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We discuss the application of the local lattice technique of Maggs and Rossetto �Phys. Rev. Lett. 88, 196402
�2002�� to problems that involve the motion of objects with different dielectric constants than the background.
In these systems, the simulation method produces a spurious interaction force which causes the particles to
move in an unphysical manner. We show that this term can be removed using a variant of a method known
from high-energy physics simulations, the multiboson method, and demonstrate the effectiveness of this cor-
rective method on a system of neutral particles. We then apply our method to a one-component plasma to show
the effect of the spurious interaction term on a charged system.
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I. INTRODUCTION

The long-range character of the electrostatic Coulomb in-
teraction lies at the root of the computational difficulties en-
countered in the simulation of many systems of biophysical
interest, in which one wishes to understand the thermody-
namics of a Coulomb gas of charged particles—or
macroions—moving in an environment of spatially varying
dielectric. Recently, Maggs and collaborators �1–4� have
suggested rewriting the problem of a classical Coulomb gas
in a local lattice framework in which each charged particle
responds only to the local electric field, which is also up-
dated so that Gauss’s law is respected at each point in the
simulation. Most applications of the original local algorithm,
as well as a variety of suggested improvements �5,6�, have
dealt primarily with situations in which the dielectric con-
stant is not spatially varying. In this case, the transverse �or
“curl”� part of the electric field, which is unconstrained in the
partition sum, decouples from the physics of the charged
ions, so that the method correctly calculates the classical
electrostatic energy of the charges.

In this paper, we consider situations in which the dielec-
tric constant becomes dynamical: i.e., is spatially varying,
and in a way that depends on the location of the charges in
the system, so that it changes in the course of the Monte
Carlo simulation. In a molecular dynamics simulation, for
example, one effectively determines the electrostatic energy
of the system at each step by solving the appropriate Poisson
equation �in the presence of the varying dielectric�. Of
course, the resulting energy expression still suffers from the
problem of having to include contributions from all pairs of
charged particles in the system. In the local lattice approach,
on the other hand, the unconstrained transverse part of the
functional integral over the electric field no longer decouples
from the charged particle dynamics and leads �2� to an ap-
parent attractive dipole-dipole interaction, even when the
system is completely electrically neutral, with zero classical
electrostatic energy. Although such interactions certainly ex-
ist at a quantum level �e.g., Casimir, Keesom, van der Waals
forces�, our interest here is in a purely classical calculation.

Our purpose in this paper is to show that the local algo-
rithm of Maggs et al. can be extended by addition of a set of

boson fields—with a completely local Hamiltonian—which
remove any unphysical contributions from the curl part of
the electric field, so that the thermodynamics reflects the
classical partition function of a charged system with electro-

static energy Hes=�dr�(D� 2 /2��r��), as desired. In Sec. II, we
describe in detail the structure of the transverse field contri-
bution in a local lattice formulation of the Coulomb gas. In
particular, we derive the form of the determinant induced by
this contribution. In Sec. III, we describe the use of a multi-
boson technique familiar in lattice gauge theory �“un-
quenched” quantum chromodynamics� to eliminate the spu-
rious determinant factor. In Sec. IV, we test the method by
calculating the density-density structure factor, both with a
system of neutral dielectric particles and with a one-
component charged plasma. Finally, in Sec. V, we summarize
our results and discuss the outlook for further applications.

II. TRANSVERSE MODE CONTRIBUTIONS IN SYSTEMS
WITH VARYING DIELECTRIC

In this section, we shall show how the local algorithm of
references �1–6� can be modified to prevent the appearance
of spurious dipolelike interactions that are not present in the
classical electrostatics of the system when the dielectric con-
stant varies both spatially and in the course of the simulation
�e.g., if there are mobile entities with dielectric different
from that of the ambient medium�. We illustrate the point
first in the case of a continuous system. Later, a spatial lattice
will be introduced to make the functional integrations pre-
cise.

Consider the partition function of a system consisting of
N free charges �mobile or fixed� ei at locations r�i, thereby
producing a free charge density

��r�� = �
i

ei��r� − r�i� , �1�

where the system is also described by a linear dielectric func-
tion �here assumed isotropic� ��r��. Note that in general the
dielectric function ��r�� may depend on the locations of the
free charges r�i, which may be embedded in regions of vary-
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ing dielectric. This dependence should be kept in mind, al-
though for notational convenience it will be suppressed in
the following. The electric displacement can be broken into
longitudinal and transverse parts using the general Helmholtz
decomposition,

D� �r�� = − ��r���� ��r�� + �� � A� �r�� �2�

=D� ��r�� + D� tr�r�� . �3�

As the transverse and longitudinal components are orthogo-
nal to each other, we have

� dr�
D� 2

��r��
=� dr�

D� ��r��2

��r��
+� dr�

D� tr�r��2

��r��
. �4�

If the constraint of Maxwell’s second law is explicitly
imposed the transverse part of the electric displacement van-
ishes and the electrostatic energy of the system is given by

Hes =
1

2
� dr�

D� ��r��2

��r��
�5�

and the canonical partition function for the system at inverse
temperature � becomes

Z =� 	
i=1

N

dr�ie
−�Hes, �6�

where D� � must be determined by first solving −�� · ���� ��=�,

from which one obtains D� � =−��r���� ��r��. Note that the �non-
existent� transverse part of the displacement field plays no
role in this result.

On the other hand, the partition function proposed in Ref.
�2� includes an integral over both the transverse and longitu-
dinal parts of the electric displacement and reads simply

Z� =� 	
i=1

N

dr�i	
r�

DD� �r���„�� · D� − ��r��…e−��/2��dr�D� 2/��r�� �7�

=� 	
i=1

N

dr�i	
r�

DD� ��r��DD� tr�r���„�� · D� � − ��r��…

� e−��/2��dr�D� ��r��2/��r��e−��/2��dr�D� tr�r��2/��r�� �8�

as a result of the identity Eq. �4�. It is apparent that the

integration over transverse degrees of freedom D� tr in Eq. �8�
necessarily introduces a dependence on the particle locations
r�i through the dependence on ��r�� absent in the conventional
electrostatic energy of Eq. �5�. The exact form of this spuri-
ous � dependence can be uncovered by considering the form
of Z� for the special case ei=0 of uncharged particles, where
D� =0 and the entire dependence on ��r�� derives from the
transverse part of the functional integral in Z�.

Of course, in the real world quantum fluctuations of the
transverse �and longitudinal� parts of the field do exist, and
would have to be included in a fully quantum-mechanical
treatment of the Coulomb gas problem. This is not, however,
the problem being addressed here, where we are computing

the purely classical partition function of a classical Coulomb
gas. Accordingly, the spurious interaction potentials induced
by the integration over transverse degrees of freedom in Eq.
�8� should not be identified with Keesom potentials, for ex-
ample, which have a quantum mechanical origin, and a
strength dependent on Planck’s constant, which appears no-
where in our classical partition function. Such non-
Coulombic potentials �whatever their origin—classical or
quantum� can, of course, be included phenomenologically in
our classical treatment as an explicit separate contribution to
the energy function �with an appropriate phenomenological
interaction strength�. For example, hydrophobic interactions,
which depend on intermolecular forces and thus are quantum
mechanical in origin, play a significant role in the organiza-
tion and function of molecular level biophysical structures
�e.g., membranes, proteins, and nucleic acids�. Hydrophobic
effects can be included empirically by adding to the electro-
static free energy a term proportional �with constant of pro-
portionality often called the “surface tension”� to the surface
area of the membrane, protein, or nucleic acid that is exposed
to water �7,8�.

Before investigating the special case of neutral particles,
we shall go over to a lattice discretization of the system. We
imagine a lattice Coulomb gas with displacement vector field
Dn	 defined on lattice links, where lattice sites are denoted n
and 	=1,2,3 indicating the spatial direction of the link. Like-
wise, it turns out to be convenient to associate a dielectric
value with each link �rather than site�, so that the dielectric
function on the lattice becomes �n	. For example, in prob-
lems involving macroions extending over several lattice sites
and with dielectric constant differing from that of the ambi-
ent medium, links crossing the surface of the macroion can
be chosen to have an appropriately interpolated value of the
dielectric constant. Alternatively, this can be regarded as a
generalization to allow nonisotropic systems where the prin-
cipal axes of the dielectric tensor coincide with the lattice
axes. The entire discussion given below can readily be gen-
eralized to the case of a completely general dielectric tensor
field. Introducing left �respectively, right� lattice derivatives


̄ �respectively, 
�, the Helmholtz decomposition of the dis-
placement field on the lattice becomes

Dn	 = − �n	
	�n + �
��

�	��
̄�An�, �9�

where the electrostatic potential �lattice site field� �n satisfies
the Poisson equation

− �
	


̄	��n	
	�n� = �n, �10�

�n = �
i

ei�nri
. �11�

In the absence of free charges, ei=0, the local form of the
partition function Z� becomes
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Z��ei = 0� 
 � 	
i=1

N

dr�iF��� , �12�

where the � dependence is entirely due to the transverse de-
grees of freedom and enters through the function

F��� =� 	
n	

dDn	���
	


̄	Dn	�e−��/2��n	Dn	
2 /�n	 �13�

=� 	
n

d
n	
n	

dDn	ei�n
n
̄	Dn	−��/2��nDn	
2 /�n	 �14�

=� 	
n

d
n	
n	

dDn	e−i�n	Dn	
	
n−��/2��n	Dn	
2 /�n	

�15�

=C	
n	


�n	� 	
n

d
ne−�1/2���n	�n	�
	
n�2
�16�

=C�	
n	


�n	det−1/2�− �
	


̄	�	
	� . �17�

In going from �13� and �14�, we have introduced an auxiliary
field 
n to implement the Gauss’s law constraint �for an ev-
erywhere neutral system�, allowing the Gaussian integration
over the displacement field Dn	 to be carried out explicitly.
The constants C and C� are independent of � and of no
further interest. The integration over the auxiliary 
n field
�also Gaussian� then yields the determinant of the indicated
operator, whose action on a lattice site field takes the explicit
form

M
n 
 �− �
	


̄	�	
	�
n = �
i=1

6

�ni
n − �
i=1

6

�ni
n+i,

�18�

where the index i now runs over both positive �i=1,2,3�
and negative �i=4,5,6� spatial directions, and �ni
�n+i,i−3 for
i=4,5,6.

In order to generate an ensemble of configurations based
on the partition function Eq. �6� arising from the purely
physical electrostatic energy, the spurious functional depen-
dence of F��� must be removed: in other words, we should
insert a factor

F−1��� = e−�1/2��n	 log��n	� det+1/2�M� �19�

into the partition integral �7� to remove the effect of the
transverse field modes. In the event that the dielectric func-
tion is truly spatially independent, or is spatially varying but
frozen throughout the simulation, adding the factor of F−1���
is unnecessary, as the transverse integration decouples from
the dynamics of the problem.

The problem that we are faced with here is well known:
positive �fractional or integral� powers of determinants of
local operators are intrinsically nonlocal, unlike negative
powers, which may be reexpressed as integrals over auxiliary

fields with local actions �cf. Eqs. �13� through �17��. In lat-
tice quantum chromodynamics �QCD�, for example, the in-
clusion of virtual quark-antiquark processes leads to pre-
cisely the positive power of the determinant of the Dirac
operator in the path integral for the system, greatly increas-
ing the difficulty of simulations in the full �“unquenched”�
version of the theory in comparison to the truncated
�“quenched”� version where the quark determinant is simply
dropped �10�.

In the next section, we shall show how the multiboson
technique introduced by Lüscher �9� for approximately com-
puting the positive power of quark determinants can be used
to write a purely local Hamiltonian in terms of a set of aux-
iliary scalars �“multibosons” in the lattice QCD language�
which is readily susceptible to Monte Carlo simulation and
will allow us to implement the correct electrostatic partition
function �6� for systems with general dielectric makeup.

III. ELIMINATION OF TRANSVERSE CONTRIBUTIONS
USING MULTIBOSON FIELDS

The representation of determinants of local operators by
integrals over multiple auxiliary scalar fields was first intro-
duced by Lüscher et al.�9� in the context of unquenched
lattice QCD. The essential point is to find a uniform poly-
nominal approximation to the function 1/s in the interval �
�,1� for small �. In terms of the complex roots of the poly-
nominal zk=	k+ i�k, a convenient choice is the Chebyshev
polynominal of order 2NB with

1

s
� P�s� 
 C	

k=1

NB

��s − 	k�2 + �k
2� , �20�

	k =
1

2
�1 + ���1 − cos

2�k

2NB + 1
� , �21�

�k = 
�sin
2�k

2NB + 1
. �22�

The representation of Eq. �20� can be extended to the deter-
minant of a real positive symmetric operator with spectrum
in the interval �0,1�

det+1/2�M� � 	
k=1

NB

det−1/2��M − 	k�2 + �k
2� , �23�

where the representation becomes exact in the limit
NB→� ,�→0. However, we shall see that accurate results
can be obtained with surprisingly small values of NB
�=number of auxiliary scalar fields, see below�.

The essential idea of the multiboson approach is to re-
place the determinant factors on the right of Eq. �23� by
integrals over a set of auxiliary fields �n

�k� , k=1,2 ,… ,NB,
with local actions, as follows
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k=1

NB

det−1/2��M − 	k�2 + �k
2�

= C� 	
k=1

NB

D��k�e−�k=1
NB ��k�

„�M − 	k�2+�k
2
…��k�

, �24�

where, once again, C is an irrelevant constant that can hence-
forth be neglected. As pointed out previously, our polynomi-
nal representation assumes that the spectrum of the operator
M in Eq. �24� lies in the interval �0,1�. Let us assume that
the dielectric function � of our system is bounded above by
the value �0 �frequently, in biophysical simulations, this is
�80, corresponding to the dielectric constant of an aqueous
ambient medium�. Recalling that the lattice Laplacian opera-
tor has largest eigenvalue equal to 12, one easily shows that
the operator

M 

1

K�0
�− 
̄	�	
	� �25�

has a spectrum contained in the unit interval provided
K�12. In the multiboson approach, the auxiliary scalar field
��k� is entrusted with resolving the spectrum of the operator
M in the neighborhood of 	k in a region of width �k �see
Ref. �9��. For k near 1 or NB ,�k is small and 	k is close to
zero or one, and only a small region of the spectrum is ac-
curately treated. We can eliminate the lack of resolution for
finite NB at the upper end of the spectrum by choosing K
somewhat larger than 12 �in the simulations reported below,
we typically take K=13�, but if the spectrum of M is very
dense near the origin, we will necessarily be forced to use a
large value of NB. Fortunately, in the systems we have so far
simulated, this does not appear to be the case. This is a
fortunate distinction from the case of lattice quantum chro-
modynamics, where chiral symmetry breaking necessarily
implies a dense spectrum of eigenvalues of the quark Dirac
operator at the origin. Instead, in the systems of concern to
us, the region with large dielectric �0 occupies almost all of
the volume of the system, and the spectral density of M
does not differ appreciably from that of the free Laplacian.

To summarize our proposal, we shall consider a system of
mobile charged entities �charges ei, locations r�i� with total
Hamiltonian

Htot = Hes + Vnc�r�i� , �26�

where the purely electrostatic energy Hes is given in Eq. �5�,
while all other non-Coulombic energy effects �exclusion,
Keesom, van der Waals, hard core, soft core, etc.� are in-
cluded in Vnc, with appropriate phenomenological values.
The latter are not typically problematic as they are essen-
tially short-range effects. From Eqs. �17�, �19�, and �24�, we
find that the correct expression for the partition function is

Z =� 	
i

dr�i	
n	

dDn	���
	


̄	Dn	 − �n�
� F−1���e−�Vnce−��/2��n	Dn	

2 /�n	, �27�

=� 	
i

dr�i	
n	

dDn		
kn

d�n
�k����

	


̄	Dn	 − �n�
� e−�Vnc−�1/2��n	 log��n	�e−��/2��n	Dn	

2 /�n	

� e−�k=1
NB ��k�

„�M − 	k�2+�k
2
…��k�

, �28�

where M is scaled as in Eq. �25� and the integrals over r�i are
taken to be sums when the charges are constrained to be on
lattice sites. The effective Hamiltonian appearing in the ex-
ponent terms of �28� is completely local: to simulate the
system, we need only update, in some conveniently chosen
order, �i� the locations r�i of the charged entities, �ii� the lat-
tice displacement field Dn	 �respecting locally the Gauss’s
law constraint�, and �iii� the NB auxiliary scalar fields ��k�, in
all cases according to the indicated Boltzmann weight.

IV. RESULTS

In order to see the effect of the additional dipolelike in-
teraction present in the uncorrected simulation and study the
effectiveness of our correction scheme, we have simulated a
system of neutral particles similar to the system studied in
Ref. �2�. In classical electrodynamics, neutral particles, even
those with a different dielectric constant from the back-
ground, do not interact and, therefore, the density-density
structure factor, S�q�, is constant as a function of q. In con-
trast, the simulations in Ref. �2� show that using the local
lattice approach �not corrected to remove the extra dipole
term� to simulate neutral particles with different dielectric
constants from the background results in a clearly noncon-
stant density-density structure factor. In this section, we
show that the multiboson method presented in this paper is
able to effectively remove the dipole terms so that the neutral
particle simulation gives a constant density-density structure
factor. We then apply the method to the more interesting case
of a one-component plasma with charged particles of differ-
ent dielectric constant than the background.

In the simulations described below, we have compared the
effect of using varying number of multiboson fields to deter-
mine the sensitivity of our results to the low eigenvalues of
the operator M discussed in the preceding section. In par-
ticular, we have simulated neutral systems with NB=4 boson
fields �and �=0.07� and charged systems with NB=4, 6, 8
�and �=0.07, 0.07, and 0.05, respectively�. It is instructive to
see the accuracy of the polynominal approximation P�s� to
1 /s for these choices by plotting the residual P�s�−1/s, as
shown in Fig. 1.

We first consider a system of 1000 neutral particles on a
163 lattice. The particles are constrained to the lattice site and
only one particle is allowed on each lattice site. The back-
ground dielectric constant was set to 1.0, and the dielectric
constant of the particles was set to 0.2, except in the uniform
dielectric simulations where the particles had dielectric con-
stant 1.0. The dielectric constant along a link in the 	 direc-
tion from a lattice site n is defined through the relation

2

�n	

=
1

�n
+

1

�n+	

, �29�

where �n and �n+	 are either the background dielectric con-
stant or the particle dielectric constant depending on whether
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there is a particle on site n or site n+	, respectively. The

dimensionless inverse temperature, �̂=4�e2� /a, was set to
0.25. We performed 5000 Monte Carlo warmup sweeps, fol-
lowed by 40 000 Monte Carlo sweeps. To update the electric
field, we used the local heat bath method discussed in Ref.
�5�. To update the neutral particles at each Monte Carlo step
we, chose 1000 particles, which we attempt to move using
the methods discussed in Sec. III.

Figure 2 shows the density-density structure factor for
both the corrected and uncorrected simulation. In the uni-
form case, the structure factor is independent of q and is
given by N�1− �N−1� / �V−1��, where N is the number of
particles and V is the volume of the system �the number of
points in the lattice�. The spurious dipolelike interactions
present in the uncorrected simulation give a density-density
structure factor that differs significantly from the desired flat
structure factor of the uniform case, while the simulation
with the multiboson correction reproduces the analytically
calculated flat structure factor of the neutral system. The ac-

ceptance rate for particle moves drops from 30% in the un-
corrected simulation to 15% in the multiboson simulation.
The uncorrected simulation took 11 h to run on a single
processor workstation and the corrected simulation took 55 h
on a similar workstation.

After verifying that the multiboson method was able to
correctly remove the nonphysical dipole interaction from the
simulation of neutral particles, we applied the multiboson
technique to the simulation of a one-component charged
plasma. The particles in the system are positively charged
with one electron charge each and the background sites are
uniformly given enough negative charge so that the entire
system is charge neutral. The parameters of the system are
the same as in the neutral particle case except the lattice is a
323 lattice, there are 8000 particles are updated each Monte
Carlo step, and the dielectric constant of the particles in the
nonuniform case was taken to be 0.05. In this case, we have
also repeated the simulations with varying numbers of boson
fields �NB=4,6,8�.

In Fig. 3, we show the results for the density-density
structure function for three cases: the fully multiboson
corrected structure function for this system, the uncorrected
structure function switching off multiboson contributions,
and for a charged plasma with uniform dielectric ��part=�bg

=1.0�. It is apparent from the figure that the removal of the
spurious interactions induced by the transverse part of the
field in the nonuniform dielectric case results in a qualitative
modification of the shape of the structure function. Also, the
results differ significantly between the cases of uniform and
nonuniform dielectric. This difference may play an important
role in the behavior of systems from biological and chemical
physics, so it is important to be able to reliably calculate the
effect of having a nonuniform dielectric which changes dy-
namically in the course of the simulation. The results in Fig.
3 were obtained using NB=4 multiboson fields to estimate
the transverse electric field determinant.

Of course, the polynominal approximation Eq. �20� can-
not accurately represent very small eigenvalues of M, so it

FIG. 1. Residual from polynominal approximation used in the
multiboson correction factor for the simulations in this paper.

FIG. 2. Density-density structure factor for the neutral system.
Shown are the results from both a simulation with the multiboson
correction factor and an uncorrected simulation. The dotted line
gives the desired q independant structure factor.

FIG. 3. Density-density structure factor for the charged particles
in the one-component plasma. Shown are the results from the un-
corrected simulation, the simulation with the multiboson correction
factor, and a simulation where the dielectric constant is uniform.
The errorbars are smaller than the symbol size.
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is important to check the sensitivity of our results to the
number of boson fields used. This comparison, again for the
case of the charged one-component plasma on a 323 lattice
described above, is shown in Fig. 4. Certainly the results for
NB=4, 6, and 8 are in complete qualitative agreement over
the entire range of q. For larger lattices, one will need to

increase NB to deal with the larger dynamical range in the
eigenspectrum of M, and, as we saw previously, this in turn
results in a drop in the acceptance rate for particle moves. A
similar problem in the use of multiboson fields in un-
quenched QCD has been addressed �11� by use of a hybrid
scheme in which the number of multiboson fields is held
fixed, and the low eigenvalues of M treated exactly by a
Lanczos algorithm.

V. CONCLUSION

Systems from biological and chemical physics frequently
have mobile charged elements with different dielectric con-
stant from the background. The local lattice approach pro-
vides an efficient method to simulate these systems. Unfor-
tunately, a spurious force remains as an artifact of the
simulation method. This force can be efficiently removed
using a set of bosonic fields to approximate a nonlocal coun-
teracting force. This method is able to effectively remove the
spurious term in both neutral and charged systems.
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