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Diffusion of monochromatic classical waves
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We study the diffusion of monochromatic classical waves in a disordered acoustic medium by scattering
theory. In order to avoid artifacts associated with mathematical point scatterers, we model the randomness by
small but finite insertions. We derive expressions for the configuration-averaged energy flux, energy density,
and intensity for one-, two-, and three-dimensional (3D) systems with an embedded monochromatic source
using the ladder approximation to the Bethe-Salpeter equation. We study the transition from ballistic to
diffusive wave propagation and obtain results for the frequency dependence of the medium properties such as
mean free path and diffusion coefficient as a function of the scattering parameters. We discover characteristic
differences of the diffusion in 2D as compared to the conventional 3D case, such as an explicit dependence of

the energy flux on the mean free path and quite different expressions for the effective transport velocity.
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I. INTRODUCTION

The ongoing interest in the field of classical waves in
complex media is caused by the importance of detection and
imaging techniques based on wave propagation and scatter-
ing. This ranges from electromagnetic waves in optical and
near infrared tomography [1] and microwave radars [2] to
acoustic waves in ultrasonics [3] and geophysics [4]. Com-
plexity is often associated with inhomogeneities that cause
scattering which considerably complicates most imaging
processes. However, when used cleverly, the scattered field
can also be used to improve imaging [5]. Although length
scales (with respect to the wavelength) and the degree of the
disorder may vary considerably from field to field, methods
and results have been shown to be interchangeable without
much difficulty [6]. Recent topics of interest include local-
ization of classical waves [7,8], the transition from ballistic
to diffusive wave propagation [9], acoustic time-reversal im-
aging [10], etc. Direct simulation by the exact solution of a
well-known Helmholtz wave equation for a given realization
of the medium is often the method of choice for given appli-
cations. The drawbacks of the brute force computational ap-
proach are the limited system size and statistics that can be
achieved with given computer resources as well as the diffi-
culty to distill general principles out from the plethora of
output data. The need for simple models with transparent
results therefore remains.

An analytic theory of wave propagation in disordered me-
dia necessarily relies on simple model scatterers, for which
point scatterers, i.e., (regularized) & functions in real space,
are often chosen [11,12]. Unfortunately, the scattering re-
sponse of a single point scatterer can become noncausal, a
pathological behavior that can not be solved by a simple
momentum cutoff [13]. Especially for the study of the fre-
quency dependence over a wider range it is therefore neces-
sary to use more realistic model scatterers.

In this paper we study a simple but not unrealistic experi-
ment for the determination of the scattering properties of
scalar waves in a disordered bulk material. A signal is emit-
ted by a source and detected by a receiver, both embedded in
the medium at sufficiently large distances from the bound-
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aries. Ultimately, we are interested in the detector signal
caused by a pulsed (broadband) signal emitted by the source.
After a first arrival we then expect the so-called coda that
arrives at later times due to multiple scattering at the random
scatterers [ 14]. However, combining both the effects of mul-
tiple scattering and the full frequency dependence of the
scattering processes renders an analytical treatment difficult
without additional approximations, such as a complete ne-
glect of the frequency dependence of the scattering ampli-
tudes when fitting the diffusive halo. In order to understand
how to justify certain approximations and eventually find
better ones, we have carried out a study of the frequency
dependence of the scattering properties of random media. We
concentrate on the steady state in the presence of strictly
monochromatic sources, which distinguishes the present
work from related studies of the propagation of narrow band
pulses [15,16]. As main results we obtain the frequency de-
pendence of macroscopic effective medium properties such
as the mean free path and the diffusion constant that depend
on the microscopic parameters of the random scatterers.

When the ratio between source-receiver distance and
mean free path is small, wave propagation is predominantly
ballistic. When this ratio is large, energy and intensity propa-
gation is governed by the diffusion equation [12,15]. Both
these regimes are well understood. However, many imaging
applications operate on length scales where the mean free
path and the source-receiver distance are comparable. This is
especially the case in geophysics where mean free paths
range from a few hundred meters up to tens of kilometers
[17]. The behavior at this crossover regime between ballistic
and diffuse wave (intensity) propagation is of considerable
interest [9] and also the subject of the present study.

Here we present an analytical formalism on monochro-
matic wave intensity and energy propagation in one-
dimensional, two-dimensional, and three-dimensional (3D)
homogeneously disordered media using realistic model scat-
terers. We develop our formalism in real space, using a point
source assumption, instead of incoming plane waves, an ap-
proach that is more natural for acoustic waves, but not often
used in this field [18]. We determine the relative contribu-
tions of diffusively and coherently propagated waves as the
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source-receiver distance increases. We did not find many the-
oretical studies of wave propagation in two-dimensional ran-
dom media in the literature [6,19], although several experi-
ments on quasi-2D systems have been carried out [15,20].
Another possible test for our 2D theory is comparison with
numerical studies, which for very large systems are much
cheaper than in the 3D case.

The remainder of this paper is organized as follows. In
Secs. II-1V we start by defining our model system and the
basic equations, addressing the scattering matrices of single
scatterers and discussing the average amplitude propagators
in the frequency domain. The intensity, energy flux, and en-
ergy density are discussed in Sec. V. Results on the fre-
quency dependence of the diffusion constant and its depen-
dence on the model parameters are discussed in Sec. VI.
Generally, the results for 1D systems are easily obtained,
whereas our results for 3D systems agree with findings pre-
viously reported by others. The mathematics in the 2D case
is not trivial, however, and the derivations are summarized in
the Appendix. We end with the conclusions.

I1. DEFINITIONS AND BASIC EQUATIONS

A. Microscopic equations

We describe the propagation of (scalar) acoustic waves in
a microscopic model system. Specifically, we consider a 1D,
2D, or 3D acoustic medium with wave velocity ¢, and a
mass density p,. The medium contains n randomly distrib-
uted scatterers per unit length, area, or volume and we treat
the dilute limit in which the average distance between scat-
terers is much larger than their radius a. The internal wave
velocity of a scatterer is c;,, and, for simplicity, the difference
in mass density with the surrounding medium is disregarded.
The waves are emitted by a monochromatic point source
oscillating at frequency w positioned at the origin. The wave
amplitude ¢, related to the pressure by p,=d,i, and to
local particle velocity by Va,=—p61Vl/Iw, then obeys the wave
equation

[V2 = c2(0) 31, (r31) = = Qpo 8 (r)cos(wr). (1)

The source term chosen here corresponds to a volume injec-
tion term, with 8“9 the Dirac delta function and d the dimen-
sion. The source emits plane waves for 1D, cylindrical waves
for 2D and spherical waves for 3D media. In all cases Q is in
units of length per unit time. The wave velocity profile of the
entire medium ¢(r) contains the information of the positions
of the scatterers (in 1D r=x).

The Green function of the Helmholtz equation (1) in the
real space and frequency domain reads

[V2+ 13— V(r;0)]G(r,r";0) = 8(r - '), (2)

where ky=w/c(, the length of the wave vector in the homo-
geneous medium. V(r;w) is the scattering or impurity poten-
tial, a sum over all individual scattering potentials
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N
V(r;w) = k(1 -y Oa—|r-r). 3)
i=1

O is the Heaviside step function, with ®(x)=0 when x<0
and 1 otherwise. The velocity contrast is defined as
y=cin/ €o sO that the single scatterer potential is “attractive”
when y<1 and “repulsive” when y>1. Equation (3) de-
scribes a spherical potential, however, the precise shape is
not relevant when the scatterers are sufficiently small com-
pared to the wavelength.

The amplitude of the wave field is related to the Green
function

Y(r:1) == Opy Refe™G(r,r' = 0; 0)}. 4)

The intensity 1,,(r;?) is the square of this expression. Related
physical properties are the energy flux

Fo (1) = (020 Vi (r:0), (5)
Po

and the energy density

W) = }m[Wr;r)P s Ol (©)

recognized as the sum of the potential and kinetic energy
contributions, respectively. For a monochromatic source with
frequency w these observables contain a time independent
contribution and a second term oscillating with frequency
2w. We concentrate on the constant part by time averaging
over one period. Expressed in terms of the Green function
this yields

2 2
10 = E260wr =00, (7)
2
F,(r)=— % Im{G(r,r' =0:0)VG'(r,r' =0;0)},
(8)
W (r)=%<|VG(r r' =00+ s G(r r’=0'w)|2>
w 4 RO S P =hel ).
)

B. Macroscopic equations

The properties of the wave field depend, via the Green
function, on the exact configuration of scatterers. However,
in large systems, different realizations of the ensemble give
similar responses (ergodicity). The similarities in the re-
sponse can be studied by calculating the configurational av-
erage. This average is the connection between the micro-
scopic description and the macroscopic (effective) medium
properties.

The macroscopic (diffusively scattered) intensity
of pulsed sources is sometimes described by the diffusion
equation

016618-2



DIFFUSION OF MONOCHROMATIC CLASSICAL WAVES

aI(r;1)y = DVXI(r;1)), (10)

where the brackets denote the configuration average and D is
the diffusion constant. In spite of neglecting the frequency
dependence of the diffusion constant in this case, this ap-
proximation is known to work well in cases where the
source-receiver distance is much larger than the mean free
path and the incoming pulse is a narrowband signal [12,15].
In the case of a narrowband pulse, one can also write a
transport equation for a wave packet with some inner and
outer frequencies. In this way the frequency dependence of
D can be derived [16].

In order to obtain the steady-state diffuse intensity of a
monochromatic wave field, the diffusion equation (10) is in-
sufficient. The energy density (and not the intensity) of the
wave field is the conserved property. Equation (10) is there-
fore only valid if the intensity is strictly proportional to the
energy density. In general, the averaged energy transport is
governed by Fick’s first law

(Fo(r)) == D(w)V(W,(r)), (11)

accounting for the frequency dependence of the diffusion
constant. In the steady-state problem and outside the mono-
chromatic source the proper Laplace equation is

VAW,(r) =0. (12)

III. SCATTERING MATRICES

Here we discuss the properties of a single model scatterer
in the system [N=1 in Eq. (3)]. The response of a system
containing a monochromatic source (in the origin), a receiver
(at r) and a single “s-wave” scatterer (at r;) can be expressed
in terms of Green functions of the homogeneous system
(v=0) [21]:

G(r’r’ = O,a)) = Go(r,w) + G()(|l' —-Tr;

;0)i(0)Gy(r; ).
(13)

This expression is valid in the far field limit (r,r;>\) and
when scattering is isotropic (A>a), where \ is the wave-
length.

The transition (¢-) matrix elements for s-wave scattering
are related to the scattering matrix elements by

2ikgR(w) (1D),
fo(w) = 2i[Sp(w) = 1] (2D), (14)
ZWiKal[So(w) -1] (3D).
In 1D, the s-wave scattering condition corresponds to
equivalence of 7, for either reflection or transmission. R(w) is
the reflection coefficient at a step discontinuity, and can be

obtained by imposing flux conservation across the scatterer
boundary. This gives [22]

Ro(l _ eiK04[l/‘y)

_ —iKOZa
R(w) =e 1— R%eik04a/7

. (15)

where Ry=(y—1)/(y+1). By imposing the same condition
we can derive an expression for the scattering matrix element
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of the s-wave channel S, [related to the scattering phase shift

& by Sp=exp(i28y)]. In 2D [23]

Wolroal YH (1ga) = 1 (igal Y)HE (x0)

Yo(roal Y)H (r0a) = J 1 (koal Y)HY (koa)”
(16)

In 3D the Bessel (J;) and Hankel (Hy)) functions are re-

placed by the spherical Bessel (j;) and Hankel (hg")) func-
tions. The scattering matrix element then simplifies to [22]

So(w)=—

cot(kgaly) + iy

S — p—i2Kpa .
olw)=e cot(rgaly) — iy

(17)

In this calculation of the scattering matrices, the differ-
ence in mass density is disregarded. However, including this
does not fundamentally alter the calculation (the scattering
matrix is still calculated from flux conservation). Further-
more, the scattering matrices calculated here describe acous-
tic wave scattering where only acoustic modes are allowed
inside the scatterers. When solid scatterers are considered
extra mode conversions from acoustic waves to shear waves
back to acoustic waves occur which considerably compli-
cates the calculation. In principle, this calculation can be
done [24] and it is known that the extra mode conversions
cause extra resonances in scattering properties of the scatter-
ing object [25].

IV. THE CONFIGURATION-AVERAGED PROPAGATOR

Now we switch to the case of multiple scattering at the
proposed model scatterers. The wave propagator in a disor-
dered medium after configuration averaging is dressed with a
self-energy 2. In reciprocal space it reads [12]

(G(kK ;) = =2 Qm*ek-K').
0

-k*-3(k;w)
(18)

When n, the density of scatterers, is low, interference be-
tween multiply scattered waves by different sites may be
disregarded. In this “single site approximation” the self-
energy does not depend on k and it is simply given by [12]

S(w) = niy(w). (19)

This approximation does not restrict the scattering
strength since 7 is the full scattering matrix of the single
scatterer. Interference effects from multiple scattering at dif-
ferent scatterers cause localization known to be important in
ID (where the localization length is of the order of the mean
free path) and in 2D media (where the localization length is
a transcendental function of the mean free path). In 3D, lo-
calization can be disregarded except for very strong scatter-
ing media [7]. Here we restrict ourselves to purely nonlocal-
ized transport phenomena, bearing in mind that we can
always find a region where this type of transport is dominant.

Fourier transforming Eq. (18) with self-energy given
by Eq. (19) to real space gives the averaged Green function
that depends only on the source-receiver distance
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[G(r;w)=(G(r,r'=0;w))]. In 1D the amplitude propagators
are exponentially damped plane waves

G(|x eiKe(w)‘X‘, (20)

W) =

1
2ik,(w)

in 2D they are cylindrical:

- ‘l—‘.Hgl)(Ke(w)r) if >0,
G(rio)=\ . (21)

ng2>(- k(w)r) if @ <0,

and in the 3D spherical

-1 .
G(rym) = 4wre”‘€(“’)’ (22)

[6]. In Egs. (20)—(22) «, is the “renormalized” effective
wave vector

(23)

K,(w) = \"Ké —nty(w) = sgn(w) k. (w) + i .
2U(w)

k{w)=|Re{x,(w)}| and l;l(w)=2|Im{Ke(w)} , the mean free
path. We retrieve the Green functions for the homogeneous
systems (G) by letting n or £, go to zero. Properties of the
averaged response to a pulsed signal can be studied by cal-

culating the Fourier transform to the time domain, as was
done in Refs. [13,26].

V. THE CONFIGURATION-AVERAGED INTENSITY
END ENERGY

We derive here the configuration averaged intensity, en-
ergy flux, and energy density in the frequency domain.

A. The Bethe-Salpeter equation

Ensemble averaging the intensity (7) gives us

0

2p2
(o)== M(r;w), (24)

where II(r;w)={G(r,r'=0;w)[>) is the average of the
squared Green function propagator. It is given by

H(r;w):l'[o(r;w)+fddrlddrddr3ddr4<G(r,r1;w))

X(G"(r,ry;0))I'(r, 1y, 13,145 0) X (G(rs,r’
=0;w)G (ry,r' =0;m)). (25)

This is the Bethe-Salpeter equation in position space, where
I1, is the coherent intensity (Il,=|(G)?) and I is the irre-
ducible vertex function. The lowest order approximation that
still accounts for multiple scattering is

[(ry,rp,r3,1r40)
=nl(w)8(r; - r3)8(r, - 1r,) 8(ry
—Ty), (26)

reducing the Bethe-Salpeter equation to
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H(r;w):HO(r;w)+nF(w)fddrll_lo(h'—rl s )I(r); ).

(27)

In reciprocal space this integral equation becomes a geomet-
ric series that can be summed as

y(k; w)
1 —nl(0)y(k;w)

II(k;w) = (28)

In order to be able to calculate the Fourier transform of

I1(k; w), an expression for I1y(k; w) is needed. It is calculated

as the Fourier transform of the coherent intensity and this
results in 1D in

28
Iy (k; ) = g , 29
N T PYREI TRy M

in 2D in
[
. ( V2,1 = (k1)
5 arcsin /—2
y(k: ) = £ I+ k)

AL+ (k)N 2x, L)% = (k)2

(30)
and in 3D in [12]

l tan(kl,
(ks ) = £ 2rctan(kly) 31)

The calculation of the vertex function I' is discussed in the
next subsection.

B. Energy conservation and the Ward identity

It is well known that for a given approximation for the
self-energy, the vertex correction cannot be freely chosen.
Here we take advantage of the flux conservation constraint to
obtain I without additional microscopic calculations. The
energy flux from the monochromatic source (on average)
points outwards. In the steady-state case the following con-
dition must hold for the averaged flux in direction n:

(m-F,(r)) = %n - T, (32)

where F is the unit vector in the radial direction. In 1D this
condition reads

(F,(x)) = sgn(x). (33)
The microscopic expression for the average energy flux is
(n-F,(r))
2
=— %Im{(G(r,r’ =0;0)n- VG (r,r' =0;0))}
2
=— Qo ;Jow Im{I1"(r; w)}, (34)

which defines the function II". The vertex function is the

same as for the intensity, so we can express [I" in reciprocal
space as
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ko)
1 = nl(o)yk;w)

1"k ; ) (35)

ﬂg(k;w) is the coherent energy flux in direction n that is
given by the Fourier transform of

M(r;0) = G(r;0)n - VG (r; o). (36)

In 2D and 3D the averaged microscopic expression for the
energy flux should match the macroscopic condition

. Cc
Im{IT"(r;w)} = - —n-F, (37)
r
which in reciprocal space reads
Tn 0\ d-1 ¢
Re{lI"(k;w)} =—(n - k)2 77;, (38)

where C is real and depends on frequency and the model
parameters. I1)(k; w) is an even function of k. We know how

ﬁg(k; w) depends on k, as the Fourier transform in 2D reads

o0

(k) =— (n - K)2mi f drl,(kr)rG(r;w)8,G"(r; ),
0

(39)
and in 3D

]

ﬂg(k;w) =—(n- 12)4771'] drj(kr)r*G(r;»)d,G" (r; ).
0

(40)

The Taylor series of f[(‘;(k; w) around k=0 only contains odd
terms. So, in the limit that k— 0, condition (38) can only be
fulfilled by Eq. (35) when

nT(w)zHSl(kzo;w). (41)

In 1D showing that condition (33) can only be fulfilled when
Eq. (41) is fulfilled as well is straightforward. The Ward
identities are relations between self-energy and vertex cor-
rections. We can identify Eq. (41) as the Ward identity for
our problem. We now have all the ingredients to calculate the
Fourier transform of Egs. (28) and (35) to calculate the av-
eraged intensity and energy flux respectively.

C. Flux

Using the Taylor expansions in the limit k— 0, we find an
expression for C [from Eq. (37)] in 2D and 3D:

fdrIm{G(r;w)a,G*(r;w)}rdd_l
c=22 . (42)

1
EHB‘(k =0; w)&iﬂo(k;w)lk:o

The average flux in 1D is obtained by directly Fourier trans-
forming Eq. (35):
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_ Q2p0|w| Ky
<Fw(-x)> = 8 K% + 1/(21f)2

sgn(x). (43)

We show how to calculate C in 2D case in the Appendix.
With the result, the projection of the average flux becomes

2
(n-F(r)) = Qgpiw| arctan(ZK,lf)n f (44)

r

while in 3D calculating C from Eq. (42) is straightforward
and the projection of the average flux then reads

Q2p0|w| Ky A
5 (477)2r2n -F. (45)

(n-F,(r)=

Letting /;— % (x,—|K|) recovers the flux of a monochro-
matic source in an unperturbed medium.

It is interesting to see that, in contrast to the 3D case, in
1D and 2D the average flux depends on both the mean free
path and the real part of the effective wave vector. So the
scattering mean free path limits the energy flux in 1D and
2D, but not in 3D. In a strongly scattering 2D medium, in
which the wave energy is not (yet) localized, the dependence
on the arctangent should be observable.

D. Intensity

The total average intensity is proportional to the propaga-
tor II(r; ), which can be obtained by calculating the Fourier
transform

1—[( . )_J ddk eik~r
PO @i (kw) - G (k= 0;0)

[Ty(k) is given by Eq. (29) in 1D, Eq. (30) in 2D, and Eq.
(31) in the 3D case. In 1D and 2D this integral diverges
because in the steady state case with a monochromatic
source, energy does not escape fast enough to infinity due to
the scatterers. This is analogous to the fact that the Poisson
equation (the diffusion equation in steady state with source
term) for a line or planar source has no well-defined solution.

The gradient of the intensity exists in all cases. In 1D it is
constant and the derivative of I1(x;w) is given by

(46)

1 1

aT1(x; @) = — _—
(63 0) Sgn(x)41f,<f+1/(2zf)2

(47)

The gradient of IT in 2D is expressed as an integral by

* dk kg, (kr)
o 271y (k;w) - 5 (k= 0; w)

VII(r;w)=—F =rf(r;w),

(48)

which defines a function f(r;w), that represents the gradient
in the F direction. We split this up into a coherent (coh) and
a “totally diffusive” (td) part and a crossover correction (cr)

f(r;w) =fcoh(r;w) +ftd(r;w) +fcr(r;w)' (49)

The coherent part is connected to the unscattered intensity,
therefore
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-0.04 2

0.05 ]

0
r/lf

1
Feon(rs@) = 3] Glr; @) == 2 Re{(x, +ir20 ) H}" (x,

+il21)r) X HY (k= il21)r)}. (50)
In the appendix it is shown that
fulrio) == I ey, )
with
8@ l)=1 : (52)

- + .
(2k,p)* " 2k,larctan(2k,1y)

This part decays as 1/r, much slower than the coherent and
crossover contributions. It is the part that describes the inten-
sity gradient when energy transport is completely governed
by Fick’s first law, so we refer to this term as the “totally
diffusive” part. When the total gradient is approximated by
just the sum of the coherent and the totally diffusive contri-
bution, the gradient first decays exponentially until the
source-receiver distance is approximately two to three mean
free paths and then the 1/r decay is dominant. However, in
this approximation it is neglected that close to the source the
diffusive field is different compared to the field far away
from the source. The third term of f, the crossover term,
describes this difference. In the Appendix it is shown that

©

dk
ftd(r;w)+fcr(r;w):—f ;Jl(kr)kzl_[sc(k;w), (53)

0
where

Hgl(k=0;w)l_l0(k;w)
Hal(k;w) - Ha'(k: 0;w)

I, (k; ) = (54)

We did not find an analytical expression for the integral (53)
and thus we need to evaluate it numerically. The crossover
term vanishes for r/[;—0 or r/[;>1 and peaks at
r/1;~0.3. Only around this value of /I, is the gradient (in
absolute value) overestimated significantly (up to 25%) when
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o

FIG. 1. r(Il,g+I1) in units of (1672,
(dotted line, right axis) and II./(I1.o,+11)
(solid line, left axis) as a function of r/l; (the
source-receiver distance in number of mean free
paths) for the 3D disordered medium.

(.C12o1) 30 syrum) O+

we approximate it by just the sum of coherent and “totally
diffusive” terms.

In 3D the Fourier transform (46) converges and the inten-
sity is well defined. We rewrite

1 I
(r:w) = Lo=rlly 43 4 ¢ (/] ) 55
(r;w) 16772rlf( e +3+e (rlly) (55)

where

[ Ae+1)° ) —&rll
h(r/lf)"fo d§<[2(§+1)—1n(1 +2/§)]2+712_1 e

(56)

We were also not able to solve Eq. (56) analytically. In
the 3D case, the intensity is a function of /; only (it does
not depend on «k,). Equation (55) consists of three terms
(IT=I1,., + T4 +11,,). The first term is proportional to the co-
herent intensity, the second term is the algebraically decay-
ing diffuse term (the only term that is not exponentially de-
caying). We plot the sum of the first and second term
multiplied by r [in units of 1/ (16772l )]in Fig. 1 as a function
of r/l; (on the right axis). The third term is again the cross-
over correction to the total intensity if we approximate IT by
only the first two terms. A plot of the crossover correction
divided by the sum of the first two terms is shown in Fig. 1
(left axis). The crossover term vanishes for r/{,—0 or r/l
>1 and peaks at r//;~0.3. It can thus be concluded that the
intensity can very well be approximated by just the sum of
coherently and totally diffusively propagated intensities, as
the total intensity in 3D is never overestimated by more than
5% using this approximation.

To complete this discussion we show the final results for
the gradient of the average intensity in 1D and 2D:

2 2

QZPO sgn(x)

ax<1a)(x)>=_ 4] | 2 (57)
ke
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2 2
V000 = FEP o)+ fulria], (58)

where f,, and f,4 are given by Egs. (50) and (51), respec-
tively. The average intensity in 3D is approximated well by

—~ %—1 (_lf —rll )
(I,(r)) = > o, e 3. (59)

We obtain these expressions from our first-principles calcu-
lations that enable us to study not only the ballistic and dif-
fusive limits, but also the crossover regime when r/ lf% 1.
From this we observe that we can approximate the average
intensity well by only the coherent and diffusive contribu-
tions. Furthermore, we saw that already at r/[;~0.3 the dif-
fusive intensity is higher than the coherent intensity. This
does not mean that when a pulsed source is used we should
see signs of the crossover to the diffusive regime at this point
because the diffuse peak is much broader than the coherent
peak so this crossover point is at larger values of r//; as was
previously reported [9]. Obviously, our present model system
has been assumed to be boundless. In a finite slab geometry
boundary scattering, which is beyond the scope of this study,
would of course affect the results.

E. Energy density

To derive a first-principles expression for the diffusion
constant from Fick’s law (11), we still have to calculate the
average energy density given by

Q°py
4
+{w’c7(r)|G(r,r' =0;0)]?)). (60)

(W,(r)) = (VG(rr' =0;0)[*

The first term is the average potential energy density and the
second term corresponds to the kinetic energy.

We start with the potential energy term in 2D and 3D. We
define

(VG(r,r' =0;0)) =11(r;w). 61)

The Fourier transform of ITy(=[(VG)|]?) diverges, which
means that we can not use the same procedure as we used for
the intensity and the flux. According to the Bethe-Salpeter
equation

(r; ) = Hy(r;0) + ;' (k= 0; 0)

XJ ddrlﬁo(rl;w)H(|r—r1

o). (62)

This integral diverges as well because of the strong singu-

larities in ﬁo (also when the gradient is calculated in the 2D
case). When averaging, scatterers are effectively moved
around the medium, and for every configuration, the contri-
bution to the total average response is calculated. However,
because of the stronger singularities in f[o (as every scatterer
becomes a new source of spherical waves) this is not pos-
sible when the receiver position coincides with a scatterer
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position. The reason for this is the point receiver assumption
and the far field scattering approximation. We can circum-
vent this problem by omitting a small volume/area around r;
with radius of approximately one wavelength. This slightly
modifies the probability distribution function form ‘“com-
pletely random” to “nonoverlapping” (with the receiver) in

order to avoid the divergencies. We then find that 11 is given
by:

(r;0) = |x,|TI(r; ). (63)

In principle, our original expression for II should now be
multiplied by a factor exp(~ry/l;), where ry is the radius of
omission so as long as the mean free path is longer than a
few wavelengths omitting this small volume does not influ-
ence the results. Furthermore, even if scattering is strong and
the mean free path is of the order of the wavelength, this
factor is not important.

The second term of Eq. (60), the kinetic energy, can be
split:

(0?c™(r)|G(r,r" =0; )%

=ikgl1(r; ®) = (V(r; w)|G(r,r' =0; ). (64)

Now the condition that the scatterer position cannot coincide
with the receiver position ensures that the second term van-
ishes, due to the step function in the potential (3). We can
thus just disregard this term.

In 1D proving that

T1(|x]; ) = [ |TT(|x

;w), (65)

always holds is straightforward. We have to impose the con-
dition the receiver cannot coincide with a scatterer to ensure
that

(0%c72(x)|G(x,x" = 0; 0)|?) = wgT(|x

). (66)

Only under the restrictions mentioned here, can the averaged
energy density in 1D, 2D, and 3D be expressed as being
proportional to the intensity

(W, (1) = ﬁ(lxelz + (D) 67)
0

and this thus means that only the gradient of the energy
density is well defined in the 1D and 2D cases.

VI. THE DIFFUSION CONSTANT

Using the Bethe-Salpeter equation with the Ward identity
we find expressions for the average energy flux (43)—(45),
the (gradient of) the average intensity (57)—(59). The average
energy density is just proportional to the average intensity
(67). When r/1;>1 we expect Eq. (11) to hold and, as the
gradient of the average energy density and the average flux
are now known, we find an expression for the diffusion con-
stant from Eq. (11). This means that the diffusion constant
can be written as

016618-7
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D, (units of ¢ a)

FIG. 2. Diffusion constant of the 2D disor-
dered medium in units of cya, as a function of the
dimensionless frequency kpa for four different
scatterer-medium velocity ratios (). The scat-
terer density is determined by setting (d,)/a=10.

Koa
1
D(w) = ;lceff(w)lf(w), (68)
where in the 1D and 3D case
2Kr| K()|
cflw)=co"""7— 69
(@) Ui+ 120 + i (69)
and in the 2D case
2'Kr|K0|
Ceff(w) =Co 2g(2Krlf)’ (70)

Kf + l/(ZZf)2 + K

where g(2k,l;) is given by Eq. (52). The effective transport
velocity in 2D reduces to Eq. (69) in the weak scattering
limit.

We can now investigate the frequency dependence of
the diffusion constant for a medium with monodisperse
scatterers. We relate the scatterer density n to the average
distance between scatterers ({(d,)) so that n=(d,)"! in 1D,
n=47d)™? in 2D and n=3(4m)"Nd,)™ in 3D. Let us
focus on the diffusion constant of the 2D medium. We write

4( a \?
ar,(aky) = \/(aKo)2 - _(_> tolaxo), (71)
T\ (dy)
so that the dimensionless property ax, depends on the di-
mensionless frequency koa(=wa/cy) and two dimensionless
model parameters, i.e., the velocity contrast y(=cj,/c,) and
the average distance between scatterers in number of scat-
terer radii ((d,)/a). The real and imaginary parts of ak, are
needed to obtain the diffusion constant

ax(arg) = |Re{aKe(aK0)} > (72)
lf(aKo) _ 1
a 2|Im{ax,(ary)}| (73)

The diffusion constant for a 2D medium is plotted in Fig.
2. The relevant frequency range is from kya(=wa/cy)=0 to

koa= /2, as for higher frequencies the isotropic scatterer
assumption is no longer valid. For the plot, the density of
scatterers was determined by setting {(d,)/a=10, increasing
this value shifts the curves up. The shape of the curves is
predominantly determined by the mean free path. The effec-
tive transport velocity c.; only deviates considerably from c
when the scatterer velocity and the frequency are small and
the scatterer density high. For the diffusion constants shown
in the plot, this is only the case when y=0.2. This is also the
only case that shows resonances in the relevant frequency
range. Further lowering the internal velocity of the scatterers
would “pull in” more resonances in the relevant frequency
range. These resonances appear because of resonances in the
mean free path. When the scatterer-medium velocity ratio is
increased, the mean free path (and thus the diffusion con-
stant) increases until the ratio is larger than unity and then it
drops again. However, increasing y above 10 does not
change the diffusion constant much in the frequency range
we discuss.

The diffusion constants in 1D and 3D media show the
same behavior. Of course, the resonances at low velocity, are
caused by the fact that all scatterers are assumed to be of
equal size. When solid scatterers in a fluid are considered
even more resonances are expected to show up [25]. When
scatterer sizes (or velocities) are allowed to vary, the reso-
nances are averaged out.

When the scatterer velocity is zero we obtain an impen-
etrable model scatterer. This is not a useful model scatterer,
as in the low frequency range the mean free path (and thus
the diffusion constant) differ considerably from the pen-
etrable scatterer case. The reason for this is that the limits for
w—0 and y— 0 do not commute, as

lim lim/; = const, (74)
w—0y—0

while
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limlim/,= o° . (75)
y—0w—0
The effect of this is that at the longer wavelengths [, for the
impenetrable scatterer is several orders of magnitude smaller
than [ for nonzero values of 7.

VII. CONCLUSIONS

We have calculated the transport of energy and intensity
in disordered 1D, 2D, and 3D (infinite) media emitted by a
monochromatic source. Using the ladder approximation to
the Bethe-Salpeter equation we explicitly show that the total
intensity is well approximated by the sum of the coherent
and the fully developed diffuse wave field for all source-
receiver distances. The results for 3D disordered systems
agree with findings previously reported, except for the ex-
pression for the intensity in the crossover regime, which has
not been reported before. We have obtained more new results
studying energy and intensity propagation in the 2D system
in detail. When compared to the 3D case, the 2D disordered
system shows interestingly different behavior: In 2D, the av-
erage energy flux depends on the mean free path and the
effective transport velocity depends differently in terms of
the scattering parameters. The (gradient of the) intensity as a
function of the source-receiver distance, on the other hand,
behaves similarly in the 2D and the 3D case. The monochro-
matic source enables us to investigate the frequency depen-
dence of the macroscopic diffusion constant where we par-
ticularly focused on the influence of the finite size of the
scatterers. For a monodisperse distribution of scatterers
shape resonances show up in the relevant frequency range
for low internal scatterer velocities (v small). In this fre-
quency range (where scattering is expected to be isotropic)
the dependence of the scattering properties on frequency can-
not be neglected. This means that descriptions of broadband
pulse propagation through these media should in principle
incorporate both frequency dependent and multiple scatter-
ing effects. The development of a workable Ward identity in
this case remains a challenge, however. Finally, we want to
point out that our model describes transport of scalar acous-
tic waves but results can be extended and many conclusions
should also apply to vector wave fields random media.

Note added. After submission of this paper, more theoret-
ical and experimental work on the crossover regime between
ballistic and diffusive wave propagation in 2D systems was
published [Y. Lai, S. K. Cheung, and Z. Q. Zhang, Phys.
Rev. E 72, 036606 (2005)]. This paper discusses wave propa-
gation from pulsed planar sources in 2D systems and the
results on the diffusive-ballistic transition in this case corre-
spond to our findings for a monochromatic point source.
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APPENDIX: ENERGY AND INTENSITY IN 2D

In this appendix we derive the configuration-averaged in-
tensity and energy flux in a disordered 2D medium. Starting
point is the 2D Green function propagator

- ng‘>[(K,+ i21))r] if &> 0,

G(r;w) = . (A1)
ZHg”[(K, —il2l))r]  if w<0.
We use the properties
HP[(k, - il21))r] = HY (- k,+ ilQ21))r]  (A2)
and
HY [k, +il(21))r] =~ i%KO[(I iK,+1/Q21))r],
(A3)

to express the Hankel functions (Hg)) in terms of modified
Bessel function of the second kind (K)). The Fourier trans-
form of the coherent intensity

0

Iy(k;w) = 2’7Tf J dr|G(r; )| Jo(kr) (A4)

0

is then obtained from Ref. [27] and using properties of the
associated Legendre polynomials [28] as

2 -1/2
Holks )= % 1+ (zlx,zf)2 2}2553 ’ (A3)
with
1-(2x,1)? 2kl
e sziljjz s (2Kf,.lf)2' (46)
This is can be rewritten as
arcsin( —;L\/W)
(k) = _Z V1 + (2k,1p)* A7)

T+ (k)N Qi) = (L)

ITy(k; w) is real, continuous, and differentiable for all (real)
k=0.
The flux in the 2D system is given by

2
C
(n-F )= 2208, 5 (A8)
2 r
where C is the constant to be calculated:
J‘a’rIm{G(r;w)z?,G*(r;w)}r2
0
(A9)

IT;" (k= 05 ) ;T (k; )|

The term in the denominator is easily obtained
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115 (k= 0; ) G (k; ) | 4=

1
=— 12.<1 - + ) :
I (2 K,lf)2 2k, larctan(2k,1y)
(A10)
The solution to the integral

Jm dr Im{G(r;»)9,G" (r; ) }r*
0

_ sgn(w) *
T a7l
XKo[(= i, + VQL))FK [(irc, + 1/(21))r]}
_ sgn(o) (1+i2k,1))?
T 4R (1 -2k,

T (=267 )

drr* Im{[ix, + 1/(21y)]

(A11)

can be found from Ref. [27]. However, the proper solution
(on the right Riemann sheet) needs to be chosen in order to
simplify the hypergeometric series F. One can check numeri-
cally that

fm dr Im{G(r; 0)3,G" (r; w)}r?
0

sgn(w)
=— arc
s

tan(2x,l,)

1
X\ 1= + .
( (2k,lp)? 2K,lfarctan(2K,lf)>
(A12)
Hence, C is given by

_ sgn(w)

=0 arctan(2k,1,). (A13)
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The intensity is proportional to the propagator I1(r;w),
expressed in terms of I1,(k; w) by the Fourier transform (46).
As only the gradient of the intensity is a well-defined prop-
erty, we calculate

* dk K27, (k
VH(r;w):—fJ e 1(kr) .
o 27l (k) =11 (k=0;w)

(A14)
This contains both the coherent and the scattered intensity.

As the coherent intensity is known, we focus on the scattered
intensity by calculating

o

dk
VHsc(r;w)=—ff ;Jl(kr)kzﬂsc(k;w), (A15)
ko

0
with

I3 (k = 0; )T (k; )
Hal(k;w) - Hal(kz 0;0)

I, (k;w) = (A16)

Equation (A15) is the integral to calculate numerically when
we need to calculate the gradient of the multiply scattered
intensity. 1 (k;w) is a monotonically decaying function
with a maximum at k=0, that vanishes as k— . As the
Bessel function is also decaying with r, we know that for
r/l>1

M.(k=0;
V(o) = - fiek = 050) (A17)
2arr
and
tan(2x,1,) 1
V() == p 2RI L 101y (ats)
™2kl 1 :
where
1
8(2x,lp) =1 (A19)

- + :
2kl f)2 2k, lparctan(2x,l))

td stands for “totally diffusive.”
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