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Nonequilibrium thermodynamics of highly charged ion plasmas
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Thermodynamics of irreversible processes is applied to study the interaction of matter and radiation field in
nonlocal thermodynamic equilibrium. The rate of entropy production of matter and radiation field, in contact
with a free electron reservoir in local thermodynamic equilibrium, is obtained using the conjugate variables of
the state variables. When approximating the electronic configuration populations by an effective Boltzmann
law, the corresponding effective temperature is determined by minimizing the rate of entropy production at
fixed electronic density, electronic temperature, and radiation field. Numerical results and comparisons with
recent experiment for photoionized iron plasma are presented and discussed.
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I. INTRODUCTION

In laboratory plasma physics or in astrophysics, plasmas
containing highly charged ions exist in many ionization and
excitation states and for various thermodynamic conditions.
For instance, the properties of hot dense matter in stellar
interiors or dense plasmas produced by short-pulse laser in-
teraction with solid-density target are usually studied assum-
ing local thermodynamic equilibrium (LTE). On the other
hand, low-density plasmas in solar corona or in tokamak
machines require nonequilibrium kinetic models. Between
these two extremes, laser-produced plasmas, pinches, or di-
vertor plasmas involve intermediate conditions combining
high-density, a significant radiation environment, and non-
LTE (NLTE) excited-state populations [1-3].

Despite the important role radiation has played in many
parts of astrophysics and laboratory plasma physics in de-
scribing populations of atomic and molecular systems and
heat transfer, there is still a considerable need for fundamen-
tal research in the area of nonequilibrium thermodynamics
[3]. Radiation cannot reach equilibrium by itself but requires
interaction with matter to do so; this is due to the linear
nature of the electrodynamic equations or wave equations
[4]. Such a problem is not encountered with matter because
collisions between ions and electrons are sufficient to
achieve thermalization under, for instance, the driving influ-
ence of a reservoir at a given temperature. In fact, collisions
between particles can always be reduced to some exchange
of virtual photons at the most fundamental level for the or-
dinary energy scale considered in laboratory or stellar plasma
physics. It is clear that understanding irreversible phenomena
of radiation requires the study of the macroscopic behavior
of radiation and matter as a single system, and in particular,
the irreversible thermodynamics of matter in interaction with
radiation.

There are some circonstances where a consistent descrip-
tion of matter and radiation is not so crucial. This is the case
when one pays more attention to atomic physics than to ra-
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diative transfer. Radiation field, defined by its set of bright-
ness temperatures, may be assumed to be given from outside
and only acts as an external system upon the atomic system.
Indeed, various situations may be faced with. When for ex-
ample, radiation field intensity is so small that it does not
influence matter properties, or when radiation field intensity
is not negligible but is emitted spontaneously and can escape
freely from the system under consideration without being
(re)absorbed, the plasma is said to be optically thin. Another
extreme situation is encountered when the photon mean free
path is so short that the photons are reabsorbed nearly im-
mediately after having been emitted. We face what is called a
thick plasma. From the atomic viewpoint, radiation can be
considered as an external reservoir. Like the free electron
degrees of freedom, we can simply integrate out or trace over
the external unwanted degrees of freedom. This makes sense
when we focus on the statistical description of matter under
the influence of radiation and electron reservoirs.

The theoretical framework of treating nonequilibrium ra-
diation as a nonequilibrium photon gas interacting with non-
equilibrium matter is still in infancy, especially when we go
farther and farther away from equilibrium and when we look
for computational and tractable expressions to compare to
experiment. Here, we study the consequences of treating on
the same level and in a self-consistent way radiation and
matter, i.e., of coupling atomic kinetic and radiative transfer
equations [2,3] using general principles of nonequilibrium
thermodynamics [5-12]. In Sec. II, we consider the atomic
system in contact with the constant environment represented
by two external reservoirs, i.e., the free electron heat bath in
thermodynamic equilibrium and the radiation field out of
thermodynamic equilibrium. We give then an explicit expres-
sion of the corresponding rate of entropy production. Finally,
we present a method to determine the effective temperature
law (or Boltzmann law) that the atomic processes tend to
establish in NLTE steady state, i.e., a decreasing-exponential
law versus energy for the total atomic populations of the
configurations [13-16]. We propose to determine this effec-
tive temperature law by minimizing the rate of entropy pro-
duction for matter and radiation field out of thermodynamic
equilibrium in contact with the constant environment repre-
sented by the free electron reservoir at given electronic tem-
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perature and electronic density. In Sec. III, we employ a
collisional-radiative equilibrium (CRE) model between de-
tailed configurations [16] in NLTE steady-state conditions to
calculate the charge-state distributions of photoionized iron
plasmas far from LTE. Comparisons with recent experiment
are presented and discussed. Section IV is the conclusion.
Mathematical details and additional developments are given
in the Appendix.

II. THERMODYNAMICS OF IRREVERSIBLE PROCESSES
A. Kinetic and radiative transfer equations

Let us consider a plasma made of single element ions with
particle density N, free electrons with electronic density N,,
and nonpolarized radiation field with specific intensity I,.
The overall system of ions and electrons is supposed to be
neutral and locally homogeneous with mass density p. For
simplicity, the free electron gas is considered to be a reser-
voir in thermodynamic equilibrium at electronic temperature
T, and chemical potential u,. Free electrons are assumed to
be nondegenerate. The relationship between N, and w, is
obtained using the well-known Maxwellian velocity distribu-
tion for the electron gas. However, ions and photons may be
in LTE or NLTE with either steady-state or transient evolu-
tion. We assume that radiation can be depicted as an ideal
Bose gas described by Bose-Einstein statistics and the
plasma as an ideal gas in classical approximation described
by Maxwell-Boltzmann statistics. All interactions are treated
as small perturbations which induce transitions between
eigenstates of the photons and of the plasma particles, i.e.,
ions or atoms. Our system may thus be described by the
specific intensity 7, of the radiation field and the local atomic
populations or particle densities N;, with energies E;, degen-
eracies or statistical weights W;, and electron populations Q;.
I,, depends on photon frequency v, as well as space coordi-
nates, i.e., radius and angle.

In the most general case, the equations of hydrodynamics,
radiative transfer, and atomic physics form a complex set of
coupled, nonlinear, and nonlocal equations with boundary
conditions and constraints [1,2,17]. To simplify this work,
we do not consider transport terms for matter, i.e., we neglect
macroscopic matter velocities, and the mass density p is
taken to be constant. However, we will explicitely keep the
transport terms for radiation. This approximation is consis-
tent, for instance, with solar atmosphere physics, where all of
the energy flowing though the atmosphere is carried out by
radiation. We do not consider heat transport through conduc-
tion or convection. We are aware that this must reveal some-
times quite restrictive for laser-plasma physics. Yet, once
clarified the coupling between radiation field and matter and
the thermodynamic analysis of this system, all the restrictive
hypothesis can be abandoned one after the other. If needed,
the model can be refined since much more is known about
heat transfer and nonequilibrium thermodynamics for matter
[6].

The time evolution of atomic populations is called the rate
or master equation. The general form of the rate equation has
been known for a while [2,3,18,19]. However, its deduction
from first principles, i.e., starting from quantum Liouville
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equation and density matrix formalism, and taking into ac-
count interaction of the atomic system with free electron,
radiation field, and ion environments seems still to be firmly
established, to our knowledge. This is especially true for
many electron atoms in complex environments such as dense
plasmas [20-22]. In a compact notation, the rate equation
reads

dN;
T=2 Tjka’ (1)
Iy

where T} is a short-hand notation for the total transition rate
between level k to level j. The total number of levels is
assumed to be finite and equal to n,,,,. Note that the order of
subscripts has been chosen to be consistent with a matrix
notation. For simplicity, we will limit our description of
atomic physics to electronic configuration notion. Extension
to finer description, such as level notion [14], or to rougher
approximation, such as superlevel [23] or superconfiguration
[24], is possible. Processes taken into account may be colli-
sional and radiative, i.e., electron collisional excitation and
ionization and their inverse processes (collisional deexcita-
tion and three-body recombination), photoexcitation and
photoionization and their inverse processes (photodeexcita-
tion and spontaneous decay, photorecombination and radia-
tive recombination). Autoionization and its inverse process
(dielectronic capture) are taken into account and considered
as collisional processes. Since free electrons are assumed to
be in LTE, these latter rates are related by detailed balance,
like the direct and inverse electron collisional rates. The ma-
trix 7 in Eq. (1) depends on the environment variables T,, N,,
and I,.

In Eq. (1), we can separate the diagonal terms in the rate
equation (1) by writing

dN:
—= T;N;+ (— > Tii>N,-. (2)
da =V =

JFi JFi

For the diagonal terms of the rate matrix Ty, it is thus natural
to consider

Jj*k

Generally, we have

Tp=0 Vk#j,

T,;<0 Vj. (4)

The matrix T, is real but not necessarily symmetric.

The rate equation defined by Egs. (1), (3), and (4) has
many interesting mathematical properties. The most impor-
tant ones are simple consequences of its proper and very
special structure [25]. Indeed, if we sum the whole elements
of each column, the result is 0, from which we get

;E‘O' (5)

This is the condition of total number conservation,
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E N;=N,, (6)

where N, is a strictly positive constant. The matrix Ty is
singular, or equivalently, has one eigenvalue equal to zero.
This is true for the time-dependent or time-independent ma-
trix Tj. Let us now suppose that the local environment is
constant, i.e., the rate coefficients are constant in time, and
that every state is connected to every other state, either di-
rectly or through intermediate states. Then the solution of
equation

2 TyN =0 (7)
J

is shown [25] to be positive and unique when one positive
normalization condition such as Eq. (6) is provided. In other
words, the zero eigenvalue is nondegenerate and has one and
only one eigenvector N? . Physically, this means that the rate
equation has a unique steady-state NI-SS with

NS=N"=0 Vi, (8)

with positive initial populations leading to positive steady-
state populations [25].
The transfer equation for radiation reads [2]

1dl, 14, (?I
= — =pK, (S
cdt ¢ (9t Js

-1)+p/(,~1), (9

where s is the coordinate along the direction of propagation,
K, 1s the spectral opacity corrected for stimulated emission,
S, is the source function, p, is the coefficient of isotropic

scattering, and 1, is the specific intensity averaged over the
complete sphere. Denoting i and dw the spatial direction
and the infinitesimal solid angle element, respectively,

_ 1
IV:—fdeV (10)
4ar

and

al,
Ty _ VI, 11
P - (11)

The explicit expressions of the short-hand notation 77 in
Eq. (1) and of the term pk,(S,—1,) in Eq. (9) are given in the
Appendix.

B. Rate of entropy production

In practice, the NLTE situation is delicate because we do
not know any a priori expression for the ion populations N;.
Even assuming a constant environment, one needs to con-
sider, very often, a large rate matrix to obtain the steady-state
ion populations [26].

In the NLTE steady-state situation, the determination of
the NfS is the key point of the whole problem. Once known,
one can calculate average ionizations, emissivities, and
opacities both for hydrosimulations and diagnostics. Any ro-
bust method to estimate accurately and quickly the steady-
state ion populations is of great interest. This really makes
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sense when the rate equations (1), (3), and (4) cannot be
solved due to the huge number of atomic levels or atomic
configurations to handle.

According to nonequilibrium thermodynamics, the steady
state near LTE is constrained by rigourous general require-
ments of energy conservation, by the stability criterium, by
Onsager relations, and by a variational principle, i.e., the
Prigogine theorem of minimum entropy production [5,6].
This theorem says that the stationary states are also states of
minimum entropy production compatible with the external
constraints that prevent the system from reaching thermody-
namic equilibrium [5,6]. In the present situation, the rate of
entropy production o of the system made of ions and radia-
tion field in a constant environment represented by the free
electron reservoir in thermodynamic equilibrium is minimum
for the correct steady-state populations NfS in the linear
range near thermodynamic equilibrium [10,27,28]. The Pri-
gogine theorem of minimum entropy production is the fun-
damental theorem of the thermodynamics of irreversible pro-
cesses.

Let us give the explicit expression for the rate of entropy
production of the system made of ions and radiation field in
a constant environment represented by the free electron res-
ervoir in thermodynamic equilibrium. The derivation is de-
tailed in the Appendix. Using the Von Neuman definition of
entropy [29], the rate and radiative transfer equations [2],
and the notion of conjugate variables [11,30], the rate of
entropy production ¢ can be written [27]

a2 TR 1 4 B, - X

3t

ks iy h
+ (IBe - B,)]’H/— Be(Ek - Ej) + 77e(Qk - Q_])]

+ (E) Cjkaf[Xk _Xj - ﬁe(Ek - Ej) + 77e(£2k - QJ)]’
Jk(rg

(12)

where h is the Planck constant, c is the speed of light, kp is
the Boltzmann constant, 8,=1/kgT, with T, the radiation
temperature, and 7,=u,/kgT,. X;=—In(N;/W;)—1 is the con-
jugate variable of N; with respect to the Von Neuman defini-
tion of entropy [11]. (rfk(v) is the radiative emission cross
section [31] related to the radiative absorption cross section
o3(v) by the microreversibility relation of(v)=07,(v)
><(W/ Wy)e Pelv-hmol+n.Q=01) [32]. C Pt the total colli-
sional rate between configurations k and j, i.e., collisional
deexcitation for bound-bound transition and three-body re-
combination and autoionization for bound-free transition.
> jk(v,) eans that we sum over a pair of configurations (;,k)
with E,>E; involving the frequency vy=(E;—E;)/h. F(x)
=x(e*~1) and f,(x)=1/(¢*"*=1). The same function F(x)
appears in the radiative and the collisional terms. F(x) is
always positive and takes the zero value if and only if x=0.
In other words, o=0 if and only if free electrons, radiation
field, and matter are in complete thermodynamic equilibrium
between each other. In agreement with the second law of
thermodynamics, the rate of entropy production is strictly
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positive for irreversible processes and null for thermal equi-
librium only.

We have established a very compact expression (12) for
the rate of entropy production. After some algebra, it is also
possible to rewrite Eq. (12) under a form that agrees more
with the classical expression obtained in the framework of
the thermodynamics of irreversible processes [5,6,27]. This
equivalent and academic expression is a bilinear form, which
consists of a sum of products of two factors. In each term,
one of these factors is an energy flow, or flux. The other
factor is a difference of “generalized thermodynamic” state
variables: it plays the role of a generalized thermodynamic
forces or affinities, for which a nonzero value causes a non-
zero corresponding flux. These generalized thermodynamic
state variables, which simply derive from the relevant conju-
gate variables, can be interpreted as “generalized” or “effec-
tive” temperatures. Each individual flux gives the net energy
transfer per unit time between the two relevant systems at
two different effective temperatures. The rate of entropy pro-
duction is thus the resultant of all of these individual flux-
times-affinity products. In the standard thermodynamics of
irreversible processes, we need the postulate of the second
law of thermodynamics to ensure that each individual flux-
times-affinity product is positive, i.e., heat goes from hotter
reservoir to colder reservoir at the microscopic scale. Here,
we do not need the postulate of the second law of thermo-
dynamics, because the positive sign of the rate of entropy
production comes naturally from a combined and consistent
use of microscopic theory and statiscal mechanics. In other
words, the second law of thermodynamics appears to be a
macroscopic effect of the law of quantum statistical mechan-
ics [33]. Moreover, though we can express the rate of en-
tropy production ¢ (12) in a strict and formal analogy with
the classical formula for rate of entropy production obtained
in the framework of the thermodynamics of irreversible pro-
cesses, our work is not restricted to the neighborhood of
thermodynamics equilibrium, i.e., to the domain of validity
of the Gibbs’ fundamental equation which is fundamental to
establish the general rules of the thermodynamics of irrevers-
ible processes [5,6,27].

Once o is known, we can consider first near-LTE condi-
tions. Since the environment around the ion and radiation
field subsystem is considered to be in LTE, the method con-
sists in expanding the rate of entropy production o, the rate
equation, and the radiative transfer equation with respect to
the deviations of the conjugate variables of interest from
their LTE values. The Taylor expansion is performed at the
lowest order, i.e., second order for the rate of entropy pro-
duction and first order for the kinetic and radiative transfer
equations. After some algebra, one can deduce from these
Taylor expansions the Onsager relations [30,34], the Prigog-
ine theorem of minimum entropy production and the Le
Chatelier principle [5,6], or the response matrix properties
[8,11]. Second, we can consider near-NLTE steady state con-
ditions. This time, the environment around the ion subsystem
is considered to be in NLTE steady state. This condition is
obtained when the radiation field reservoir is perturbed from
thermodynamic equilibrium by assuming some brigthness
temperatures different from the electron thermal bath tem-
perature. In this situation, the reference is not the LTE steady
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state but a NLTE steady state determined by the thermody-
namic conditions of the free electron and radiation field res-
ervoirs. The breakdown of LTE steady state leads for the ion
subsystem to the violation of both the Onsager relations and
invalidates the Prigogine theorem of minimum entropy pro-
duction. However, the transition between near LTE condi-
tions to far from LTE conditions is smooth and the steady
state may differ only slightly from the state of minimum
entropy production. Another way of expressing this point,
though strictly valid near LTE, the Prigogine theorem of
minimum entropy production may work indeed far from LTE
[10,35].

C. Effective Boltzmann law

Near LTE, we know that the Boltzmann law is a good
approximation for the electronic configuration populations.
Following Fournier et al. [14] and Bauche et al. [15], Blan-
card et al. [16] have found that the configurations cluster in a
limited number of groups by using CRE models between
detailed configurations in NLTE conditions. All these works
indicate that the atomic processes tend to establish an effec-
tive temperature law (or Boltzmann law), i.e., a decreasing-
exponential law versus energy for the total atomic popula-
tions of the configurations.

We propose to use the Prigogigne theorem of minimum
entropy production to derive the effective Boltzmann law
near but also far from LTE. We make an ansatz for the con-
jugate variables in Eq. (12),

X = [E; = (s, - Opte) QKT (13)

These effective conjugate variables Xfff are written under a
simple effective Boltzmann law. The particle density of con-
figuration i can thus be written

eff
W,»e Xi

if
J
T, is an effective temperature determined by minimizing

the rate of entropy production (12) at constant 7,, N,, and T,.
The corrective term Ju, is introduced to ensure that

> ONST =N, (15)

N#'= N, (14)

is satisfied. By construction, minimizing the rate of entropy
production ¢ using Egs. (13)—(15) should give a good esti-
mate of the exact solution found solving the corresponding
CRE model in the vicinity of thermodynamic equilibrium.
The main issue concerns strong departure from LTE, i.e.,
when T, is very different from 7, or when the radiation is far
from being a Planckian or non-Planckian radiation field with
many brightness temperatures 7, # T,. In that case, the gen-
eral expression (A40) for the rate of entropy production must
be used instead of formula (12). In this document, we choose
first one effective temperature 7, to test our method. How-
ever, since this variational method is by construction flexible
enough to deal with many effective temperatures for a given
set of electronic configurations, we then consider one effec-
tive temperature per ionic stage.
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III. NUMERICAL APPLICATIONS

In order to study the validity of combining the Prigogine
theorem of minimum entropy production with the notion of
effective Boltzmann law for electronic configuration, we
consider the far from LTE photoionized iron plasma experi-
ment of Foord er al. [36]. This experiment was performed at
relatively low electronic density, i.e., N,=2 X 10" cm™. The
electron temperature 7, was estimated to be equal to 150 eV.
The ambiant radiation field was assumed to be a Planckian at
a temperature 7,=165 eV diluted by a geometrical factor that
accounts for the fact that the plasma is only irradiated by the
Planckian over a relatively small solid angle. The dilution
factor is equal to 0.01. Using Eq. (A13) in the Appendix, this
dilution factor is taken into account as a brightness tempera-
ture B,, i.e., f,(B,)=0.01f,(B,). With the ansatz (13) for the
electronic populations N/ (14), the minimization of the rate
of entropy production (A40) at fixed T,, N,, and radiation
field is performed using a conjugate-gradient program [37].
In order to focus on the accuracy of the configuration popu-
lations fof , obtained by our variational method, compared to
the configuration populations N;, found by solving the CRE
model, we compute the four first moments of the ionic and
energy distributions, i.e.,

2. (- 0N,
MQ,=———, (16)
ZiN i
and of the total energy distribution, i.e.,
2, (E~E)'N,
ME,=——, (17)
> Ni
where
_ 20N,
O=—F (18)
> Ni
and
_ 2.EN,
E=—. (19)
2N
As usual, we consider rather the skewness A,

=MQ3/MQ3* (\g=ME;/ME}?) and the kurtosis &,
=MQ,/MQ5-3 (kp=ME,/ME3-3) to check the deviation
from a pure Gaussian distribution, for which the skewness
and the kurtosis are zero [38].

In Fig. 1, we compare experimental data extracted from
Ref. [36] to theoretical calculations. First, using the average-
atom SCAALP model with €-splitting and autoionization and
dielectronic capture (AA) [39], we find an average charge
state equal to 16.33 and a standard deviation equal to 0.52.
The average charge state is close to the one predicted by the
GALAXY code [31,36] and in good agreement with the ex-
perimental average charge state 16.1+0.2. The charge state
fraction of the dominant ion Fe'®* is underestimated com-
pared to experimental results, whereas we overestimated the
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FIG. 1. Iron charge state distribution of a NLTE iron plasma at
T,=150 eV, N,=2x 10" cm™, T,=165 eV, and a dilution factor
equal to 0.01. We compare experimental results (Exp) [36] with
theoretical calculations using an average-atom model (AA) [39], a
CRE model [16], and combining the Prigogine theorem of mini-
mum entropy production and the notion of effective Boltzmann law
using one effective temperature (Teff) or one effective temperature
per ionic charge-state [Teff(N)].

Fe!”* charge state fraction. Second, we perform CRE calcu-
lations based on the average subshell occupations and the
electron covariance matrix elements given by the SCAALP
model [16,39]. In this calculation, we consider ionic charge
states between Fe'** and Fe!%*. The following configurations
have been retained: 1s*[2s2p]™"[3€,4€",5¢"]*", where ¢
=s,p,d, {'=s,p,d.f, ¢"=s,p,d,f,g. q (n) takes values be-
tween 5 and 8 (0 and 2). m=0 except for Fe!** and Fe!**, in
which m=1 and m=2, respectively. The chemical potential is
optimized to have N,=2X10" cm™. The CRE and
SCAALP chemical potentials differ by less than 3%, indicat-
ing a pertinent selection of the set of electronic configura-
tions. The CRE charge state distribution (CRE) is in better
agreement with experimental data. In that case, the standard
deviation is equal to 0.67. As for our approach of combining
the Prigogine theorem of minimum entropy production with
the notion of effective Boltzmann law for electronic configu-
ration, the charge state distribution using one effective tem-
perature (Teff) is intermediate between the AA and the CRE
charge state distributions, whereas the charge state distribu-
tion using one effective temperature per ionic charge-state
[Teff(N)] is in better agreement with experiment. The stan-
dard deviation of the Teff charge state distribution is equal to
0.552, i.e., close to the standard deviation of the AA charge
state distribution. The standard deviation of the Teff(N)
charge state distribution is equal to 0.571, i.e., closer to the
standard deviation of the CRE charge state distribution than
the Teff charge state distribution. We show in Table I the
mean, standard deviation, skewness, and kurtosis of the ion
distribution calculated from the CRE, Teff, and Teff(N) ap-
proaches, respectively. The ion distribution moments are di-
mensionless since ion populations are normalized to ion den-
sity N,. In Fig. 1, the experimental charge state distribution
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TABLE I. Moments of the ion distribution calculated by com-
bining the Prigogine theorem of minimum entropy production and
the notion of effective Boltzmann law using one effective tempera-
ture (Teff) or one effective temperature per ionic charge state
[Teff(N)] and by solving the CRE model (CRE) for a NLTE iron
plasma at 7,=150 eV, N,=2X 10! cm™, T,=165 eV, and a dilu-
tion factor equal to 0.01. The moments are dimensionless since ion
populations are normalized to ion density N,,.

Moments CRE Teff Teff(N)
Mean 9.66 9.66 9.66
Stand.dev. 0.668 0.552 0.571

Skewness -0.866 -0.745 -0.807
Kurtosis 1.253 0.362 0.576

is clearly asymetric. Except AA calculation, which is re-
stricted by the Gaussian hypothesis for the electronic corre-
lation, other calculations predict also asymetric charge state
distributions. It is well known that charge state distribution
tends to be asymetric when the average number of bound
electrons is in the vicinity of a shell closure. This behavior is
related to the large change of ionization potential above and
below the shell closure. In Table I, we can see that the
Teff(N) values are closer to the CRE values than the Teff
ones.

Another quantity of interest is the energy stored by elec-
tronic configurations. This internal energy is of prime interest
for NLTE equation of state (EOS). Since our approach of
combining the Prigogine theorem of minimum entropy pro-
duction and the effective Boltzmann law is based on general
principles of quantum statistical mechanics, our approach
could be used to calculate NLTE EOS. In order to check this
idea, we compare in Table II the mean, standard deviation,
skewness, and kurtosis of the energy distribution calculated
from the CRE, Teff, and Teff(N) approaches, respectively.
Mean and standard deviation of the energy distribution are in
Ry and skewness and kurtosis are dimensionless. The mean
values predicted by all approaches are very close. The stan-
dard deviations and the skewness given by the CRE and
Teff(N) are close too. The largest discrepancy concerns the
kurtosis calculation. In this case far from LTE, using more

TABLE II. Moments of the energy distribution calculated by
combining the Prigogine theorem of minimum entropy production
and the notion of effective Boltzmann law using one effective tem-
perature (Teff) or one effective temperature per ionic charge-state
[Teff(N)] and by solving the CRE model (CRE) for a NLTE iron
plasma at T,=150 eV, N,=2X 10" cm™, T,=165 eV, and a dilu-
tion factor equal to 0.01. Mean and standard deviation are in Ry.
Skewness and kurtosis are dimensionless.

Moments CRE Teff Teff(N)
Mean -2243.0 -2245.0 -2245.0
Stand.dev. 59.30 50.13 51.77

Skewness 1.477 1.076 1.172
Kurtosis 2.101 0.455 0.778
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than one effective temperature leads to a sensitive improve-
ment of the energy distribution description.

IV. CONCLUSION

We have applied the thermodynamics of irreversible pro-
cesses to study interaction of matter and radiation field out of
thermodynamic equilibrium. A compact and explicit expres-
sion for the rate of entropy production of matter and radia-
tion field in a NLTE situation in contact with a free electron
reservoir in LTE has been found using the conjugate vari-
ables of state variables. Assuming an effective Boltzmann
law for electronic configurations, the corresponding effective
temperature is determined using the Prigogine theorem of
minimum entropy production. Comparisons between theoret-
ical and experimental results for NLTE steady-state photo-
ionized iron plasmas show that our approach, based on gen-
eral principles of nonequilibrium thermodynamics, can be
employed far from LTE. The effective temperature computa-
tion is fast and does not require any matrix manipulation. It
could be implemented into atomic-physics packages based
on average-atom models [39-43] for hydrocode simulations.
The extension of our approach to superlevel [23] or STA [24]
approaches, with or without the variational STA notion [44],
is straigthforward. Indeed, it would be interesting to compare
our method to the one proposed for computing superconfigu-
ration temperatures [45,46] by calculating ionization bal-
ances and photoabsorption and photoemission spectra. Fi-
nally, we intend to improve the understanding of NLTE
equation of states.
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APPENDIX: RATE OF ENTROPY PRODUCTION IN THE
FRAMEWORK OF THE COLLISIONAL-RADIATIVE
EQUILIBRIUM MODEL

In this Appendix, we derive the expression (12) of the rate
of entropy production o of the system made of ions and
radiation field in a constant environment represented by the
free electron reservoir in thermodynamic equilibrium.

This system is made of the following three subsystems:
ions, radiation field, and free electrons. Since these sub-
systems interact weakly between each other, the total local
entropy S can be obtained by adding the entropies of the
three subsystems [47]. From statistical mechanics, we know
that the entropy of a system of independent particles depends
on the nature of the particles [29,48]. If they are discernable,
they form a classical ideal gas and obey the Maxwell-
Boltzmann statistics. If they are indiscernable, they form ei-
ther a Fermi gas and obey the Fermi-Dirac statistics, or a
Bose gas and obey the Bose-Einstein statistics. A concise
expression for the relevant entropy S, is
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Se=- kBE [p;In(p;) — (p; + eg)In(g; + ep;) + g, In(g,)],

i

(A1)

where p; and g; are the population and degeneracy of state i
and kp is the Boltzmann constant. =0, —1, +1 for Maxwell-
Boltzmann, Fermi-Dirac, and Bose-Einstein statistics, re-
spectively. One can check that both S, ; and S_; give S in the
classical limit p;/g;<<1.

The total local entropy S for radiation field [47,49-51]
and atomic populations [29] in contact with the free electron
reservoir in thermodynamic equilibrium can thus be written
as

S=—kz> Si—kadwdvs,,+Se, (A2)

N
Si:Niln — 1,
Wi
217 i, i,
s,,=—3 In 31— 1+
2hv 2hv 2hv?

In Eq. (A2), —kz2;S;, —kp[dwdvs,, and S, are the entropies
of the ion subsystem, the radiation field subsystem, and the
electron heat bath subsystem, respectively. S is understood to
be given by unit volume. We have used the correspondance
between the specific intensity /, and the number of photons
per mode n,,

where

(A3)

Jof 2]}

(A4)

2h}

v= _2nv' (AS )
c

The integration measure 2dwdvi?/c? is obtained replacing
the finite summation about individual photon quantum states
by an integral and assuming a nonpolarized radiation travel-
ing at light speed ¢ inside the medium along the spatial di-
rection &. In Eq. (A2), the explicit expressions for the entro-
pies of the ion and radiation field subsystem are essential
because these two subsystems are supposed to be in NLTE.
Indeed, we do not really need the explicit expression of S,
because the free electron subsystem is assumed to be in LTE.
We just have to keep in mind that S, is a function of the state
variables of the free electron subsystem, i.e., the energy den-
sity E, and electronic density N,. The S, expression can eas-
ily be obtained from standard textbooks [29,48]. Moreover,
since the free electrons are assumed to be nonrelativistic,
nongenerate, and described by a Maxwell-Boltmann distribu-
tion, the equation of state of the free electron subsystem is
simply the ideal gas equation of state.

In order to derive the expression of the total rate of en-
tropy production o, we differentiate Eqgs. (A2)—(A4) par-
tially with respect to time. From the chain rule we find
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S dN; 8Sal, JSdE, S dNn,
2—— dodv——+——+——.
o JN; dt ol, gt OE, dt ON, dt
(A6)

Now, we introduce the conjugate variables with respect to
the state variables [11,30].
For the ion subsystem,

»® = kpX;, (A7)
N,
where
X,:—ln(%)— 1, (A8)
from Eq. (A3).
For the radiation field,
oS _ kB,
we )
where
Byzim(Hz’;VS), (A10)
hv cl,

from Eq. (A4). h is the Planck constant and B,=1/kzT,,
where T, defines by
1 s

_ By All
T,” I, (A1D)

is the brightness temperature [47]. Equation (A10) can be
inverted to obtain the specific intensity as a function of the
brightness temperature

2hv} 1

=5 Al2
V=T B (A12)
Comparing Eq. (A5) and Eq. (A12), 1/(e#""~1) is nothing
but the number of photons per mode n,. There is a one-to-
one map between n, and the brightness temperature 3, i.e.,

nV:fV(BV) s where

filx) = (A13)

hv _ 1

is the Bose-Einstein distribution function.
For the free electron subsystem, since this susbsystem is

in LTE [29,33,48], the conjugate variables of E, and N, are

given by

as as, 1
— == (A14)
JE, OE, T,
and
s 48
— e e (A15)
dN, ON, T,
respectively.

Combining Eq. (A6) with Egs. (A7), (A9), (Al4), and
(A15), we obtain
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as dN; 110, 1dE, p,dN,
— =2 kgX—+ | dodv———"+ ——< - “E—=,
a dt T,cot T,dt T, dt
(A16)
We now use the CRE rate equation (1),
dN;
—i=3 TNy, (A17)
dt 7

and the equation of radiative transfer (9),

Ydl, _Vol, o _ (S _I)tp(l—1). (AS)
cdi cor g POWyTHITRMLTL)

Inserting Eqs. (A17) and (9) inside Eq. (A16), we get

as
= 2 kBXi(Tiij - TjiNi)
ot ij

1], _
+fdwdy_|:__+pKV(SV_IV)+pV(IV_IV)
T, as

1 dE, _ p.dN.

. A19
i T,dt T, dt ( )

Using the chain rule (A11) between s, and I,, dS/dt in Eq.
(A19) is the sum of two terms. The first one,
—[dvdwl[d(cs,)!ds], represents the transport of entropy by
radiation field. The three-dimensional-space integration is
classically converted into a surface integral and we obtain
the flux of radiation entropy leaving the system through its
surface. This term is related to boundary conditions. The
second one is the rate of entropy change of the system due
interaction between ions, radiation field, and free electron.
This rate of entropy production o, is defined as the time
change of the entropy density due to collisions [27,28],

(A20)

Oir=0gt+ 0,

where

a.,= f dwdv%(f,,—],,), (A21)

and
1
o= 2 kpX{T;N;— T;N;) + ddeF[PKV(SV— 1,)]
ij v

1 dE, _ pedN.

+ - . (A22)
T,dt T, dt

In Equation (A21), o, is the rate of entropy production due
to the scattering of radiation. It reads [27]

V2
LB DU+ LB )]

Xf[ﬁv(w,)hv_ Bv(w)h]}l
where B,(w)=1/kzT (w), B,(w')=1/kgT,(w"), and

Oy = f dvdwdw'

(A23)
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Flx)=x(e*-1). (A24)

By construction, oy, involves the radiation field only. In our
case, this is rather the rate of entropy production ¢ in Eq.
(A22) we are looking for, since it involves ions, radiation
field, and free electron in a consistent way. Let us simplify o
in Eq. (A22). We can distinguish three contributions to o.
The first one, %, kpX,(T;;N;—T;N;), is the entropy produced
inside the ion subsystem due to collisional and radiative tran-
sitions. The second one, [dwdv(1/T,)[pk,(S,—1,)], is the
entropy produced due to the interaction between the ion and
radiation field subsystems. The last one, (1/7,)(dE,/dt)
—(u/T,)(dN,/dr), is the entropy produced due to the ex-
change of energy and electrons between the ion subsystem,
the radiation field subsystem, and the electron heat bath.
There is no entropy produced inside the radiation field sub-
system because there is no photon-photon interaction at this
energy scale. There is no entropy produced inside the elec-
tron heat bath because the free electron subsystem is in LTE.
Clearly, the rates T, can be split between collisional rates
Cj and radiative rates Rj;, i.e., Tj=Cj+Rj. The collisional
rates obey the detailed balance principle
CWie PEit el = € Wie PE+10;, (A25)

where 7, is related to the chemical potential w, by 7,
=u,/kgT,. The radiative rate in absorption

4o [ of(v)2m?

Rkj = 7 dv_;_zfv(ﬁv) (A26)
0 v c
and the one in emission
47 (7 of(v)2n)?
Rjk = 7 0 dv v 7[1 +fv(ﬁy)]a (A27)

where 0'1';(7/) and o-,’fj(v) are the absorption and emission
cross sections [31], respectively. For the bound-bound tran-
sition,
2
ol (v) = = f V), (A28)
mc

where e and m are the electron charge and the electron mass,
respectively. fy; is the absorption oscillator strength for the
considered transition. f;; is related to the corresponding
emission oscillator strength by f,;W;=fW,. \If,’:j(v) is the
line profile in absorption for the considered transition. Since
free electrons are assumed to be in local thermodynamic
equilibrium at T, W;;(v) is related to the line profile in emis-
sion \I’;k(v) by

W (v) = W (v)e el (A29)

where

hvy=E;—E;. (A30)
J

The relation (A29) between line profiles in emission and
absorption is essential for the source function to reduce to
the Planck function over the entire line profile when radia-
tion field and matter are in equilibrium with electron bath
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[2,32]. o‘,’&(v) and \If,’fj(v) can also be used to define the Ein-
stein coefficient A;; through the relation [52]

217
Akj‘lflfj(v) = 47770',’;(1/). (A31)

For the bound-free transition, introducing the differential os-
cillator strength dfy;/dv in absorption, the associated bound-
free cross section is given by

2
P e dfy;
o (v) = ———~ (A32)
mc dv
and the corresponding emission cross section reads
W.
O(v) = oy () e P @00 (A33)

k
Once the absorption cross section is known for either bound-
bound or bound-free transitions, the term pk,(S,—1,) in Eq.
(A22) originating from the radiative transfer equation (9)
reads

2hv}
pKV(SV_IV)= 2 (C_: ;k(V)Nk[l +fv(ﬁv)]

.fk(Vo)
20
— 2 9N, V(BV)>. (A34)

The notation jk(v,) means that we sum over pairs of levels
jk with E,>E; and we use Eq. (A30).

On the one hand, the contribution dE,/dt in Eq. (A22)
reads

4q (7
Nj_cjiNi)+ E — dV(hV—hVo)
Jk(vp) 0

3 £ K
Xzi‘l_;j(glglvk[l +fV(BV):| - ﬂ?Aljfv(ﬁv)>

(A35)

dE
- =M E(C..
o= 2,

due to energy conservation. On the other hand, the contribu-
tion dNe/dt in Eq. (A22) is given by

- _EQ(CU i N)+ 2 h f dV(Q] Qk)
Jk(vp)
xz’cl—z"<g"‘v(ﬂNk[1 + B - 1’fj;”)N,fV(,BV))
(A36)

due to particle number conservation. Let us reorganize the
summation terms in Egs. (A22), (A35), and (A36) under a
form similar to what is encountered in Eq. (A34). In the
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former equations, the summation over the whole combina-
tion of indices ij can be recast under a summation over pairs
of indices jk(v,), where the index k is the upper level and
index j is the lower level (E,>E;), and v is given by Eq.
(A30). Thus we obtain obtain

E { } (Rl_] R_]IN) = E ({ }k { } )(RkJN -R ka)

Jk(vg)
(A37)

for the radiative rates, and

E{ }(CU j RjiNi)= E ({"'}k—{'"}j)(ijNj—Cjka)

.fk(Vo)
(A38)

for the collisional rates. In these expressions, {---}; may be
X,, E;, or Q,. Combining Egs. (A37), (A38), (A35), (A36),
(A34), and (A22), we find that o can be expressed as fol-
lows:

E (ij

. - CiNJ[X, = X; - B.(E, - E))
B jk(vy)

p <2hv3
14 02

+ 70— Q)] + E

> o (VN (B,)
k(v

201
-T2 SN[ +fu(Bv)])[Xk -X;+(B. - B)hv

- Be(Ek - E]) + ne(Qk - QJ)] (A39)
Finally, we factorize by C;N, and by (2hv’/c?)o%, SN 1
+f,(B,)] in the first and second terms of the sum in Eq.
(A39), respectively. We then use Egs. (AS8), (A13), (A24),
(A25), and (A28) to find a compact expression for o,

* 2h o
O3 A Ay - X
B i)
+ (Be_ﬁv)hy_ﬁe(Ek_Ej) + 77€(Qk_ Q])]

+ 2 CuN FIXi—X; = BUE—E)) + 10— 0)],

Jk(v)
(A40)

which is simply Eq. (12) when B,=8,.
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