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Spectrum of classical two-dimensional Coulomb clusters
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The frequency spectrum of a system of classical charged particles interacting through a Coulomb repulsive
potential and which are confined in a two-dimensional parabolic trap is studied. It is shown that, apart from the
well-known center-of-mass and breathing modes, which are independent of the number of particles in the

cluster, there are more “universal” modes whose frequencies depend only slightly on the number of particles.
To understand these modes the spectrum of excitations as a function of the number of particles is compared
with the spectrum obtained in the hydrodynamic approach. The modes are classified according to their aver-
aged vorticity and it is shown that these “universal” modes have the smallest vorticity and follow the hydro-

dynamic behavior.
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I. INTRODUCTION

Classical clusters of repulsive particles confined in traps
have been both theoretically and experimentally a study ob-
ject for many decades due to their applicability to a wide
variety of systems. Recently, there has been considerable the-
oretical and experimental progress in the study of mesos-
copic systems consisting of a finite number of charged par-
ticles confined in a parabolic trap. These systems are
composed of a finite number of charged classical particles
which can move in a two-dimensional (2D) plane and are
confined in the plane by an external applied potential. They
are the classical analog of the 2D quantum dot. Typical ex-
perimental realizations of such systems are electrons on the
surface of liquid helium [1], electrons in quantum dots [2],
plasmas with dust particles [3], ion traps [4], vortices in su-
perfluids [5], confined ferromagnetic particles [6], charged
metallic balls above a plane conductor [7], and colloidal
crystals [6,8]. The 2D charged clusters also resemble the
problem of charge distribution studied by Mayer [9] and by
Thomson in his “plum-pudding” model of the atom [10,11].

Such Coulomb clusters with a finite number of particles
(typical N<100) have been extensively studied during the
past few years. Theoretically the configurations [12,13], the
transitions to metastable states [13,14], normal modes [15],
and the melting properties have been studied.

Recently, also experimentally the dynamical properties of
Coulomb clusters have been studied in which a selective
excitation of modes was performed [16,17]. The successful
extraction of the excitation spectrum from the thermal
Brownian motion of the particles in the cluster [18] appar-
ently shows the usefulness of such 2D finite Coulomb clus-
ters with a small number of particles being an ideal tool for
comparison with detailed modeling.
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Motivated by the experimental ability of selectively exci-
tation of modes, we performed a detailed study of the spec-
trum of a Coulomb cluster, traced the dependence of the
modes on the number of particles, and compared the spec-
trum with the hydrodynamic treatment.

The paper is organized as follows: in Sec. II we present
our simulation method for the discrete system and in Sec. III
we present the hydrodynamic approach. In Sec. IV the re-
sults of both models are compared, and the vorticities of the
different modes are calculated. In Sec. V our conclusions are
formulated.

II. DISCRETE SYSTEM SIMULATION

We consider the classical 2D system consisting of charged
particles which are laterally confined by a parabolic potential
and interact through the Coulomb potential. The system is
described by the Hamiltonian

= —m*woz ri + _2

l<J |l'

(1)

where m" is the effective mass of the particle, w, is the
confinement frequency, and € is the dielectric constant of
the medium where the particles are moving in. If We choose
ro=(e?/em"wy)'? as the length unit and Ej=m"wrg as the
energy unit [19-25], the Hamiltonian can be expressed in
dimensionless form as

--zr+z

l 1 i<j |I‘ |

(2)

To find the minimum energy configuration we used the
Monte Carlo simulation technique extended with a Newton
optimization technique, as first used in Ref. [15]. In order to
be sure to have found the ground state configuration, one has
to run the Monte Carlo simulation routine many times start-
ing with a different initial random configuration. The spec-
trum of all system excitations and the corresponding particle
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FIG. 1. Excitation spectrum (the frequency is in units of w).

velocities for every excitation mode were defined via the
diagonalization of the dynamical matrix, which is given by

oH
(9ra’,-&r13’j ’

3)

with & and B=x,y and i,j denoting the particle number.

To be sure that the obtained configuration is a stable one,
the lowest eigenvalue of the dynamical matrix is checked to
be positive.

The obtained excitation spectrum for clusters containing
up to N=100 particles is shown in Fig. 1. The solid curve
approximately indicates the upper limit of this spectrum. The
two frequencies which are independent of the number of par-
ticles are clearly seen: the center-of-mass mode with w=1
and the breathing mode with w=13, indicated by the black
arrows. However, a close inspection reveals that more hori-
zontal lines are present; some of them are indicated by the
open arrows in Fig. 1. The existence of such modes whose
frequency is almost independent of the number of particles is
better seen in the frequency histogram shown in Fig. 2. The
histogram was calculated taking into account the frequencies
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FIG. 2. (Color online). Density of states (DOS) obtained by
using an averaging over intervals with Aw/wy=0.04. Clusters are
considered with particles from N=2 to N=200. The arrows mark
the states which coincide with the hydrodynamic model labelled
with the integer numbers (j,m).
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for all systems with different numbers of particles ranging
from 2 to 100. Peaks in Fig. 2 indicate that in the considered
system there are excitation modes with a frequency which
almost does not depend on the number of particles in the
cluster. As shown in the next section, they are related to the
excitation frequencies in the hydrodynamic approach where
all frequencies are independent of the number of particles.

III. HYDRODYNAMIC APPROACH

The hydrodynamic approach for 2D dots in a perpendicu-
lar magnetic field for various circular confinements was de-
veloped in Ref. [27]. As shown in the Appendix, the global,
static properties of the cluster, like the cluster energy and its
radius, as obtained with the hydrodynamic model agree
rather well with the results obtained from the simulations for
the discrete model. This motivated us to compare also the
dynamical properties like the frequency spectrum for both
models. The hydrodynamic model is based on the solution of
the Laplace equation for the potential created by the elec-
trons. Spheroidal coordinates are used with boundary condi-
tions ensuring a constant chemical potential inside the dot.

The solution leads to the static electron density (in raz
units)

N !—
V1 - rIR?, (4)

Po= 27R?

and the chemical potential
w=R>, (5)
where
R=(37N/4)" (6)

is the hydrodynamic dot radius in our scaled variables.

The excitations of the system are described by the linear-
ized continuity equation for small density deviations p(z)
from the equilibrium density distribution and for the particle
velocities v(r), the equation of motion in the simplest Drude
approximation, and the Laplace equation for potential devia-
tion ¢(f) with the corresponding boundary conditions,
namely,

J

2P V(pev) =0, (7a)
d
Syv=ve, 7b
A ¢ (7b)
V2p=0, (7¢)
Jd

9¢ =2mp. (7d)
(9Z Z=0

r<R

According to the scaling used the time is measured in wal

units and the velocity in rowal units. Additionally, charge
conservation is assumed.

Assuming the wusual exponential time dependence
exp(—iwt) of all small deviations [p(z), ¢(z), and v(z)] we
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FIG. 3. Excitation spectrum as obtained from the hydrodynamic
approach for different m values.

arrive at a time-independent set of equations. According to
the solution presented in Ref. [27], this problem is diagonal-
ized in spheroidal coordinates. The electron density in the
dot [in polar coordinates r=(r, )] for a specific excitation
mode is given by the expression

1 . —_—
p(7,0) = —P‘jm‘(r)e’mﬁ, r=V\1-r*R?, (8)
T
and the corresponding frequency reads
2 4 2
Wjpy = ‘m|{l(/+1)_m 1. )
‘ Tl'Lj

Here the symbol P7'(x) stands for the Legendre polynomial
of the first kind, and

F(J—+ |m| + 1>I‘(J—_ |m| + 1)
2 2
F<j+|m|+ 1>F<j—|m|+ 1)’
2 2

where I'(x) is the gamma function. All modes are marked by
two integers: the non-negative number j and the orbital num-
ber m, which gives the number of nodes in the orbital part of
the density. The difference between these numbers is even.
Thus, one can write j=|m|+2k, where the non-negative inte-
ger radial number k actually gives the number of density
nodes along the radius.

In the asymptotic region of large m and k values, a more
simple expression for the frequencies can be obtained. Re-
placing the gamma functions in Eq. (10) by their Stirling
asymptotic expression one can easily obtain that in this re-
gion the frequencies are given by

L=2 (10)

4 55 8

8 |
wy =~ —\j —m* = —\k|m]. (11)
v v

The spectrum of the cluster excitations as it is given by Eq.
(9) is shown in Fig. 3.
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In contrast to the averaged properties of the cluster, which
coincide for the discrete and the hydrodynamic models rather
well (see the Appendix), the more detailed characteristics of
the dot are much more sensitive to the choice of the model.
One of those sensitive characteristics is the spectrum of ex-
citations, and as seen from first sight the spectrum obtained
by the numerical simulation of the discrete system (Fig. 1)
and the one obtained from the continuous hydrodynamic
model (Fig. 3) differ very much.

Comparing these two spectra we notice two essential
differences. First, the spectrum in the hydrodynamic ap-
proach extends up to infinity while the frequencies of the
discrete model are confined to a restricted frequency interval.
Next, the spectrum of the hydrodynamic model has a gap
(0<w<1) where there are no excitation levels at all, while
in the case of the discrete model this gap is filled with levels
(see Fig. 1).

The physical origin of the first discrepancy is evident.
The excitations with large frequencies correspond to large
m and k numbers, or a large number of azimuthal and radial
nodes in the mode density function of expression (8). They
cannot all be realized in the discrete model due to the finite
number (N) of electrons and as a consequence there are only
2N eigenmodes. Assuming an equidistant location of par-
ticles in the dot, we can estimate the number of radial nodes
as k=yN/12 and the number of azimuthal nodes as
m=~3N/16. Inserting these expressions into Eq. (11), which
is valid for large frequency values, we obtain an estimation
for the maximum frequency

wlim""NlM. (12)

Thus, only in the region w<<w;,, can one expect a coinci-
dence of the hydrodynamic spectra and the one from the
discrete model.

Note that the upper frequency limit for the discrete model
(see the solid curve in Fig. 1) was obtained numerically by
fitting the above expression, giving

Wy = 1.17TNV4, (13)

The second difference, the gap in the hydrodynamic spec-
trum, has also a clear physical reason. Due to the finite di-
mensions of the dot, the actual wavelengths of excitations
are limited from above, what leads to a frequency limitation
from below. Moreover, in the hydrodynamic model the elec-
trons are considered as a charged liquid which does not resist
shear deformations. Consequently, various types of rotating
excitations are possible, and all of them have zero frequency.
Mathematically this fact follows from Eq. (7). Namely, there
are numerous solutions of the aforementioned equation set
with p(r)=¢(t)=0 and the excitation velocity obeying the
equation

V(pov) =0, (14)

which are excitations with zero current divergence. Thus, in
the hydrodynamic approach the zero level frequency is mul-
tiple degenerate and contains all rotating modes. On the
other hand, it is easy to check [it follows from Eq. (7b)] that
all other hydrodynamic modes (with w#0) obey the
condition
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FIG. 4. The definition of the approximate local vorticity.

rotv=0, (15)

or equivalently have zero vorticity.

In the discrete model (where all electrons are arranged
into a finite size Wigner crystal) there is a resistance to shear
deformations. Thus, the aforementioned hydrodynamic zero
frequency level is split and redistributed over the complete
frequency range. This leads to the idea to classify the modes
in the discrete model according to their vorticity. Only the
modes with small vorticity can be expected to be close to
their hydrodynamic analogs.

IV. VORTICITY

In the discrete model the local vorticity can be defined
approximately using the triangle composed of an electron at
point r( and its two closest neighbors (at points r; and r,) as
depicted in Fig. 4. We define the local vorticity as the fol-
lowing integral of the rotor of the velocity over the above
triangle area:

1 1
Y(ry) = S J d*r(rotv), = Eéc drv

= —(V,r; + V3I'y + VI3 — V Ty — VoI'3 — V3I).

28
(16)
We define a global vorticity for a specific mode as the
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FIG. 5. (Color online). The vorticity of all modes for N=50.
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FIG. 6. Velocity distribution for the modes indicated by the
three small arrows in Fig. 5 in the 0 <w <1 frequency gap for an
N=50 system, corresponding to the downward arrows in Fig. 5.

absolute value of the above local vorticity averaged over all
electrons.

As an example, the above global vorticity is shown in Fig.
5 for an N=50 particle cluster as a function of frequency.
The vorticities for clusters with different numbers of par-
ticles are similar. It is remarkable that there is an evident gap
in the region 0<w<1 with large vorticity. In this region
there are no modes with small vorticity, which agrees with
our earlier assertion that these modes are originating from
the degenerate zero frequency level of rotating modes of the
hydrodynamic model. Some of these rotating modes are
shown in Fig. 6 and correspond with the downward arrows in
the vorticity plot of Fig. 5. In the region w>1 the modes
with a rather small vorticity are clearly seen. Four of them
indicated by arrows are the same modes that are marked in
Figs. 1 and 5. One may expect that the frequencies of these
modes have to be rather close to the ones obtained in the
hydrodynamic model. To confirm this statement we present
in Fig. 7 the frequency of the modes from the discrete model
with the smallest vorticity (black circles on the plot) and
compare them with the lowest frequencies obtained in the
hydrodynamic model which are indicated by the horizontal
lines. We see that with increasing number of electrons the
frequencies from the discrete model and those from the hy-
drodynamic model start to coincide. This was further con-
firmed by the close similarity of the electron velocity distri-
bution for both models which are shown in Fig. 8. In the first
two columns the velocities of the discrete model are pre-
sented for a 50- and a 150-particle system, respectively, and
in the third column is the velocity distribution of the hydro-
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FIG. 7. (Color online). Comparison of the frequencies of the
hydrodynamic model (horizontal lines) and the low vorticity modes
of the discrete model (dots) as a function of the number of particles.
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FIG. 8. (Color online). Velocity distribution for the coinciding
modes in the discrete and the hydrodynamic models. In the first two
columns the velocities of a 50- and 150-particle system are pre-
sented, respectively. These results are compared in the third column
with the one from the hydrodynamic model. The contour plot in the
third column shows the density of particles.

dynamic model. This velocity distributions can be useful to
extract these modes from future experimental data. In Figs. 7
and 8, and in Fig. 2 as well, the hydrodynamic modes are
indicated by two integers {j,m}. Thus, we showed clearly
that the low vorticity frequencies in the spectrum of the dis-
crete model tend very slowly to the hydrodynamic analog
when the number of particles is incremented.
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FIG. 9. (Color online). Number of modes in the 0 <w<1 fre-
quency gap as a function of the number of particles. The dashed
curve shows the N — o asymptotic behavior.

The last question which we still have to answer is the
behavior of the modes in the discrete model in the frequency
gap. For this purpose we counted the number n, of those
modes in the 0 <w <1 region. Its dependence on the number
of particles in the cluster is shown in Fig. 9. The dashed
curve shows the asymptotic behavior of this quantity for a
large number of particles in the cluster. The latter was ob-
tained by fitting the calculated data using a logarithmic scale
in the region N=120-200, and the expression of this curve
reads

ng ~ 4N, (17)

Thus, the number of modes in the gap increases with the
number of particles. Nevertheless, as the total number of
modes increases as 2N, the relative number of modes in the
frequency gap is

nJ2N=~23N""3 -0 (18)
8

and decreases. Moreover, the averaged density of modes can
be estimated as

2N/ @i = 2N/1. 1INV ~ N34, (19)

while the density of modes in the frequency gap actually is
given by Eq. (17). So, we see that as the number of particles
grows, the ratio of the density of modes in the gap to the
averaged density tends to zero as well, and, consequently, in
this sense the discrete model tends to the hydrodynamic
model as well.

V. CONCLUSIONS

In this paper we performed a detailed study of the spec-
trum of Coulomb clusters, traced its dependence on the num-
ber of particles, and compared the results with the hydrody-
namic approach. We found out that it is convenient to
classify the modes of the discrete model according to their
global vorticity.

In the frequency region 0 <w<1 only modes with large
vorticity are present. They originate from the degenerate hy-
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FIG. 10. (Color online). Energy per particle in the cluster: solid
curve—discrete model, dashed line—hydrodynamic model Eg.
(AT1). Inset: solid curve—crystallization energy per particle, dashed
curve—Eq. (A3), short dashed curve—the ratio of the above
quantities.

drodynamic state corresponding to zero frequency, where all
possible rotations of the liquid droplet are included. As the
number of particles is incremented the density of modes in
this region becomes negligible as compared with the total
averaged density in the cluster.

In the region w>1 there are modes with a rather small
vorticity. As the number of particles in the cluster grows, the
frequencies of these modes tend to their analogs in the hy-
drodynamic model. The velocity distributions of the hydro-
dynamic model pretty well coincide with the distributions
obtained in the discrete model for the above modes with
small vorticity and, thus, they may be useful for experimen-
tal purposes.
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APPENDIX: THE ENERGY AND THE RADIUS OF THE
CLUSTER

In this appendix we consider the behavior of two global
properties of the cluster—the averaged energy per particle
Ey/N and the maximum radius of the cluster.

The averaged energy per particle for the discrete model is
shown by the solid curve in Fig. 10. The dashed curve shows
the same quantity, which was calculated in the hydrodynamic
model integrating the chemical potential [see Eq. (5)] over
the number of particles in the cluster, namely,

N 37\23 (N
EO(N) = f M(N/)le — (T) J N'2BgN' = a0N5/3,
0

0
(A1)
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FIG. 11. (Color online). Maximum radius of the cluster: solid
curve—discrete model, dashed curve—hydrodynamic model Eq.
(6), short dashed curve—the difference between the above
quantities.
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Thus, in the hydrodynamic approach the energy per particle
is agN?3.

In the inset of Fig. 10 the difference between these ener-
gies is shown by the solid curve. We see that it increases with
the number of particles in the cluster. The physical origin of
this discrepancy is the crystallization energy. Following the
idea of the local density approximation, it can be estimated
by averaging the crystallization energy for the homogeneous
crystal over the surface area occupied by the cluster. The
crystallization energy per particle for the homogeneous crys-
tal was obtained in Ref. [28], and for the hexagonal lattice it
is

Egr"’m)/N: Co\‘"”;, co =~ 1.96. (A2)

Now replacing the homogeneous density in the above equa-
tion by the density of the cluster (4) and averaging it over the
cluster we obtain the following expression for the average
crystallization energy:

cn(3N)32 (1
E.= cof dPrpy*(r) = %J drr(1 = %)%
r<R R\2m7 Jy
\,EC (3N)¥2( 4 \13
= ( ) ~ 0.87N"°. (A3)
TN 37N

The averaged crystallization energy per particle E. /N is
shown in the inset of Fig. 10 by the dashed curve. We see a
rather good coincidence of this quantity with the above con-
sidered difference of cluster energies per particle of both
models shown in the same inset by the solid curve. At least
the difference of these two curves (the ratio of the two curves
is given in the inset by the dotted line) does not depend on
the number of particles.

Next we consider the maximum radius of the cluster
which for the discrete model is shown in Fig. 11 by the solid
curve. The same quantity for the hydrodynamic model [see
Eq. (6)] is shown by the dashed curve. Although both curves
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demonstrate the same behavior, they differ quantitatively: the
radius calculated in the hydrodynamic model is larger. Such
a behavior of the cluster radius is typical for various confine-
ment potentials (see, for instance, Refs. [29,26], where a sys-
tem of charged particles confined by a Coulomb potential
was studied). It is remarkable that the difference of the maxi-
mum radii calculated in both models (shown by the dotted
line) does not depend on the number of particles in the clus-
ter for a large N and the ratio becomes relatively small for
large N.

The physical origin of this discrepancy is related to the
same crystallization phenomena and can be explained as fol-
lows. Let us assume that the crystallization is just the re-
placement of the liquid droplet by a regular hexagonal lattice
of electrons. If there are N electrons in the dot, then there are
VN/3 along the radius and 213N along its perimeter. We also
assume that these electrons along the cluster perimeter are
made of a thin outer ring of liquid droplets of width # which
has the same amount of charge, namely,

PHYSICAL REVIEW E 73, 016607 (2006)

R 1
2\!@\/: 27Tf rdrpy(r) = 3Nf drrV1 = * = N(h/R)*?,
R-h 1-hIR
(A4)
which leads to
3 \173 97\ 173
h:(—) , R:(—) ~152. (A5)
2N 8

Now if we put these outer particles on a circle with a radius
coinciding with the averaged charge position on the above
thin ring of the droplet we will obtain the following contrac-
tion of the droplet caused by crystallization:

3
AR = f drr(R = r)po(r) f drrpy(r)=—-h=0091,
R-h R—h 5

(A6)

which is in good agreement with the dotted line in Fig. 11.

[1] P. Leiderer, W. Ebner, and V. B. Shikin, Surf. Sci. 113, 405
(1992).

[2] R. C. Ashoori, Nature (London) 379, 413 (1996).

[3]J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994).

[4] B. G. Levi, Phys. Today 41, 17 (1988).

[5] Y. Kondo, J. S. Korhonen, M. Krusius, V. V. Dmitriev, E. V.
Thuneberg, and G. E. Volovik, Phys. Rev. Lett. 68, 3331
(1992).

[6] M. Golosovsky, Y. Saado, and D. Davidov, Phys. Rev. E 65,
061405 (2002).

[7] M. Saint Jean, C. Even, and C. Guthmann, Europhys. Lett. 55,
45 (2001).

[8] R. Bubeck, C. Bechinger, S. Neser, and P. Leiderer, Phys. Rev.
Lett. 82, 3364 (1999).

[9] A. M. Mayer, Nature (London) 18, 258 (1878).

[10] J. J. Thomson, Philos. Mag. 39, 237 (1904).

[11] B. Partoens and F. M. Peeters, J. Phys.: Condens. Matter 9,
5383 (1997).

[12] F. Bolton and U. Réssler, Superlattices Microstruct. 13, 139
(1993).

[13] V. M. Bedanov and F. M. Peeters, Phys. Rev. B 49, 2667
(1994).

[14] M. Kong, B. Partoens, and F. M. Peeters, Phys. Rev. E 65,
046602 (2002).

[15] V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700

(1995).

[16] A. Melzer, M. Klindworth, and A. Piel, Phys. Rev. Lett. 87,
115002 (2001).

[17] T. E. Sheridan, Phys. Rev. E 72, 026405 (2005).

[18] A. Melzer, Phys. Rev. E 67, 016411 (2003). _

[19] Here wy is the unit of frequency, where in Ref. [15] wy/ V2 was
used.

[20] F. M. Peeters, V. A. Schweigert, and V. M. Bedanov, Physica B
212, 237 (1995).

[21] Y.-J. Lai and L. I, Phys. Rev. E 60, 4743 (1999).

[22] L. Candido, J. P. Rino, N. Studart, and F. M. Peeters, J. Phys.:
Condens. Matter 10, 11627 (1998).

[23] L. J. Campbell and R. M. Ziff, Phys. Rev. B 20, 1886 (1979).

[24] P. Cheung, M. F. Choi, and P. M. Hui, Solid State Commun.
103, 357 (1997).

[25] B. A. Grzybowski, Xingyu Jiang, H. A. Stone, and G. M.
Whitesides, Phys. Rev. E 64, 011603 (2001).

[26] J. A. Drocco, C. J. Olson Reichhardt, C. Reichhardt, and B.
Jankd, 68, 060401(R) (2003).

[27] Z. L. Ye and E. Zaremba, Phys. Rev. B 50, 17217 (1994).

[28] L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959
(1977).

[29] W. P. Ferreira, A. Matulis, G. A. Farias, and F. M. Peeters,
Phys. Rev. E 67, 046601 (2003).

016607-7



