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We investigate nondiffractive propagation of electromagnetic radiation, including visible light, through
materials with a periodic space modulation of the refraction index, i.e., through photonic crystals. We calculate
analytically and numerically the regimes where the dominating order of diffraction vanishes, i.e., the light
beams of arbitrary width propagate without diffractive broadening and, equivalently, arbitrary light patterns can
propagate without diffractive “smearing.” We investigate the subdiffractive light propagation, where the propa-
gation is governed by the higher �fourth� diffraction order, when the dominating order of diffraction vanishes.
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I. INTRODUCTION

Photonic crystals, i.e., the materials with refraction index
periodically modulated in space on a wavelength scale �1�,
are well-known to modify the properties of light propagation.
Photonic crystals can introduce photonic band gaps in radia-
tion spectra, i.e., they can serve as light conductors or insu-
lators �2�. Photonic crystals can modify the dispersion of the
light, i.e., they can significantly reduce its group velocity �3�.
We concentrate in this paper on the other, less known prop-
erty of the photonic crystals that the diffraction of the light
can alter substantially, and, in particular, can vanish in propa-
gation through particularly prepared photonic crystals.

Diffractive broadening of light beams �and of wave enve-
lopes in general� is a fundamental phenomenon limiting the
performance of many linear and nonlinear optical devices.
Geometrical interpretation of wave diffraction is as follows:
light beams of arbitrary shape can be Fourier decomposed
into plane waves, which in propagation acquire phase shifts
depending on their propagation angles. This dephasing of the
plane wave components results in a diffractive broadening of
the light beam. Figure 1�a� illustrates normal diffraction in
propagation through homogeneous material, where the lon-
gitudinal component of the wave vector depends trivially on
the propagation angle: k� =kz=��k�2− �k��2, where k�

= �kx ,ky�. In general the normal, or positive diffraction,
means that the surfaces of constant frequency are concave in
the wave-vector domain k= �kx ,ky ,kz�, as illustrated in Fig.
1�a�.

It is known that diffraction can become negative for ma-
terials with refractive index modulated in a direction perpen-
dicular to the propagation direction. The negative diffraction,
as illustrated in Fig. 1�b�, geometrically means that the sur-
faces of constant frequency are convex in wave-vector do-
main. The negative diffraction was predicted for electromag-
netic radiation �4�, for acoustic waves �5�, and for matter
waves �6� in propagation through media modulated in one
spatial dimension. The change of sign of the diffraction is
extremely interesting for propagation in nonlinear materials,
as resulting in a change between nonlinear self-focusing and
defocusing, and allowing, e.g., the bright solitons in defocus-
ing media �7�.

The disappearance of diffraction in one-dimensional peri-
odic material has been also reported in arrays of the
waveguides �8� and in the resonators with periodic modula-
tion of refractive index in one transverse direction �9�. The
disappearance of diffraction has a plausible explanation: if
the diffraction at both edges of the propagation band is of
opposite signs, then it must vanish to zero at some point
within the band, corresponding to some angle of propagation
of light beam in �8�, or to some transverse velocity of light in
the short resonators in �9�.

We focus in the present paper on the nondiffractive propa-
gation of light through materials with refractive index peri-
odically modulated in two or three spatial dimensions �in
two- or three-dimensional photonic crystals, respectively�.
The expected phenomenon is illustrated in Fig. 1�c�, where
the zero diffraction is supposed to occur in a particular point
in the wave-vector domain where the curvature of the sur-
faces of constant frequency becomes exactly zero. Zero dif-
fraction physically means that light beams of arbitrary width
can propagate without diffractive broadening and, equiva-
lently, that arbitrary light structures can propagate without
diffractive “smearing.” The nondiffractive propagation of the
light beams in two-dimensional photonic crystals has been
shown numerically �10� and experimentally �11� up to now.
No analytical studies have been reported. We concentrate in
the paper on the analytical study of the phenomenon, allow-
ing to perform an asymptotical treatment, and to get some
insights into the physics of wave propagation through peri-
odic media.

FIG. 1. Geometrical interpretation of diffraction of electromag-
netic radiation propagating along the z axis: �a� positive, or normal
diffraction in propagation through homogeneous materials; �b�
negative, or anomalous diffraction; and �c� zero diffraction. The
area of negligible diffraction is indicated.
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Nondiffractive light propagation can be expected in dif-
ferently fabricated photonic crystals with different symme-
tries of the lattices, and with different shapes of inclusions of
enhanced �or reduced� refraction index. In this paper we re-
strict to a simplest case of a harmonic photonic crystal—a
material with sinusoidal modulation of refraction index in
two- and three- dimensional space. Such harmonic photonic
crystal could be produced, e.g., holographically, i.e., by light
interference on a photorefractive material �12�. Interference
of two pairs of laser beams could result in two-dimensional
dynamical photonic crystals as illustrated in Fig. 2. In the
present paper we concentrate on a two-dimensional case,
however, simulations show that the basic phenomena persist
in the case of three-dimensions.

II. MODEL

We consider a superposition of two periodic lamellaelike
refraction index gratings: �n�r�=2m�cos�q1r�+cos�q2r��
with �q1�= �q2�=q at angles ±� to the optical axis, as shown
in Fig. 2. This results in refractive index modulation profile
�n�x ,z�=4m cos�q�x�cos�q�z�, with q� =q cos���, and q�

=q sin���. The crystallographic axes of such a harmonic
photonic crystal are ��±1/q� ,1 /q��, and the reciprocal lat-
tice vectors of the photonic crystal are q1 and q2. We further
assume for simplicity that the spatial period of the photonic
crystal is significantly larger than the wavelength of the
probe beam. This legitimatizes paraxial approximation for
the description of propagation of the probe beams:

�2ik0�/�z + �2/�x2 + 2�n�x,z�k0
2�A�x,z� = 0. �1�

Here A�x ,z� is the slowly varying complex envelope of the
electromagnetic field in two-dimensional space E�x ,z , t�
=A�x ,z�eik0z−i�0t propagating along the z direction with a
wave number k0=�0 /c.

One advantage of the use of paraxial approximation is a
substantial simplification of the problem to the explicit ana-
lytical expressions in asymptotical cases. Another advantage
of Eq. �1� is the possible generalization of the present study
to the dynamics of Bose-Einstein condensates in periodic
�dynamical� potentials �13�. The disadvantage is that the
treatment is restricted for the photonic crystal with the modu-
lation period larger than the wavelength of the probe beam.

First we perform an analytical study of the propagation by
expanding the electromagnetic field into a set of spatially

harmonic �Bloch� modes. Then we prove the nondiffractive
propagation by a direct numerical integration of wave equa-
tion �1�.

III. HARMONIC EXPANSION

The technique of our harmonic expansion is analogous to
expansion in a finite set of Bloch modes, as, e.g., described
in �14�:

A�x,z� = �
j,l

Aj,le
ik�,jx+ik�,lz, �2�

with k j,l= �k�,j ,k�,l�= �k�+ jq� ,k� + lq��, j , l= ¯−2,
−1,0 ,1 ,2 , . . ., respectively. The expansion �2� results in a
coupled system for the amplitudes of harmonics:

�− 2k0k�,l − k�,j
2 �Aj,l + 2mk0

2 �
r=j±1,p=l±1

Ar,p = 0. �3�

Solvability of Eq. �3� results in a transverse dispersion
relation �the dependence of the longitudinal component k� on
the transverse component k� of the wave vector�. We re-
stricted to the five most relevant harmonics in our study �re-
spectively, nine components for three-dimensional case�,
consisting of a central component with the wave vector k
= �k� ,k��, and four most relevant modulated �sideband� com-
ponents with the wave vectors �k�±q� ,k� ±q��, respectively.
The transversal dispersion relations as calculated numeri-
cally from Eq. �3� are given in Fig. 3. In the absence of
refractive index modulation m=0 the formal solution of Eq.
�3� consists of a set of parabolas �dashed curves in Fig. 3�a��
shifted one with respect to another by the vectors of photonic
crystal lattice q1,2. These parabolas represent the transverse
dispersion curves for uncoupled harmonic components of the
expansion �1�. For a nonparaxial description of light propa-
gation these parabolas would be substituted by circles. The
modulation of the refractive index m�0 lifts the degeneracy
at the crossing points and gives rise to band gaps in spatial
wave number domain �Fig. 3�a��. We focus on the appear-
ance of plateaus on the transverse dispersion curves, indicat-

FIG. 2. Harmonic modulation of refraction index as, e.g., im-
posed holographically in photorefractive material. In this two-
dimensional case the grating is written by two pairs of counter-
propagating beams.

FIG. 3. Transverse dispersion relation obtained by numerical
integration of Eq. �3� considering the five most relevant modes
�j , l=−1,0 ,1�: �a� in absence of modulation m=0 �dashed parabo-
las�, and for a weak modulation of refraction index m=0.003 �solid
line�; and �b� for particular amplitude of modulation m=0.0175
inducing zero diffraction. Insets show corresponding Bloch modes
calculated at k�=0. Parameters: �=500 nm�k0=4�106 m−1�, q�

=2�106 m−1, and q� =0.75106 m−1.
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ing the vanishing of diffraction. For some particular param-
eters, essentially the geometry of photonic crystal given by
vectors q1,2 and modulation depth m, the upper dispersion
branch, corresponding to the most homogeneous Bloch mode
�see insets of Fig. 3�, can become nondiffractive, with zero
curvature at k�=0 �Fig. 3�b��. The insets of Fig. 3 show the
field eigenfunctions at a particular propagation distance �the
envelopes A�x ,z=0��.

Next we use adimensional variables: the transverse wave
number of light is normalized to the wave number of trans-
verse modulation of refraction index, K�=k� /q�, and the
longitudinal wave numbers are normalized by �K� ,Q��
= �k� ,q��2k0 /q�

2 . The space coordinates are thus rescaled as
Z=zq�

2 /2k0 and �X ,Y�= �x ,y�q�. Two significant parameters
remain after the normalization: f =2mk0

2 /q�
2 which represents

the modulation depth of the plane waves propagating in the
photonic crystal, and Q� =2q�k0 /q�

2 , which is proportional to
the angle between the crystallographic axes of the photonic
crystal. The diffraction coefficient, i.e., a curvature of the
transverse dispersion curve d2=−1/2�2K� /�K�

2 , becomes
zero for a particular relation between parameter values of the
photonic crystal. Figure 4 shows the nondiffractive regimes
in the two-dimensional parameter space �f ,Q��, that is ob-
tained on a curve, i.e., on the area of a measure one. The zero
diffraction curve is a single valued function Q� =Q��f�, as
follows from the numerical calculation using the Bloch mode
expansion. This means that for a given normalized amplitude
of the modulation of refractive index f a particular geometry
of the photonic crystal can be always found resulting in non-
diffractive propagation. The diffraction is normal �positive�
below the zero diffraction curve, i.e., for a relatively small
angle between the crystallographic axes of the photonic crys-

tal, and anomalous �negative� above the zero diffraction
curve. The strength of the effect, which is proportional to the
size of the plateau, depends strongly on the location along
the zero diffraction line, as the insets of Fig. 4 indicate.

The use of more harmonics in the Bloch mode expansion
does not alter the upper dispersion branch in the vicinity of
K�=0, at least for the reasonably small amplitude of the
refraction index modulation f �1. We performed the Bloch
mode expansion �analogous to Eqs. �2� and �3�� including the
“ring” of additional four modes, which has not resulted in the
sensible modification of the zero diffraction curve.

An analytical form of the zero diffraction curve is in gen-
eral complicated. However, a simple asymptotical expression
can be found in a limit of weak refractive index modulation
f �1, where only the homogeneous harmonic, and those with
K� 	0 �the upper parabolas in Fig. 3�a�� are relevant. The
power series expansion of the transverse dispersion relation
in this limit results in the analytical expression for the coef-
ficient of diffraction: d2=1−8f2 / �1−
��3+64f4 / �1−
��5

+¯. The asymptotic expressions for the zero diffraction
curve �in the limit of f �1� is thus �Q��d2=0	1−2f2/3

+4f4/3 /3+¯, which matches well with the numerically cal-

FIG. 5. Diffractive �a� and nondiffractive �b� propagation of a
Gaussian beam obtained by numerical integration of Eq. �1�. The
calculation parameters correspond to the point �f ,Q��= �0.28,0.57�
in Fig. 4. �c� and �d� show initial and final envelopes of the beam
�intensity�, and �e� shows a magnified area from �b�. The real world
parameters: �=500 nm, n0=1, m=0.0175, �0�=1.0 �m, and �0�

=7.0 �m. The initial beam waist W0=2.82 �m, with corresponding
Rayleigh length: z0=50 �m.

FIG. 6. �a� Initial pattern constructed as a composition of the
Gaussian beams, and �b� diffracted pattern after a propagation
length of 160 �m through an homogeneous space, as calculated
integrating numerically Eq. �1� in three spatial dimensions. �c� The
pattern propagated in photonic crystal over the same propagation
length. The parameters as in Fig. 5.

FIG. 4. Zero diffraction curve in space of adimensional param-
eters �f ,Q��, as obtained by numerical integration of Eq. �3�. Insets
correspond to the first branch of diagram �K� ,K�� arround K�=0.
The dashed lines indicate the transverse dispersion relation consid-
ering the 2 and 3 first terms of the power series expansion.
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culated curve �Fig. 4� in the limit of f �1, and reproduces
qualitatively well the behavior �in particular the bending of
the zero diffraction curve� for the moderate amplitudes of the
modulation f �1.

IV. NUMERICAL SIMULATION

We checked the above predicted phenomenon of nondif-
fractive propagation by direct numerical integration of Eq.
�1� for a two-dimensional modulation of refractive index
�Fig. 5� and also for the three-dimensional case. The integra-
tion shows an evident decrease of the diffraction: whereas in
the absence of spatial modulation of the refractive index the
narrow prove beam is diffractively broadening �Fig. 5�a��, in
the presence of refraction index grating of particular param-
eters the spreading was strongly suppressed �Fig. 5�b��. The
used set of parameters �f ,Q��= �0.28,0.57� lies close to the
analytically calculated zero dispersion curve of Fig. 4 and are
chosen in order to obtain a diffraction minimum for the
Gaussian envelope �15�. The magnified part of the nondif-
fractive propagation plot �Fig. 5�e�� indicates that the nondif-
fractively propagating beam is in fact an envelope of the
spatially modulated nondiffractive propagation mode. We
note that our calculations in the three-dimensional case result
in essentially the same nondiffractive behavior as in two-
dimensional cases shown in Fig. 5.

We note that in the initial stage of propagation through
photonic crystal the injected beam splits into two—a nondif-
fractive envelope of the corresponding nondiffractive Bloch
mode, and a rapidly diffracting envelope of the other �dif-
fractive� Bloch modes. The detailed analysis of the projec-

tion into the Bloch modes will be presented elsewhere.
Figure 6 shows the nondiffractive propagation as obtained

by numerical simulations of Eq. �1� in the case of three spa-
tial dimensions, with the refractive index modulation profile
�n�x ,z�=8m cos�q�x�cos�q�y�cos�q�z�. The calculations
show that the phenomenon of nondiffractive propagation per-
sists in the case of two transverse dimensions. The calcula-
tions are evidence of the use of nondiffractive propagation
for the efficient transfer of the arbitrary two-dimensional pat-
terns of light.

V. ASYMPTOTIC BEHAVIOR
IN THE ZERO-DIFFRACTION REGIME

As the diffraction �the curvature of the dispersion curve�
becomes exactly zero on a point in wave number domain
then, strictly speaking, nondiffractive propagation has a
sense for infinitely broad beams only. Beams of finite width
occupy an extended area in a wave-vector space �indicated
area in Fig. 1�c�� where the dephasing remains negligibly
small for a finite propagation distance. The minimal trans-
verse size of a light structure �x which can propagate with a
negligible diffractive broadening over a distance L is in-
versely proportional to the width of the area of negligible
diffraction in wave number domain �k�: �x	2/�k�. The
distance of nondiffractive propagation L is related with the
size of nondiffractive area by 
k�L�1, where 
k� indicates
the small variation of the longitudinal component of the
wave vector within the nondiffractive area. We analyzed
this weakly diffractive propagation by series expansion
of the transverse dispersion curve around
K�=0: K��K��=�n=0

� dnK�
n , dn= �1/n!��nK� /�K�

n . As the sec-
ond order derivative is zero and all odd order derivatives
vanish because of symmetry, then the fourth order derivative
�fourth order diffraction� is the lowest and most relevant one,
resulting in the following evolution equation:

�i�/�Z − d4�
4/�X4�AB�X,Z� = 0. �4�

Here AB�X ,Z� is the envelope of the nondiffractive Bloch
mode B�X ,Z�: A�X ,Z�=AB�X ,Z�B�X ,Z�. The derivation of
Eq. �4� is performed using a multiscale expansion technique,
e.g., along the lines described in �16�, considering the differ-
ent spatial scales for the Bloch mode �small space scale� and
the envelope �large spatial scale�. The application of multi-
scale expansion �16� leads directly to Eq. �4�. Alternatively
one can consider AB�X ,Z� as the envelope of the Wannier

FIG. 7. Propagation of a Gaussian beam for a fourth order dif-
fraction by integration of Eq. �4� for a two-dimensional case, with
d4=1: �a� evolution of the fourth power of the half-width for initial
half-widths: �x0

4=0.5, 1, and 2. Dashed line is for guiding the eye;
�b� spatial profiles of the initial Z=0 �dashed� and the final Z=0.1
beam. Note the broadening of the central part and the appearance of
the background radiation.

FIG. 8. �a� The evolution of the width of the
beam in propagation through photonic crystal as
obtained by numerical integration of Eq. �1� for
initial waists W0=2.82 �m, W0=3.95 �m, and
W0=5.08 �m. The same parameters of Fig. 5. �b�
Spatial intensity profiles for W0=2.82 �m, the
initial Gaussian beam and the final beam after a
spatial low pass filter.
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functions. Then, as shown in �17�, the evolution equation for
the envelope of the Wannier function can be written straight-
forwardly �and strictly mathematically� by a direct substitu-
tion of spatial dispersion relation by the operators of spatial
derivatives.

d4 is an adimensional coefficient for the fourth order dif-
fraction of order of magnitude of one. The asymptotic ex-
pressions for the fourth order diffraction �in the limit of f
�1� are d4	32f2 / �1−Q��5, and along the zero diffraction
curve �d4�d2=0	 f−4/3.

The envelope of the Bloch mode propagates obeying Eq.
�4�, which as written in spatial Fourier domain reads

AB�K�,Z� = AB�K�,Z = 0�exp�id4K�
4 Z� . �5�

Considering a 
 beam, with a flat spatial spectrum, Eq. �5�
yields that the spatial components with �K��4	 ��K��4
	� / �d4Z� dephase significantly ������ over a propaga-
tion distance Z. Assuming that the coherent �not dephasing�
spatial spectrum components �K��� ��K�� result in a nearly
Gaussian beam of half-width �X	2/�K� the following ex-
pression for the evolution of the half-width of the beam is
obtained: �X4�Z�	16d4Z /�, which in terms of the real
world parameters reads

�x4�z� 	 8d4z/��k0q�
2 � . �6�

The evolution of nonzero width Gaussian beams can be
directly calculated by convolution of the Gaussian envelope
with the envelope of the diffracted 
 beam given by Eq. �6�.
Figure 7�a� shows the evolution of the half-width of the
Gaussian beams of different initial half-width �x0 as calcu-
lated by solving numerically the propagation equation �4�.
For large distances of propagation z	�k0q�

2 �x0
4 / �8d4� the

beam broadening follows the asymptotic fourth root depen-
dence as evaluated above Eq. �6�. Figure 7�b� shows the
spatial envelope of the subdiffractively propagating beam.
The central �weakly broadening� peak consists of in-phase
�K��� ��K�� spatial Fourier components, and the back-
ground radiation consists of a dephased spatial Fourier com-
ponent with �K��	 ��K��.

The asymptotic fourth root dependence has been proved
numerically by integrating the initial wave propagation equa-
tion �1�. Figure 8�a� shows the evolution of the width of the
beams with the different initial width of the waists W0, and
clearly indicates the fourth order power law, as predicted
above. The initial increment �and subsequent decrement� of
the width is due to the energy projection into nondiffractive

and diffractive Bloch modes, and to the subsequent spread-
ing of the diffractive modes �as seen from Fig. 5�b��. For the
large propagation distances the oscillations of the calculated
width of the beam develop, as the diffractive mode, due to
the periodic boundaries, fill the whole interaction region, and
interfere with the nondiffractive beam. We note that the evo-
lution of the fourth power of the width is plotted in Fig. 8�a�,
thus the oscillations appear enhanced.

The fourth diffraction coefficient as calculated from the
asymptotic slope in Fig. 8�b� is �d4�	150, and corresponds
reasonably with that following from the asymptotical analy-
sis d4=32f2 / �1−Q��5=170, as calculated for the given pa-
rameters. Figure 8�b� shows the typical form of subdiffrac-
tive beams consisting of the central coherent peak and the
broadened background in a good correspondence with the
analytical predictions �Fig. 7�b��.

VI. CONCLUSIONS

Concluding, we predict the nondiffractive broadening of
electromagnetic radiation in propagation through photonic
crystals. We calculate the parameters of photonic crystal, and
we evaluate the limits of nondiffractive propagation. The
limits of nondiffractive propagation depend on the higher
order—predominantly fourth order—diffraction, i.e., depend
on the position on the zero diffraction curve in parameter
space. Assuming for a rough estimation that the spatial scale
of refraction index modulation can be in principle reduced
down to a half-wavelength of the propagating light �q��
	2�k0� �which is typical value for photonic crystals�, and that
the adimensional fourth order diffraction is of order of one,
one obtains �x4�z�	z�3 / �4�4�. This gives a realistic estima-
tion of the minimal width of the nondiffractive beam to be
propagated over distance z �or, equivalently, the spatial reso-
lution of the pattern to be communicated�. As a numerical
example, the nondiffractive propagation length of the beam
of half-width of 10 �m and �=1 �m �the Rayleigh length is
about 0.3 mm� should be of the order of 1 m.

The nondiffractive propagation of light as proposed here
can be also realized for Bose-Einstein condensates resting on
the countermoving periodic potential lattices.
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