

(D7)

with a=a/(vB)=a"/B. It is easy to see that the expressions
for the second-degree velocity moments (rheological proper-
ties) coincide with those given from the Boltzmann equation
by using Grad’s approximation, Egs. (24) and (25).

2. Transport coefficients

Let us now evaluate the generalized transport coefficients
Mijke» Kij» and w;; in the steady state. They can be obtained
from Egs. (55)—(57) with the replacement given by Egs. (62)
and (63). With these changes, Egs. (55)—(57) become
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] 0 4 2aT, . . .
— ac — 4+ yﬁ— — - C X i+ ?_(va +a &a*va)XT,i
n ) )

Yoc, 2 de
= Yn,[', (DS)

J 1 * " "
<— ac,—— — _a(ny —d &a ny) + ‘C>XT,i = YT,i’ (Dg)

1 9 J
¢ 0ol — - (ef ) + 27—f0
2g’4.]€|:(9c ( f< ) (9Tf{

= a6, Xy =Yy e (D10)

In order to get the transport coefficients «;j, w;j, and 7;j¢,
it is convenient to introduce the velocity moments

APy g = f decyicl2cix, ;. (D11)

By k= f decyicl2ctiXy ;. (D12)
ky ky k

ok = f declic2cX, ;. (D13)

Knowledge of these moments allows one to get all the
transport coefficients of the perturbed USF problem. Now,
we multiply Eqs. (D8)-(D10) by ¢, ckzc and integrate over
velocity. The result is

aklA;c?—l,1<2+1,k3 (VIB + kg(o)) + wnBl((il),kz,k3

kyskyoks

ky ko ks
fdcc ¢y,

x “y ‘2

(D14)

akIBlﬂll)—l,k2+l,k3 + (VB + Ekg(o) + wT)Bl(cll),kz,k3

= f dccjz] cly‘zclzC3 Yri (D15)

. 1 .
€ €
aky IO, g+ (vﬁ+ 5k§<o>)c§gl}2,k3
+ guﬂ(k 2TIIM 1, = a8 CL i,
(D16)

- ky ko 3
_fdccx ey’ e’Y e

Here, Mi )k s are the moments of the zeroth-order distribu-
tion A¥ and we have introduced the quantities
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2a T, .
w,=— (P,

- |
- +a dpP,), or=- ga(ny

- a*é’a*P;y).
(D17)

The right-hand-side terms of Egs. (D14)—(D16) can be easily
evaluated with the result

J

0 = ki ko ksy
Ay dec e Y ne === Mo, dyrdp vy,

L op©

4

+ > Ok i My 1 ky iy + OpkaMi ko1 4y
+ 0iksMy gy ky1)

27\ (kD2 .
- (g> (1-a aﬂ*)Mkl+5€x*k2+5€y’k3+5‘71

- 5(1 —a aa*)Pej(‘ijklel—l,kz,k3

+ koM i1k, + OicksMy gy k) |- (D18)

d

(©) ki Ky ks
Bk = fdcc 2 pe=- r?TMk 80kt By kst

1 (9P
+ ;_L( ki M 1 gy by + OpkaMy g1k

k+1

2T
+ OjcksMy gy hy-) = —n| —
m

1 , *
X [E(k +1=a 0IMp 15, ks, e,

(1 . .
2T(1 2 ”*)Pff((ijklM"l“*"Z”‘3

+ 5jyk2Mk1,k2—1,k3 + 5jzk3Mkl,k2,k3—1):| ,  (D19)

1%

f dccklckzck3Yuje == (1 - na

v 1okyky = )Mk ks

2
= (pl0) -
+ 3n(P i = A7xyje) O.'TMkl,kz,k_g

= My sy
= k105 (Sgy M 1 kst kg + OeMi 1 ky k1)

= k28, (OeMi 11 k1.3 + Oe:Mi eyt k1)

5jx6€xk1 + 6 5€yk2 + '26€Zk3)

k36 (SexM i 41 ky k-1 + SeyMi kys1 ky-1)
2TV b,
=—n| — o *
m JEE Ca Tk kg oks

1
— (plO) M
— 3nT(P]€ —anxng)(k—a (9(1 )Mkl'kZ’k3
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+ M;Zl’kz’k3(5/'x5{xkl + (Sjyaf’ykZ + ‘széfzkﬁ

* *
+ k1 83 (Oey My _y et iy + OecM i 1 iy yet)

£ *
+ ko0 (OeMy 1 1.k, + 5€szl,k2—1,k3+1)

* *
+ ks 5jz(5€ka1+l,k2,k3—l + 5€yMkl,k2+1,k3—1)

(D20)

Here, M, k kyky ar€ the reduced moments of the distribution
O defined by Eq. (D6). In the steady state, Mk s is given
by Eq. (D7) while the derivatives d,-M K ks can be obtained

by following the procedure described i 1n Appendlx C.
The solution to Egs. (D14)—(D16) can be written as

l(cl)kzk%—(vﬂ) 12( a)?

q=0

( kZ)’(“q) k!
w142 A
2 (ky—q)!

XLAL kg, = (D21)

(i)
wanl—q,k2+q,k3] >
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ky

B = (vﬁrlEO (-a)

( B kZ)‘(”") !
{1+ a@p+ = —
2 (kl_Q)!

XBY_ o ioraky (D22)

(1+9)
B % k!
I(clfl)czk3—(’/:8) 12 (- )q(1+3> G—a

() (x)
X |:Ck1—q,k2+q,k3 + atsjyckl_q’kz‘*’%k}

1

2T k2 .
- 5”(;) gu,jfa aa*Mkl—q,k2+q,k3 ’ (D23)

where @;=wy/(vB). From Egs. (D21)-(D23) one can get the
expressions for the transport coefficients «;;, w;;, and 7 in

terms of f3, Z, and a.
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