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Stable fluid and solid particle phases are essential to the simulation of continuum fluids and solids using
smooth particle applied mechanics. We show that density-dependent potentials, such as ��= 1

2 ���−�0�2, along
with their corresponding constitutive relations, provide a simple means for characterizing fluids and that special
stabilization potentials, with density gradients or curvatures, such as ���= 1

2 �����2, not only stabilize crys-
talline solid phases �or meshes� but also provide a surface tension which is missing in the usual density-
dependent-potential approach. We illustrate these ideas for two-dimensional square, triangular, and hexagonal
lattices.
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I. SMOOTH PARTICLE APPLIED MECHANICS

Smooth particle applied mechanics—SPAM—was dis-
covered about thirty years ago �1,2�. It has become a useful
tool in simulating gases, fluids, and solids, and holds particu-
lar promise for problems involving large high-speed defor-
mation and failure. The main advantage of the method is
simplicity. SPAM closely resembles atomistic molecular dy-
namics and, in a variety of cases �3�, the SPAM particle
trajectories are isomorphic to those of molecular dynamics.

A smooth-particle code is less complicated than typical
grid-based continuum codes because the smooth-particle
method evaluates spatial gradients in a particularly simple
way, explained in more detail below. The main disadvantages
of the method are instability in tension �4� and the lack of
surface tension �5�. The present work introduces an idea—
potentials depending upon the local variation of the
density—designed to address those problems.

The basic smooth-particle approach is to represent all
continuum properties �the density �, the velocity v, the stress
tensor � , . . .� as interpolated sums of particle properties,
where the particles are described by “weight functions,”
expressing the range of influence of the particles in space.
The simplest weight function satisfying five desirable
conditions—�i� normalization, �ii� finite range h, �iii� a maxi-
mum at the origin, and �iv� and �v� two continuous deriva-
tives everywhere—is Lucy’s. Normalized for applications in
two-dimensional space Lucy’s weight function is as follows:

wLucy�r � h� =
5

�h2�1 −
r

h
�3�1 + 3

r

h
�

→ �
0

h

2�rw�r�dr 	 1.

In the present work, we will also use an even smoother ex-
tension of Lucy’s weight function, a normalized weight func-
tion with three continuous derivatives

wSmooth�r � h� =
7

�h2�1 −
r

h
�4�1 + 4

r

h
� .

In any case, the density at a point r is defined as the sum of
all the particle contributions at that point

��r� 	 �
j

mjw�r − rj� ,

so that the density associated with particle i is the density
evaulated there

�i = �
j

mjwij, wij 	 w�
ri − rj
� = w�rij� .

Other continuum properties at location r are likewise calcu-
lated as sums over nearby particles

f�r���r� 	 �
j

mjf jw�
r − rj
� → f�r� = �f�r���r��/��r�

=�
j

mjf jw�
r − rj
�/�
j

mjw�
r − rj
� .

It is important to note that, unlike the density ��ri�=�i,
the interpolated function f�r� at the location of particle j is
typically different to the particle property f j at that point,
f�rj�� f j.

Beyond using the point properties �f j� to define the field
properties f�r� the smooth-particle approach has the crucial
advantage that gradients of the field properties translate into
simple sums of particle quantities

���f�r = �f � ��r + �� � f�r 	 �r��
j

mjf jw�
r − rj
��
=�

j

mjf j�rw�
r − rj
� .

Expressions for the gradients of density, velocity, stress, and
energy make it possible to express the partial differential
equations of continuum mechanics as ordinary differential
equations for the evolution of the particle coordinates, ve-
locities, stresses, and energies �6�. The resulting “equation of
motion” for the particles is

v̇i = − �
j

��mP/�2�i + �mP/�2� j� · �iwij ,

where Pi is the pressure tensor associated with particle i.
Where the pressure is hydrostatic, and slowly varying in

PHYSICAL REVIEW E 73, 016702 �2006�

1539-3755/2006/73�1�/016702�5�/$23.00 ©2006 The American Physical Society016702-1

http://dx.doi.org/10.1103/PhysRevE.73.016702


space, it is noteworthy that the smooth-particle equations of
motion are exactly the same as the equations of molecular
dynamics, with the weight function w�r� playing the role of a
pair potential. In the simple case that the internal energy
depends only on volume �and not on temperature�, the pres-
sure is simply related to the internal energy per unit mass e

P = �2de/d� .

Specifying the density dependence of either the pressure or
the internal energy, in such a case, corresponds to giving a
full description of the equilibrium equation of state.

II. CONVERGENCE OF SMOOTH-PARTICLE AVERAGES

The evolving time-and-space-dependent smooth-particle
sums converge to continuum mechanics as a many-particle
limit, just as do the more usual grid-based approximations.
The range of the smooth-particle weight function, h, corre-
sponds to a few grid spacings. In practice, for an error level
of the order of 1 percent, the weight-function sums must
include a few dozen particles. Figure 1 shows the depen-
dence of density sums, �i=� jmjwij on the range of the
weight function for three regular two-dimensional lattices. In
typical applications, with h
3�V /N the density errors are of
the order of 1 percent.

The density curves in Fig. 1 correspond to an actual den-
sity of unity. The many crossings of the curves suggest that
energetic flows of highly inhomogeneous fluids would ex-
hibit a complex structure without any definite lattice struc-
ture while very slow flows might “freeze” into a least-energy
crystalline form. Simulations of the Rayleigh-Bénard prob-
lem �convection driven by a temperature gradient in the pres-
ence of gravity� support this surmise �7�. Low-energy, high-
pressure simulations can actually freeze, with the smooth
particles forming a locked lattice structure rather than flow-
ing. For fluids, this freezing behavior is undesirable. In Sec.
III, we consider the stress-free mechanical stability of the
three simplest two-dimensional lattice structures.

III. PHASE INSTABILITY FROM DENSITY POTENTIALS

When discrete particles are involved, there can be diffi-
culties in representing the smooth and continuous nature of

fluid flows. By analogy with atomistic molecular dynamics,
one would expect that regular lattice arrangements of par-
ticles would resist shear. In the atomistic case in two space
dimensions, the shear modulus G is of the same order as the
one-particle Hooke’s-law force constant evaluated from the
Einstein model

G 
 �Einstein 	
�2�

�x1
2 ,

where x1 is the displacement of a single test particle, particle
1, from its lattice site, with all the other particles fixed. For a
sufficiently simple density-dependent potential, we can esti-
mate the one-particle force constant �Einstein analytically.

Let us illustrate for the simplest possible density-
dependent potential,

�� 	 �
j

1

2
�� j − �0�2, � j = �

i

miwij ,

where �� is the total potential energy of the system, �0 is the
target density minimizing that energy, and all the particle
masses are set equal to unity, mj =1. The first derivative,

���

�x1
= �

j

��1 + � j − 2�0��xw�/r�1j ,

vanishes for

x1 = 0 → �1 = � j = �0.

The second derivative can be estimated by replacing the par-
ticle sum with an integral

�2��

�x1
2 = �

j

�xw�/r�1j
2 
 �
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r
�2

2�rdr =
90
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Figure 2 shows that this analytic result closely resembles the
detailed lattice sums for all three regular two-dimensional
lattices.

Nevertheless, our detailed investigation of this particular
choice of fluid model,

FIG. 1. Summed-up densities evaluated at regular-lattice par-
ticle sites for �from top to bottom at the left side of the plot� the
square, triangular, and hexagonal lattices. The range of Lucy’s
weight function varies from 2 to 5, where the overall density of the
lattice is unity and all the particles have unit mass.

FIG. 2. Comparison of the exact summed-up Einstein force con-
stant �Einstein with the approximate integrated estimate as a function
of the range h of Lucy’s weight function. The top-to-bottom order-
ing of the curves is �integrated�triangular�square�hexagonal�.
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E = � 1

2
�� − �0�2 ↔ P = �2�� − �0� ,

revealed that this expectation of a shear strength varying as
h−4 is unfounded. Instead, regular lattices, with a stress-free,
density-based potential corresponding to an athermal fluid
constitutive relation, show no shear resistance whatever, and
rapidly “melt.”

Numerical investigation shows that the square, triangular,
and hexagonal lattices, arranged at the target density �0, are
all unstable to small displacements. This can be shown by
using lattice dynamics, elastic theory, or molecular dynam-
ics. In every case, the regular lattices are unstable to a variety
of shear modes.

The perfect-crystal elastic constants �8,9� for this potential
can be calculated by two chain-rule differentiations of the
potential � with respect to the elastic strains

C11V =
�2�

�	xx
2 , C12V =

�2�

�	xx � 	yy
, C44V =

�2�

�	xy
2 ,

	xx =
�ux

�x
, 	yy =

�uy

�y
, 	xy =

�ux

�y
+

�uy

�x
.

Here u�r�= �ux ,uy� represents an infinitesimal displacement
from the perfect-lattice configuration. The resulting elastic
constants take the form of lattice sums

C11V = �
i
��

j

�x2�w�/r��ij�2
,

C12V = �
i
��

j

�x2�w�/r��ij���
j

�y2�w�/r��ij� ,

C44V = �
i
��

j

�xy�w�/r��ij�2
,

rij = �xij
2 + yij

2 , xij = xi − xj, yij = yi − yj .

For the square, triangular, and hexagonal lattices it is evi-
dent, by symmetry, that C11 and C12 are equal and that C44
vanishes. Thus, these lattices are all unstable to shear. The
single nonvanishing elastic constant C11=C12 is exactly half
the bulk modulus B. The range-dependence B�h� is shown in
Fig. 3 for all three lattice structures.

IV. PHASE STABILITY FROM LOCAL DENSITY
VARIATION

The results of Sec. III show that the smooth-particle fluid
model �correctly� is able to flow under an infinitesimal shear
stress. For solids, shear resistance is required. A simple po-
tential which enhances shear strength minimizes the gradient
of the density

��� 
 �
j

1

2
���� j

2.

This potential is minimized for regular lattices, in which

there can �by symmetry� be no density gradient at the par-
ticle sites. For systems with free surfaces—the details are not
considered here, but are elaborated in a forthcoming book
�10�—this potential also provides a surface tension, eliminat-
ing the tendency of smooth particles to form stringlike
phases. �Evidently the density gradient is maximized at the
“edge” or surface of a condensed phase so that a potential
varying as ����2 minimizes the extent of the surface.�

Figures 4 and 5 illustrate the enhanced stability of the
hexagonal lattice in the absence, and in the presence, respec-
tively of the density-gradient potential. In the one example
detailed here �which is typical of many we have investigated,
with various sizes, initial conditions, and crystal structures�
the individual particle trajectories with and without the
density-gradient potential are shown. Evidently, by choosing
the proportionality constants wisely, these potentials can be
tuned to reproduce desired flow stresses for solids modeled
with SPAM. This approach avoids many of the difficulties
involved in integrating the smooth-particle equations for the
stress rates, ���̇�→ ����.

Interestingly enough, even in the presence of the density-
gradient potential, the shear strength vanishes—to see this in
the simple case of a square lattice note that simple shear
��x
y� results in a lattice for which ��� still vanishes. In
fact, the instability can be seen by extending the simulation
of Fig. 5 to half a million Runge-Kutta time steps.

To guarantee the stability of the regular lattices an invari-
ant density-curvature potential ���� can be constructed

���� = 1
2 ��xx − �yy�2 + 2�xy

2 ,

�xx 	
�2�

�x2 , �yy 	
�2�

�y2 , �xy 	
�2�

�x � y
.

This potential vanishes for symmetric lattices such as the
square, triangular, and hexagonal, but ceases to vanish under
simple shear, thus stabilizing all those lattices. Detailed nu-
merical work bears this observation out. Because ���� al-
ready involves the first and second derivatives of the weight
function,

FIG. 3. Variation of the bulk modulus B=C11+C12=2C11

=2C12 with the range of the weight function h for three two-
dimensional lattices. The top-to-bottom ordering of the curves at
h=2.1 is �hexagonal�square�triangular�.
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��xx�i 	 �
j
�w�

y2

r3 + w�
x2

r2�
ij

,

for instance, forces derived from this potential involve the
third derivative w�. Energy can still be accurately conserved
provided that a weight function with three continuous deriva-
tives, such as the example given earlier,

wSmooth�r � h� =
7

�h2�1 −
r

h
�4�1 + 4

r

h
� ,

is used.

V. CONCLUSIONS

Density-dependent potentials can be used to simulate the
behavior of either fluids or solids from the standpoint of
smooth-particle simulation. By introducing potentials de-
pending upon the local variation of density, strength, and

surface tension can be introduced, providing a useful model
for solids. Surface tension can also be introduced by using
combinations of weight functions with different ranges �5� or
by introducing ad hoc pair potentials �11�. We think that the
present density-based approach has æsthetic advantages over
these ideas. We believe that the idea of using density-based
potentials will prove fruitful in a wide variety of high-strain-
rate applications of smooth-particle methods.
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FIG. 4. Hexagonal-lattice particle trajectories without the
density-gradient potential. Initially the particle displacements were
chosen randomly, with zero sum and with an initial rms value of
���r2�=0.02. The range of Lucy’s weight function is h=3 with the
density and the particle mass both chosen equal to unity. The
elapsed time �40 000 fourth-order Runge-Kutta time steps
dt=0.05� is about 80 Einstein vibrational periods ��Einstein
0.05�.
��= 1

2 ���−�0�2. The boundaries are periodic.

FIG. 5. Hexagonal-lattice particle trajectories with the density-
gradient potential ���= 1

2 �����2. Initial conditions and length of
the simulation are identical to those of Fig. 4. �=��+���

= 1
2 ����−�0�2+ ����2�.
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