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Anomalous transport in tilted periodic potentials is investigated within the framework of the fractional
Fokker-Planck dynamics and the underlying continuous time random walk. The analytical solution for the
stationary, anomalous current is obtained in closed form. We derive a universal scaling law for anomalous
diffusion occurring in tilted periodic potentials. This scaling relation is corroborated with precise numerical
studies covering wide parameter regimes and different shapes for the periodic potential, being either symmetric
or ratchetlike.
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In recent years we have witnessed an increasing interest
in dynamical processes that occur in systems exhibiting
anomalous diffusive behavior, possessing prominent interdis-
ciplinary applications that range from physics and chemistry
to biology and medicine �1�. The benchmark of anomalous
diffusion is the occurrence of a mean-square displacement of
the form ��r2�t��� t�, where ��1. Depending on the
anomalous diffusion exponent � the motion can either be
subdiffusive �0���1� or superdiffusive ���1�.

In the following we focus on the subdiffusive regime.
Examples for subdiffusive transport are very diverse, encom-
passing phenomena such as charge-carrier transport in amor-
phous semiconductors, nuclear magnetic resonance, diffu-
sion in percolative and porous systems, transport on fractal
geometries, and dynamics of a bead in a polymeric network,
as well as protein conformational dynamics �1–3�. Another
topic that recently gained attention is the transport of Brown-
ian particles in the presence of a periodic force, relevant
in Josephson junctions, rotating dipoles in external fields,
superionic conductors, charge density waves, synchroniza-
tion phenomena, diffusion on crystal surfaces, particle sepa-
ration by electrophoresis, and biophysical processes such as
intracellular transport �4–6�.

In this work, we present intriguing results for anomalous
diffusion and transport under the combined action of a peri-
odically varying spatial force and an external constant bias
F. In particular, we derive a closed form expression in terms
of two quadratures for the fluctuation-assisted current and its
corresponding nonlinear mobility. Furthermore, we establish
a universal scaling relation for diffusive transport that is
valid in tilted, corrugated nonlinear periodic potentials.

We start out by presenting a derivation of the fractional
Fokker-Planck equation �FFPE� from a space-continuous
limit of a continuous-time random walk �CTRW�. Our deri-
vation involves nearest neighbors jumps only; moreover, it
provides insight and complements prior treatments in Refs.
�1,7,8�.

Derivation of the FFPE from the CTRW. We study a
CTRW characterized by the probability distributions �i���
for the residence times �, considering only jumps between
nearest-neighbor sites on a one-dimensional �1D� lattice �xi	,

with lattice period �x. Such a CTRW is described by a gen-
eralized master equation �GME� for the site populations
Pi�t�, reading �9–11�

Ṗi�t� = 

0

t

�Ki−1
+ �t − t��Pi−1�t�� + Ki+1

− �t − t��Pi+1�t��

− �Ki
+�t − t�� + Ki

−�t − t���Pi�t��	dt�, �1�

where the Laplace transform of the kernel Ki
±�t� is related to

the Laplace transform of the residence time distribution

�RTD� via K̃i
±�s�=qi

±s�̃i�s� / �1− �̃i�s��. The quantities qi
± are

the splitting probabilities to jump from site i to site i±1,
obeying qi

++qi
−=1.

Choosing for the RTD the Mittag-Leffler distribution,

�i��� = −
d

d�
E��− ��i���� , �2�

one obtains K̃i
±�s�=qi

±�i
�s1−�. Here E��z�=�n=0

	 zn /
�n�+1�
denotes the Mittag-Leffler function and the quantity �i

−1 is
the time-scaling parameter at site i. The corresponding GME
can be recast as a fractional master equation �FME� �12,13�,
reading

Ṗi�t� = 0D̂t
1−��f i−1Pi−1�t� + gi+1Pi+1�t� − �f i + gi�Pi�t�	 ,

�3�

where the symbol 0D̂t
1−� stands for the integro-differential

operator of the Riemann-Liouville fractional derivative act-
ing on a generic function of time ��t�, as �1,2,14�

0D̂t
1−���t� =

1


���
�

�t



0

t

dt�
��t��

�t − t��1−� .

The quantities f i=qi
+�i

� and gi=qi
−�i

� will be referred to as
fractional forward and backward rates. Using the normaliza-
tion condition for the splitting probabilities one obtains that
�i= �f i+gi�1/�, and qi

+= f i / �f i+gi� and qi
−=gi / �f i+gi�, in terms

of the fractional rates. For an arbitrary potential U�x� one can
set
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f i = ���/�x2�exp�− 
�Ui+1/2 − Ui�� , �4a�

gi = ���/�x2�exp�− 
�Ui−1/2 − Ui�� . �4b�

Here Ui�U�i�x� and Ui±1/2�U�i�x±�x /2�, with U�x� the
total potential, 
=1/kBT is the inverse of temperature, and
�� is the anomalous diffusion coefficient with dimension
cm2 s−�. The form �4� of the fractional rates ensures that the
Boltzmann relation is satisfied, f i−1 /gi=exp�
�Ui−1−Ui��.

By use of the Laplace-transform method one can show
that the FME �3� can be brought into the form �15�

D*
�Pi�t� = f i−1Pi−1�t� + gi+1Pi+1�t� − �f i + gi�Pi�t� , �5�

where the symbol D*
� on the left-hand side denotes the

Caputo fractional derivative �14�,

D*
���t� =

1


�1 − ��
0

t

dt�
1

�t − t���

�

�t�
��t�� .

Let us introduce the finite difference operator � /�x,
�P�x , t� /�x= �P�x+�x /2 , t�− P�x−�x /2 , t�� /�x, which in
the limit �x→0 yields the partial derivative operator � /�x.
Using the fractional rates �4� the FME �5� can now be rewrit-
ten as

D*
�P�xi,t� = ��

�

�x

e−
U�xi�

�

�x
e
U�xi�P�xi,t�� , �6�

where P�xi , t�= P�i�x , t�= Pi�t� /�x. By taking the continuous
limit in Eq. �6� one obtains the FFPE,

D*
�P�x,t� = ��

�

�x

e−
U�x� �

�x
e
U�x�P�x,t�� , �7�

which can be rewritten in the well-known form with the
Riemann-Liouville fractional derivative on the right-hand
side �1,7�,

�P�x,t�
�t

= �� 0D̂t
1−� �

�x

e−
U�x� �

�x
e
U�x�P�x,t�� . �8�

Biased diffusion. For a constant force F the potential reads
U�x�=−Fx and the fractional rates �4� become site indepen-
dent, f i� f and gi�g, satisfying the Boltzmann relation, i.e.,
f /g=exp�
F�x� for any finite value of �x. Using the
Laplace transform one finds the solutions of Eq. �5� for the
mean particle position and the mean-square displacement of
anomalous biased Brownian motion �16�,

�x�t�� = �x�0�� + �x�f − g�t�/
�� + 1� , �9a�

��x2�t�� = ��x2�0�� + �x2�f + g�t�/
�� + 1�

+ � 2


�2� + 1�
−

1


2�� + 1�
��x2�f − g�2t2�.

�9b�

With respect to the case of normal diffusion the expres-
sion for the mean-square displacement contains, besides a
thermal contribution �t�, a ballisticlike term proportional to

t2�. As a consequence, a value ��1 does not necessarily
imply subdiffusive behavior. In fact, in the presence of bias
for 1 /2���1 superdiffusion takes place.

For a finite bias F, the ballistic term in Eq. �9b� equals
zero only in the case �=1, for which normal Brownian mo-
tion is recovered. From Eqs. �9a� and �9b� one obtains then a
generalized nonlinear Einstein relation, which is nonlinear in
force and valid for a finite space step �x,

��x2�t�� − ��x2�0��
�x�t�� − �x�0��

= �x coth�F
�x/2� . �10�

In the limit F→0, Eq. �10� yields the well-known Ein-
stein relation ��=1�, �� /���0�=1/
, between the thermal
diffusion coefficient,

�� = 
�� + 1�lim
t→	

��x2�t��F=0

2t� , �11�

and the linear mobility ���F=0�, with the nonlinear mobility
���F�=v��F� /F being related to the anomalous current v�

�see below�, i.e.,

���F� = 
�� + 1�lim
t→	

�x�t��
Ft� . �12�

The same Einstein relation is valid also between the submo-
bility and the subdiffusion coefficient for any ��1 �17�, as
the ballistic term in the mean-square displacement �9b� van-
ishes for F=0.

However, a relation analogous to the generalized nonlin-
ear Einstein relation �10� ceases to be valid for ��1 for any
finite F, as the mean-square displacement becomes domi-
nated by the ballistic contribution in the long-time limit. In-
stead, from Eqs. �9a� and �9b� one obtains the following
asymptotic scaling relation:

lim
t→	

��x2�t��
�x�t��2 =

2
2�� + 1�

�2� + 1�

− 1. �13�

This result no longer contains the fractional transition rates
and holds true independent of the strength of the bias F and
the temperature T. The relation �13� has been obtained in
�18� for continuous-time random walkers that are exposed to
a constant force. As a main finding of this work we prove
below that this very relation holds true universally for the
nontrivial case of tilted nonlinearly corrugated potentials.

Tilted periodic potentials: fractional Fokker-Planck cur-
rent. We next study the case of a periodic potential with
period L in the presence of a constant force F. Towards this
goal, it is convenient to consider the FFPE �7�, in which the
Caputo derivative appears only on the left-hand side. Analo-
gously to the case of normal Brownian motion �4,5,19� one
obtains that the probability flux,

J��x,t� = − �� e−
U�x� �

�x
e
U�x�P�x,t� �14�

reaches asymptotically the stationary current value, i.e.,

D�
*�x�t�� = LJ� = v��F� = ���F�F . �15�

The anomalous current v��F� is given in closed form by
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v��F� =
�� L�1 − exp�− 
FL��



0

L

dx

x

x+L

dy exp�− 
�U�x� − U�y��	
. �16�

This result constitutes a first main result: It is the anomalous
counterpart of the current known for normal diffusion. It
obeys a form that mimics the celebrated Stratonovich for-
mula for normal diffusion with �=1 �4,19,20�. From Eq.
�15� the mean-particle position follows as

�x�t�� = �x�0�� + v��F�t�/
�� + 1� . �17�

Universal scaling in washboard potentials. We next show
that the relation in �13� is valid as well for anomalous trans-
port in washboardlike potentials. We prove this by mapping
the dynamics onto an equivalent CTRW, i.e., we consider a
discrete state reduction of the continuous diffusion process
x�t�: to this aim, we introduce a lattice with sites �x̂j = jL	,
located at the minima of the periodic part of the potential,

and study the RTD �̂ j��� for the hopping process between
sites �x̂j	. For such a system, the ratio q̂j

+ / q̂j
−=exp�
FL�

equals that of the constant force case, due to the choice �x
=L. Furthermore, the analogy between the solutions �9a� and
�17�, both exhibiting an asymptotic power law �t�, implies

the same form �̂ j����1/�1+� for �→	. In fact, for �̂ j���
���̂ j

−� /
�1−���1+�, with some suitable scaling coefficients

�̂ j, the corresponding kernels of the GME obey K̃j
±�s�

= q̂j
±�̂ j

�s1−� in the limit s→0. Therefore, by making use of
Tauberian theorems for the Laplace transform �11�, it follows
that the asymptotic solution �t→	� is of the form �9�, being
determined only by the asymptotic power-law behavior of

the RTD �21�, despite the fact that the values of f̂ and ĝ
depend on the chosen shape for the periodic potential. Be-

cause the result in �13� is independent of f̂ and ĝ, the scaling
relation thus still holds true. It is universal in the sense that it
holds independently of the detailed shape of the washboard
potential, the temperature T, and the bias strength F.

Numerical verification of universal scaling. We have nu-
merically tested the scaling relation �13� and the generalized
Stratonovich formula �16� through the simulation of the frac-
tional CTRW in tilted washboard potentials of various shapes
and for different parameter values for �, F, and dimension-
less T. In doing so, we not only investigate the archetype
case of a symmetric simple cosine potential U1�x�=cos�x�,
but as well a symmetric double hump potential U2�x�
=cos�x�+cos�2x� and an asymmetric, ratchetlike potential
U3�x�=sin�x�+sin�2x� /3.

In Fig. 1 we depict the scaled nonlinear mobility
kBT���F� /�� defined by Eq. �12� for the cosine potential.
The force is in units of the critical tilt Fcr, which corresponds
to the disappearance of potential minima and maxima. For a
given temperature T, all values of �� with � taken from the
interval, 0.1–1, coincide with Eq. �16� �continuous lines�. For
tilting forces that exceed F /Fcr=2 the dynamics approaches
the behavior of a free CTRW being exposed to a constant
bias. We further note that the regime of linear response at
low temperatures is numerically not accessible. This is so
because in this parameter regime the corresponding escape

times governing the anomalous fluctuation-assisted transport
become far too large �20�.

The universal scaling in tilted corrugated periodic poten-
tials is illustrated in Fig. 2, in which the asymptotic ratio
��x2�t�� / �x�t��2 is plotted versus � for the three different pe-
riodic potentials mentioned above. For a given � various
data are presented, corresponding to different potential
shapes and values of F and T. As one can deduce, these
points overlap, demonstrating that the ratio is independent of
bias and temperature, as well as the specific shape of U�x�.
At the same time, the data fit very well with the analytical
expression �13� �continuous line�.

As detailed above, the long-time behavior of the system is
determined only by the tail of the RTD. Since we are inter-
ested in the asymptotic behavior �t→	�, we have used in the
numerical simulations the Pareto distribution �0���1�,

�i��� =
�b�i

�1 + b�i��1+� = −
d

d�

1

�1 + b�i��� . �18�

This distribution, with b=
�1−��1/�, has precisely the same
asymptotic form as the Mittag-Leffler distribution �2�. For

FIG. 1. �Color online� The scaled nonlinear mobility
kBT���F� /�� is depicted for the case of a tilted cosine potential
versus F /Fcr. The numerics for different temperatures T and differ-
ent � values, varying between 0.1–1, fits the analytic prediction
�16� �continuous lines� within the statistical errors.

FIG. 2. �Color online� Universal scaling: Asymptotic values of
the ratio ��x2�t�� / �x�t��2 as a function of the parameter � for
anomalous diffusion. All the points corresponding to the same � but
different values of F and T match the function given in Eq. �13�
�solid line� within the statistical errors. We use three different tem-
peratures: T=0.01 with the bias F ranging between 0.9–2.0; corre-
spondingly, T=0.1, F=0.7–2.0, and T=0.5, F=0.4–2.0. The open
triangles correspond to the cosine potential U1�x�, the filled squares
to the double-hump potential U2�x�, and the open circles to the
asymmetric ratchet potential U3�x�; see the text.
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�=1 corresponding to a normal Brownian process we have
employed the exponential RTD �i���=�i exp�−�i��. In our
simulations we have assumed a space step �x�L such that
U��x��x�2U��x�, ensuring the smoothness of the periodic
potential. Each trajectory was assigned the same initial con-
dition x�t0�=x0. Then a residence time � was extracted ran-
domly from the RTD �18�, time was increased to t1= t0+�,
and the particle was moved either to the right or left site with
respective probabilities qi

+ and qi
−. Using this procedure we

computed the full random trajectory of the Brownian particle
�103 time steps at least�. The mean displacement and the
mean-square displacement were obtained as averages over
104 trajectories.

Conclusions. We have investigated the CTRW with
power-law distributed residence times in a periodic potential
in the presence of an external bias. The fractional Fokker-
Planck dynamics has been derived from the corresponding
space-inhomogeneous CTRW. The celebrated Stratonovich
solution for the stationary current in a tilted periodic poten-
tial has been generalized to the case of anomalous transport.

Moreover, we have proven that there exists a universal scal-
ing law �13�—relating the mean-square displacement and the
mean-particle position in washboard potentials—that does
not involve the exact form of the periodic potential, the ap-
plied bias F, and the temperature T. This universal scaling
has been verified by numerical simulations.

Our findings for the current and the mean-square fluctua-
tions can readily be applied to the diverse physical situations
mentioned in the Introduction. The versatile and widespread
use of the grand Stratonovich result for the stationary current
in case of normal diffusion can thus readily be put to pow-
erful use in all those multifaceted applications where the cor-
responding transport behaves anomalously.
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