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Polymer self-consistent field theory of the Edwards-Helfand kind is the state-of-the-art method for predicting
the morphologies of block copolymer materials. The methodology of block copolymer self-consistent field
theory is transported to classical density functional theory such that a wide range of self-consistent field theory
tools can be applied to completely nonpolymeric materials, such as liquid crystal, molecular, or colloidal
systems. This allows for the prediction of structure in nonpolymeric condensed matter systems without any
prior knowledge of the possible phases, using calculations that take a fraction of the time needed for simula-
tions. The approach is applied to a simple interaction site density functional theory representing adsorbed
nitrogen molecules, and plastic crystal as well as herringbone phases are found in the phase diagram.
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The properties of new materials and hence their utility is
fundamentally connected with their structures. The predic-
tion of material structures is therefore of central importance
in condensed matter physics and materials science. Polymer
self-consistent field theory �SCFT� of the Edwards-Helfand
kind is at the forefront of predictive methodologies for the
structures of block copolymer materials due to its computa-
tional efficiency and accuracy, and the lack of any need for a
priori assumptions about the possible structures. Here it is
described how SCFT can be used to predict the morpholo-
gies of completely nonpolymeric materials with the same
efficiency and robustness as for block copolymers.

Liquid crystals and molecular or colloidal particles are
often described with classical density functional theory
�DFT� �1–3�, and it is by combining aspects of DFT with
SCFT that the structures of these systems can be obtained.
This combination is natural since both theories describe sys-
tems in terms of a free energy functional of a density field. In
the past, there have been two main obstacles in applying
DFT to general problems: �i� Due to the orientational inde-
pendence, research has focused more on spherical systems.
�ii� The density field is typically parametrized to have the
symmetry of the various phases being investigated. There-
fore the phases must be presupposed.

The first restriction has been largely overcome. There are
two standard approaches. One is to directly write a free-
energy functional for anisotropic particles. This can be very
challenging, but a number of researchers have attempted it.
See for example Refs. �4–6�. The other is to use an interac-
tion site model DFT, as suggested by Chandler, Singer, and
McCoy �7,8�. This is an extremely versatile and general ap-
proach, to be preferred in many situations. The second re-
striction is more severe. It is the purpose of this paper to
present a solution to this second problem based on recent
advances in SCFT �9,10�.

SCFT is a mean-field, equilibrium, statistical mechanical
theory that is well known as a state-of-the-art approach for
solving problems in polymeric, and particularly, block co-
polymer systems �11�. It is normally solved numerically, and
the earliest solutions were achieved through an iteration
approach in one dimension only, much as is commonly done
in DFT. A powerful spectral approach was later introduced

�12� that allowed SCFT to be solved accurately and effi-
ciently in higher dimensions. This is analogous to parametri-
zation approaches �13� �often Gaussians, for example� in
DFT. Most recently, a method for solving SCFT in higher
dimensions with no a priori knowledge of the possible mor-
phologies was introduced that uses false dynamics on chemi-
cal potential fields �14,15�. This method has since been en-
hanced by powerful Fourier transform techniques �16,17�,
convergence improvements �18,19�, interpolation methods
�18�, and variable cell methods �20�, resulting in a suite of
tools that puts it at the forefront of materials science predic-
tive methodologies, at least for polymeric systems. These last
SCFT developments have not been mirrored in DFT. It
would be extremely valuable to transfer these SCFT ad-
vances to DFT so that nonpolymeric materials could be stud-
ied with similar predictive power. As the SCFT and DFT
formalisms are entirely compatible, such a transfer would
seem most natural. Indeed, DFT and SCFT have been used
together in other polymer-type applications in the past
�21–24�. Here, all polymer aspects are removed and a DFT
theory based on SCFT methodology is examined for liquid
crystal, colloidal, or molecular systems. The method is
adaptable to a wide variety of existing DFTs.

Given a Hamiltonian, the free-energy functional for an
arbitrary system can be derived through the standard SCFT
approach, which is based on a continuous delta function sub-
stitution in a particle-based partition function in order to get
a field-based representation; this is described in depth in Ref.
�15�. If the system has hard core interactions, such as one
might expect in molecular, colloidal, or liquid crystal sys-
tems, the hard core potential term can be carried through
from the Hamiltonian without being specified, resulting in an
unspecified free-energy term that can be approximated in any
number of DFT ways. This is a different approach from stan-
dard DFT derivations but results in the same free-energy
expressions. For concreteness, consider a system of hard rods
comprised of either tangent or fused hard spheres of diameter
�. The dimensionless free energy per volume V of this sys-
tem would be
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where kB is Boltzmann’s constant and T is the temperature.
Further, N is the number of spheres in each rod, �s is the
overall number density of spheres, and ��r� is the local num-
ber density of spheres. Q is given by

Q =
 dudr exp�− 

�=1

N

w�r + �� − 1�lu�� �2�

and is the partition function of a single-rod subject to the
dimensionless chemical potential field w�r�, where this w�r�
field determines the distribution of spheres ��r�. Likewise,
the distribution of spheres ��r� determines the distribution of
the chemical potential field w�r�. The system of mean-field
equations relating ��r� and w�r� is obtained by varying �1�
with respect to ��r� and w�r�, and these equations are then
solved for these two fields self-consistently. The vector u in
�2� represents orientational dependences, and l is the distance
between spherical centers in the rod. The fourth term on the
right-hand side of �1� is an attractive mean-field term based
on a two-body Lennard-Jones potential �att; the strength of
this potential is adjusted through a parameter �, and the mini-
mum of the potential falls at a separation rmin=21/6�. Only
the attractive part of the potential is used following the
Weeks, Chandler, Anderson approach �25� �see also refer-
ences in Ref. �10��. The last term Fex on the right-hand side
is the excess �beyond ideal gas� free energy and represents
the hard-sphere repulsion. In the following, for clarity, one of
the simplest approximations that gives good qualitative re-
sults is chosen, however many different DFT terms could be
used in principle, and so the methodology of the SCFT ap-
proach is general enough to admit quantitative results. The
weighted density approximation �WDA� of Tarazona �26� is
used here since �1� can be reduced to the interaction site
model of Talanquer and Oxtoby �27� for hard dumbbells
when written in the grand canonical SCFT formalism �28,29�
while ignoring orientational dependences and setting N=2.
Other approximations are also possible �30�.

While stressing that almost any liquid crystalline, molecu-
lar, or colloidal shape may be represented with generaliza-
tions of the above formalism, it is instructive to show how
SCFT methods can predict the crystal structures of systems
without any a priori knowledge through a concrete example.
To this end, let the system be simplified further to examine
rods comprising only two spheres each. Furthermore, al-
though �1� is written in three dimensions, let a two-
dimensional �2D� system be examined for clarity �31�. Such
2D homonuclear hard dumbbells have been studied in the
past with Monte Carlo simulations and free volume methods
�32�, although only for near tangent sphere systems. Here,
one would like to start with a small anisotropy—although
this is by no means required—and so the center-center sepa-
ration of the spheres is taken to be 0.33� using the method of
Cherepanova and Stekolnikov �33�. This system then roughly

corresponds to nitrogen N2 molecules adsorbed on a surface
�34�.

Using random initial fields w�r�, the self-consistent equa-
tions were solved using false-dynamics and Fourier methods,
together with a variation on the Anderson mixing technique
described in Ref. �19�. The resultant fields w�r� and ��r�
were substituted back into the two-dimensional version of
the free-energy expression �1�, which was then minimized
with respect to the calculation box size using a simplex
method to give a commensurate periodic structure �35,36�. In
some cases, greater accuracy was required for the free ener-
gies, and so a Fourier space interpolation scheme similar to
that described in Ref. �18� was used to increase the morpho-
logical resolution. The optimized free energies, together with
double-tangent constructions, allowed for the mapping of a
phase diagram for the 2D N2 system, displayed in Fig. 1. It
shows the gas, liquid, and solid phases of the system for
nearly all overall sphere number densities �37� and a wide
temperature range. The qualitative phases found are consis-
tent with the expected phases for similar systems studied in
both two and three dimensions using other approaches �see,
for example, Refs. �32,34,38��. A triple point is marked at a
dimensionless temperature kBT /�=0.4; although on the scale
of the diagram the left boundary of the coexistence region
stops slightly below 0.6, the inset shows the spinodal line
that extends much lower in temperature. The binodal line,
although it could not be distiguished within the present ac-
curacy of this work, should exist to the left �lower density
side� of the spinodal line, and it is anticipated that the gas
phase will continue to exist at lower temperatures but with a
phase line that is very close to a zero density value along
most of the left side of the diagram. At low temperatures, the
crystal phase forms roughly a herringbone pattern. An ex-
ample of this is shown in Fig. 2, which is for a number
density of �s�

2=1.4 and a reduced temperature of 0.1. A

FIG. 1. Phase diagram for a 2D N2 system. � is a parameter
setting the strength of the Lennard-Jones interaction. Phase bound-
aries have been smoothed to remove numerical noise. G /L denotes
gas-liquid coexistence, and L /C denotes liquid-crystal coexistence.
The crosses denoted with “2” and “3” indicate the locations of the
morphologies depicted in Figs. 2 and 3, respectively. The arrow
indicates the anticipated triple point. The inset shows the spinodal
line at low densities.
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blowup of the sphere-number density distribution for a spe-
cific molecule is shown in the lower left of Fig. 2. The her-
ringbone pattern forms spontaneously in the substrate-free
system, showing that it is very robust at low temperatures. At
lower densities or higher temperatures, a plastic crystal phase
is found, where the center of mass of the N2 molecules are
well localized, but the orientations are random. This is
shown in Fig. 3 for �s�

2=1.35 and kBT /�=0.4. Note the lack
of orientational ordering for the individual localized mol-
ecules compared with Fig. 2. The herringbone versus plastic-
crystal structures are more apparent if one looks at the angu-
lar distribution of the sphere-number densities shown in Fig.
4. The solid line is the herringbone structure, whereas the
dashed line is the plastic crystal orientational distribution.
Note that the latter is very uniform compared to the herring-
bone. The inset is a blowup of the plastic-crystal distribution,

showing that there is, on another scale, a structure very simi-
lar to the herringbone distribution. Indeed, no first-order
transition was found between these two structures; it is pos-
sible that the transition is just too weak to be observed within
present accuracy. On the other hand, the orientational distri-
bution never loses all herringbone structure even in the
seeming plastic-crystal phase as shown in the inset of Fig. 4.
This implies that a corresponding orientational order param-
eter would never reach zero, thus preventing the delineation
of a possible second-order transition. Instead, the herring-
bone and plastic-crystal phases seem to be most likely
different extremes of a single phase in two dimensions,
at least for this particular DFT approximation. It is likely,
the simplistic nature of the weight function of the present
DFT approach prevents the appearance of the first-order
transition that is observed in 3D simulations �34�. DFT
calculations in three dimensions do not predict any stable
plastic-crystal phase at all for molecules with the present
degree of anisotropy �38�; the present results are not incon-
sistent with this previous finding since the plastic-crystal
phase here is most likely not a separate phase from the
ordered phase, as previously discussed. It may be that the 2D
system does actually behave differently than the three-
dimensional system.

A simple 2D system with small-shape anisotropy has
been examined with a basic DFT functional in order to illus-
trate the ease with which whole-phase diagrams can be com-
puted in a fraction of the time required for most simulations
�39�. The SCFT methodology is independent of this simple
system or DFT functional, and can be applied to any number
of materials in order to predict the crystalline morphology
without any prior knowledge of the possible phases. A whole
suite of SCFT tools can in this way be transferred to the

FIG. 2. �Color online� Average density distribution �2��r� for
the 2D N2 system at �s�

2=1.4 and kBT /�=0.1. In the lower left
corner a blowup of the distribution in the vicinity of one localized
molecule is shown.

FIG. 3. �Color online� Average density distribution �2��r� for
the 2D N2 system at �s�

2=1.35 and kBT /�=0.4.

FIG. 4. Density distribution as a function of angle � �radians�
for the 2D N2 system. The solid line depicts the herringbone phase
at �s�

2=1.4 and kBT /�=0.1, while the dashed line is for the plastic
crystal phase at �s�

2=1.35 and kBT /�=0.4. The inset shows a
blowup of the plastic-crystal density distribution as a function of
angle. The data has been processed to remove numerical noise.
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study of nonpolymeric materials, allowing materials struc-
ture to be computationally anticipated with efficiency, ro-
bustness, and, if more advanced DFTs are used, quantitative
accuracy.

ACKNOWLEDGMENTS

This work was supported by the National Sciences and
Engineering Research Council �NSERC� of Canada. A major
part of the calculations were performed using SHARCNET .

�1� R. Evans, in Fundamentals of Inhomogeneous Fluids, edited
by D. Henderson �Marcel Dekker, New York, 1992�.

�2� G. J. Vroege and H. N. W. Lekkerkerker, Rep. Prog. Phys. 55,
1241 �1992�.

�3� E. Tareyeva and V. Ryzhov, e-print cond-mat/9712265.
�4� E. Velasco, L. Mederos, and D. E. Sullivan, Phys. Rev. E 66,

021708 �2002�.
�5� Z. Y. Chen, Phys. Rev. E 47, 3765 �1993�.
�6� A. M. Somoza and P. Tarazona, J. Chem. Phys. 91, 517

�1989�.
�7� D. Chandler, J. D. McCoy, and S. J. Singer, J. Chem. Phys.

85, 5971 �1986�.
�8� See also references and discussion by M. B. Sweatman, J.

Commun. Technol. Electron. 15, 3875 �2003�.
�9� For non-SCFT methods of examining systems without presup-

posed phases, see Y. Bohbot-Raviv and Z.-G. Wang, Phys.
Rev. Lett. 85, 3428 �2000�; M. Valera, R. F. Bielby, and F. J.
Pinski, J. Chem. Phys. 115, 5213 �2001�; D. Gottwald, G.
Kahl, and C. N. Likos, ibid. 122, 204503 �2005�.

�10� Interaction site model DFT has been extensively applied by
Frischknecht and co-workers to polymeric and related materi-
als. See, for example, A. L. Frischknecht, J. D. Weinhold, A.
G. Salinger, J. G. Curro, L. J. D. Frink and J. D. McCoy, J.
Chem. Phys. 117, 10385 �2002�; A. L. Frischknecht, J. G.
Curro, and L. J. D. Frink, ibid. 117, 10398 �2002�.

�11� M. W. Matsen, J. Commun. Technol. Electron. 14, R21
�2002�, and references therein.

�12� M. W. Matsen, in Soft Matter, edited by G. Gompper and M.
Schick �Wiley-VCH, Weinheim, 2005�, Vol. 1.

�13� H.-J. Woo and P. A. Monson, J. Chem. Phys. 118, 7005
�2003�.

�14� F. Drolet and G. H. Fredrickson, Phys. Rev. Lett. 83, 4317
�1999�.

�15� G. H. Fredrickson, V. Ganesan, and F. Drolet, Macromolecules
35, 16 �2002�.

�16� G. Tzeremes, K. Ø. Rasmussen, T. Lookman, and A. Saxena,
Phys. Rev. E 65, 041806 �2002�.

�17� K. Ø. Rasmussen and G. Kalosakas, J. Polym. Sci., Part B:
Polym. Phys. 40, 1777 �2002�.

�18� H. D. Ceniceros and G. H. Fredrickson, Multiscale Model.
Simul. 2, 452 �2004�.

�19� R. B. Thompson, K. Ø. Rasmussen, and T. Lookman, J. Chem.
Phys. 120, 31 �2004�.

�20� J. L. Barrat, G. H. Fredrickson, and S. W. Sides, J. Phys.
Chem. B 109, 6694 �2005�.

�21� R. B. Thompson, V. V. Ginzburg, M. W. Matsen, and A. C.
Balazs, Science 292, 2469 �2001�.

�22� F. Schmid, J. Phys.: Condens. Matter 10, 8105 �1998�.
�23� F. Schmid, J. Chem. Phys. 104, 9191 �1996�.

�24� M. Müller, L. G. MacDowell, and A. Yethiraj, J. Chem. Phys.
118, 2929 �2003�.

�25� J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phys.
54, 5237 �1971�.

�26� P. Tarazona, Mol. Phys. 52, 81 �1984�.
�27� V. Talanquer and D. W. Oxtoby, J. Chem. Phys. 103, 3686

�1995�.
�28� M. W. Matsen, Phys. Rev. Lett. 74, 4225 �1995�.
�29� The present work is in the NVT ensemble, consistent with

previous works using real-space SCFT methods without pre-
supposed phases. E. Reister and G. H. Fredrickson have re-
cently shown that this approach is also valid in the grand ca-
nonical ensemble; J. Chem. Phys. 123, 214903 �2005�.

�30� D. Duchs and D. E. Sullivan, J. Phys.: Condens. Matter 14,
12189 �2002�.

�31� Fluctuations mean that no true long-range order can exist in
2D solids, but this aspect has not been accounted for in the
present mean-field approach. Following the attitude of
Wojciechowski in Ref. �37�, this is to avoid complications and
because the structures found and the transitions between them
are believed to originate mainly from local molecular arrange-
ments.

�32� K. W. Wojciechowski, A. C. Brańka, and D. Frenkel, Physica
A 196, 519 �1993�, and references therein.

�33� T. A. Cherepanova and A. V. Stekolnikov, Chem. Phys. 154,
41 �1991�.

�34� The N2 system has been studied with Monte Carlo simulations
in three dimensions. See for example C. Vega, E. P. A. Paras,
and P. A. Monson, J. Chem. Phys. 97, 8543 �1992�, and ref-
erences therein.

�35� Here the term “commensurate” refers to a calculation box size
that supports the optimal periodic structure of the material,
rather than the commensurability of the structure with some
substrate, as is commonly meant when discussing adsorbed N2.

�36� This was an unrestricted minimization, which brings into play
questions of vacancies in the determined structures that are
beyond the scope of the present discussion.

�37� Wojciechowski gives a formula for the maximum packing of a
dumbbell system in two dimensions: K. W. Wojciechowski,
Phys. Rev. B 46, 26 �1992�. The term �3/2 of his Eq. �1�
should be corrected to �3/2. From this formula, the maximum
packing density for d*=0.33 is �1.68. In this work, the phase
diagram only goes to 1.4 due to numerical limitations.

�38� J. D. McCoy, S. J. Singer, and D. Chandler, J. Chem. Phys.
87, 4853 �1987�.

�39� At high densities, Monte Carlo or molecular dynamics simula-
tions of this system would be expected to take at least two
orders of magnitude longer to perform than the present mean-
field approach.

R. B. THOMPSON PHYSICAL REVIEW E 73, 020502�R� �2006�

RAPID COMMUNICATIONS

020502-4


