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It is shown that a modified scheme of density functional theory, using the Thomas-Fermi kinetic energy
functional for the electrons, is well suited to perform very-high-temperature molecular dynamics simulations
on high-Z elements. As an example, iron on the principal Hugoniot is simulated up to 5 keV and 5 times the
normal density, giving an equation of state in agreement with current models. Ionic structure is obtained and is
given to an excellent level of precision by the structure of the one-component plasma computed for a coupling
parameter corresponding to Thomas-Fermi ionization.
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I. INTRODUCTION

Classical molecular dynamics simulations, based on ad
hoc pair potentials, are limited in temperature and pressure
by the repulsive part of the interaction. This pair potential is
representative of a given thermodynamic state and cannot be
easily transferred to very different situations. As an example,
when temperature and density increase, ionization of the at-
oms strongly modify the strength of the interactions, calling
for some sort of self-adjusting potential.

The advantage of ab initio calculations rests on the pos-
sibility of computing dynamics without requiring any as-
sumptions about the potential between atoms. Indeed, this
one is a consequence of Coulomb interactions screened by
the electron cloud. Both electrons and ions are taken into
account consistently, electrons by minimizing the free energy
as a functional of the one-body density in the ions potential
�density functional theory �DFT� calculations�, and ions are
moved under the influence of Coulomb interactions arising
from both ions and electrons.

Such quantum molecular dynamics �QMD� simulations
have been successfully tested on compressed silica up to
80 000 K and densities twice the normal density �1�. Simi-
larly, QMD simulations were also used to study expanded
metals at low densities and temperatures up to 3 eV �2,3� and
compressed molecular systems �4�. Unfortunately, calcula-
tions based on quantum states at higher temperatures or den-
sities are almost impossible to deal with for two reasons.
First, the number of quantum states involved increases
strongly with temperature since they are populated according
the selected temperature Fermi-Dirac distribution. The diffi-
culty arises from the fact that those bands must be orthogo-
nalized, requiring computer time which scales as the cube of
the number of bands. Second, ab initio codes are based on
pseudopotentials in which a clear separation between core
and valence electrons is assumed. Nevertheless, this distinc-
tion disappears at high pressure, all electrons being candi-
dates to delocalization sooner or later.

A method was recently proposed by Surh et al. �5� to
overcome this difficulty by introducing core states in the
pseudopotential to treat ionization at high temperature. Inter-
esting results were obtained for aluminum up to 3�106 K
but no further results have been published for more complex
elements. It is clear, nevertheless, that a correct treatment of

the electron-ion interaction is the key for describing high-
temperature systems.

In this paper, we propose to use an alternative method to
a full-orbital QMD calculation. The electronic kinetic and
entropic parts of the free energy are expressed implicitly in
terms of the density through the Thomas-Fermi functional
and combined with a molecular dynamics for ions �Thomas-
Fermi molecular dynamics �TFMD� �6,7��. This approach is
consistent with all models of equation of state dealing with
hot dense matter such as SESAME �8� or QEOS �9� in which
Thomas-Fermi or Thomas-Fermi-Dirac theories are the key
ingredients for dealing with the dominant electronic contri-
bution. The method was successfully tested on an hydrogen
plasma in conditions close to the center of Jupiter �10,11�
and opened a new class of orbital-free methods used in many
fields �12�.

Well-known difficulties of Thomas-Fermi theory with
bound states restrict the method to the plasma regime, and
the MD scheme is itself more efficient with strongly coupled
plasmas, characterized by a coupling parameter

� =
Z*2e2

rwskBT
, �1�

where rws= �3/4�n�1/3 is the ionic mean radius, n the mate-
rial density, and T the temperature. The charge Z*, which
depends on the thermodynamic conditions, can be deter-
mined by the mean ionization degree of the ion, although no
unique definition exists for this concept.

When ��1 the plasma is strongly coupled and MD is
efficient. For example, hydrogen under extreme conditions is
quickly fully ionized and a further increase of the tempera-
ture reduces the coupling parameter. The system becomes
more and more kinetic, making MD useless. On the contrary,
for a high-Z element, the increase of the temperature leads to
a growth in the ionization, allowing for strong-coupling situ-
ations for which MD is particularly well suited.

To emphasize this trend, we have computed pressure and
structural properties of iron for thermodynamical conditions
corresponding to the principal Hugoniot.
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II. THEORETICAL PRELIMINARIES

A. Molecular dynamics

The simultaneous evolution of the electronic density and
the ions is realized thanks to a Car-Parrinello- �13� like
scheme based on a Lagrangian formulation �atomic units are
used throughout the paper�
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1
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− F0���r�,Ri� + 	�� ��r�dr − Nelectrons	 , �2�

where � and Ri are the dynamical variables associated, re-
spectively, with the electronic density and ionic positions.
The last contribution is a Lagrange multiplier which ensures
the global neutrality of the system. The Thomas-Fermi free-
energy functional F0���r� ,Ri� can be written

F0��,Ri� =
1
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where ��r ,Ri� is the total ionic potential, I
 is the Fermi
integral of order 
, and

��r� =
2�2

�2
3/2 I1/2„��r�… . �4�

From the proper derivatives versus density and ionic co-
ordinates the equations of motion are deduced and the two
species are propagated �7�.

It is important to recall here that ions and electrons are
treated consistently, propagated under their reciprocal influ-
ence. This approach is consequently different from �9� and
�8�, which take into account ions and electrons separately,
the first by a given model of equations of state, such that the
Cowan’s fluid model, and the second by a Thomas-Fermi
cell model.

B. Electron-ion interaction

If the Hartree term and the ion-ion term are not difficult to
compute, the electron-ion interaction is a source of difficulty
due to the divergence of the electrostatic potential and the
resulting Thomas-Fermi density near the nucleus. This diver-
gence can be handled in a cell model �CM� by a logarithmic
grid, for example �14�. However, such a method is not intro-
duced in an N-body-type resolution where the grid is fixed
and cannot be locally adapted to strong gradients. Conse-
quently, a regularization of the bare ionic potential must be
adopted and be used as the ion-electron interaction in Eq.
�3�.

The simplest way consists in smearing out the ions �SI�
inside a given cutoff volume, leading to an ion-electron in-
teraction of the form

�SI�r� = 
−
Z

2rc
�3 − 
 r

rc
�2	 , r � rc

−
Z

r
, r � rc.

�5�

This procedure leads to finite, smooth potentials and elec-
tronic densities but does not preserve the charge inside the
cutoff volume, resulting in overestimated pressures as was
mentioned in a previous paper �7�.

In order to preserve the electronic density beyond the cut-
off radius, and hence the pressure,1 we introduced a norm-
conserving �NC� regularization2 by imposing an analytical
form to the electronic density inside the cutoff volume, as in
the procedure developed by Troullier and Martins �15�:

�̃�r� = 
 1

4�
exp�a + br2 + cr4� , r � rc

��r� , r � rc,

�6�

where the coefficients a, b, and c are determined by the
continuity and electronic density conservation conditions

lim
r→rc

�̃�r� = ��rc� , �7�

lim
r→rc

� �̃

�r
�r =

��

�r
�

rc

, �8�

� drr2�̃�r� =� drr2��r� . �9�

Once ñ is determined, the screened potential �sc is com-
puted from the Thomas-Fermi equation in the cell model:

�sc�r� = � −
1



I1/2

−1 
�2
3/2

�2
�̃�r�� , �10�

where � is the chemical potential.3

Finally, the total regularization, shown in Fig. 1, is ob-
tained by subtracting the Hartree’s term:

�̃�r� = �sc�r� −� dr�
�̃�r��

�r − r��
. �11�

The choice of the cutoff radius does not depend on the
conservation of pressure since pressure is entirely deter-
mined by the electronic density at the edge of the box. Nev-
ertheless, there has to be a compromise between transferabil-
ity �small cutoff radius� and efficiency in terms of the fast-
Fourier-transform �FFT� grid points �large cutoff radius�.
Care about dynamical properties must also be taken when
large cutoff radii are computed. In particular, the absence of

1In Thomas-Fermi cell model, the pressure is entirely determined
by the electronic density at the edge of the box.

2The computation of the regularization is based on the cell model
code �14�, and the following spherically symmetric quantities are
those computed with this code.

3Since � can be determined by the electronic density at the edge
of the box, it is the same as �̃ derived with the regularized potential.
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interference between cutoff effects �modification of the elec-
tronic density� and ion closest approach distance must be
checked.

To a certain extent, our procedure is in a spirit of local
pseudopotentials developed for orbital-free DFT and applied
to solid state �16�.

Finally, we would like to emphasize here that the produc-
tion of the regularization is intrinsically linked to the two
theorems of Hohenberg and Kohn �17�. Indeed, � is deter-
mined by the variational principle

��r� +� dr�
��r��

�r − r��
+

�FK

���r�
− � = 0. �12�

The key point is that � in Eq. �12� is the real variable and
that � is chosen to be �̃. Therefore, it has to be noted that the
method can be extended to more elaborated functionals.

C. Pressure computation

As previously mentioned, the pressures computed in the
CM by the bare Coulomb potential or regularized potential
are the same since the electronic density is conserved at the
edge of the box. This last statement can be generalized by
recalling that this comes from the virial theorem applied to
the Thomas-Fermi CM. Therefore, our procedure allows us
to reproduce correctly the pressure of the Coulomb potential
by using the virial theorem. This one can be written in terms
of Fourier transform as �18�

3PV = 2K + Uee + Uii + Uie − �
�k��0

dkn�k�S�k�k
���k�

�k
,

�13�

where S�k� is the ionic static structure factor, a natural output
of the molecular dynamics scheme, the last term taking into
account the non-r−1 behavior of our potential.

Let us recall that it is necessary to compute a new regu-
larized potential for each thermodynamic conditions in order
to get the right “electronic” pressure.

III. NUMERICAL RESULTS

A. Check of the regularization

As an example, we test the regularization on iron at T
=50 eV and 22 g cm−3 by comparing our results PTFMD with
those produced by the cell model PCM �14�. The comparison
is indicated in Table I. Both the cutoff radius and FFT grids
are involved in order to check the adequacy between the grid
and the potential well, determined by the cutoff. The influ-
ence of the number of ions has been checked too, since the
plane-wave-based code brings into play the ionic structure
�bcc in our test�.

We emphasize that such an CM resolution uses a very
dense radial logarithmic grid �500 grid points� in comparison
with the coarse grid used for the three-dimensional �3D�
resolution �a 323 grid, equivalent to a 16-point radial grid�.

Table I shows that a large cutoff radius can be used to
minimize the size of the grid. We have also tested that for a
given grid �323 or 643�, we can handle 16, 54, or 128 ions
without losing precision.

B. QMD simulations

At low temperature, we performed QMD simulations us-
ing the VASP ab initio simulation package developed at the
University of Vienna �19�, which couples DFT for the rap-
idly evolving electron population, with a classical molecular
dynamics for the ions. The electron-ion interactions are
treated with the projector augmented-wave �PAW� pseudopo-
tentials �20� including eight electrons in the valence. The
calculations were performed in the local density approxima-
tion �LDA� of DFT as parametrized by Ceperley and Alder
�21�. A number of 16 ions was used for MD simulations of
iron in thermodynamic conditions along the principal Hugo-
niot as described in Table II. Following the increase of the
temperature, the total number of bands was varied from 100
at 0.1 eV to 400 at 5 eV. Simulations at 10 eV were almost
impossible to run with sufficient accuracy. After 500 steps of
1 fs of thermalization, production runs were realized for
1000 steps, allowing the computation of pressures, energies,
and structure.

C. TFMD simulations

We turn now to MD simulations of iron over a large range
of temperatures and densities along the principal Hugoniot as

FIG. 1. Bare Coulomb potential compared with the SI potential
given by Eq. �5� and with the NC potential given by Eq. �11� with
the same cutoff rc=1.33 atomic units for Z=1.

TABLE I. Comparison of the pressures �in Mbar� between the
CM and TFMD for iron at 22 g cm−3 and T=50 eV, versus cutoff
and the effect of the number of particles for a given cutoff of 0.9rws

for a given grid 323 or 643.

rc PCM PTFMD Grid N PTFMD

0.3 172.9 175.1 323 16 173.5

0.5 176.4 54 173.2

0.7 176.1 128 173.3

0.8 175.9 643 16 173.5

54 173.5

128 173.5
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given in Table II. The average charge state Z* is obtained by
the CM code from the electronic density at the edge of the
box, Z*= 4 � 3�rws

3 ��rws�. The effective coupling parameter �
is computed from the precedent value of the charge. The
simulations were performed with 54 ions on a grid of 323

with a cutoff radius of 0.7 rws or 0.9 rws. In order to maintain
ionic temperature, ion dynamics calculations were done in
the isokinetic ensemble �22� at the electronic temperature.
After a first minimization of the electronic free energy, ion
dynamics simulations were launched with a set of precondi-
tioned mass ratios � /M in order to preserve the separation
between electronic and ionic frequencies and hence the adia-
baticity of the simulation �12�.

In order to obtain good statistics on pressure and struc-
tural properties, computations were run over several plasma
periods, relaxation to equilibrium occurring before two peri-
ods. Table II summarizes the results on pressure from
SESAME equation of state �EOS� No. 2140, QMD, and
TFMD �see also Fig. 2�.

We found that QMD pressures are in excellent agreement
with the SESAME EOS, except for the lowest temperature,
QMD leading to lower pressures than the SESAME one.

As the temperature increases, TFMD results tend to be-
come closer to the SESAME EOS, behavior that was ex-
pected. At 100 eV, the discrepancy between SESAME and

our results comes from the exchange part of the free energy
and the cold curve correction which are introduced in the
Thomas-Fermi-Dirac model, which is the basis of the
SESAME EOS. The decrease of pressure induced by the
exchange part has been widely emphasized by several au-
thors �23�. At lower temperatures, more subtle quantum ef-
fects than Pauli exclusion principle play a major role so that
Thomas-Fermi model leads to a hugely overestimated pres-
sure when compared to QMD results which treats electrons
quantum mechanically. In that case, exchange part, added to
3, would improve the results but give a still too high pressure
�23�. In addition to thermodynamical properties, molecular
dynamics allowed us to get structural properties, in a consis-
tent description between ions and electrons. The ion-ion pair
distribution functions are plotted on the Fig. 3 and compared
with those of the one-component plasma �OCP� with a cou-
pling constant computed from Z*. At highest temperatures,

TABLE II. Thermodynamic points along the principal Hugoniot of iron, as given by the SESAME EOS
No. 2140 �PS�, QMD �PQ�, and TFMD �PT�

T
�eV�

�
�g cm−3� rws Z* � �

PS

�Mbar�
PQ

�Mbar�
PT

�Mbar�

0.1 10 2.46 4.6 800 10−3 0.625 0.467

1 13.26 2.24 5.3 338 1.1�10−2 3.568 3.517 15.5

5 18.71 1.99 6.1 100 4.5�10−2 15.28 14.91 40

10 22.5 1.88 6.6 62.5 7.9�10−2 33.08 70.3

100 34.5 1.63 10 16.6 0.597 659.9 740

1000 39.65 1.59 20.5 7.4 5.71 14965 14790

5000 34.37 1.63 25.1 2.1 29.9 78573 77564

FIG. 2. Principal Hugoniot of iron. Line is SESAME EOS,
circles are TFMD results, and squares come from QMD.

FIG. 3. Ion-ion pair distribution functions. Circles represent our
results, and the line is the OCP one computed with the effective �*.
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we obtained an interesting match between the two pair dis-
tribution functions. Although, the pair distribution function is
not a very sensitive quantity to the details of interactions,
several quantities like the closest approach distance or the
position of the maximum are a good check for comparison.
To explain this, we want first to recall that one-component
plasma is a theoretical model where classical particles are
moving under mutual Coulomb forces, these particles being
immersed in a nonpolarizable neutralizing background. The
key point in the calculation of the “ion charge” is that it
involves the electronic density at the edge box ��rws� which
corresponds to free electrons since electric field vanishes at
rws. Furthermore, Z* represents the number of free electrons
in the CM since

�
E=0

dr��r� = ��rws� � dr = ��rws�
4

3
�rws

3 . �14�

Therefore, in view of the pair distribution function, our
systems are equivalent to particles composed of an ion with
its polarizable electron cloud moving in the nonpolarizable
neutralizing background of free electrons.

It is interesting to link this result to the adiabatic approxi-
mation which is the basis of our molecular dynamics. Indeed,
it can be easily seen in Eq. �2� that the adiabatic approxima-

tion transforms the many-body problem involving ions and
electrons into two many-body problems, the first in which
only the electrons are propagated in a fixed ionic configura-
tion and the second which involved only the ions moving
under a screened pair potential. Consequently, our results
show that the screened two-body potential is simply a Cou-
lomb potential with the Thomas-Fermi charge.

IV. CONCLUSION

We have shown that the TFMD model is able to compute
pressure and structural properties of high-Z elements over a
wide range of temperatures along the principal Hugoniot.
MD simulations are possible up to a temperature of 5 keV,
where interactions still play a major role. We found that if
pressures are strongly overestimated at low temperatures
when compared with QMD simulations, they fall in reason-
able agreement with SESAME tables for temperatures
greater than 10 eV, when QMD simulations are no longer
possible. An interesting result is that the pair distribution
function g�r� is precisely matched by the OCP one computed
for an effective coupling parameter given by the Thomas-
Fermi ionization. This simple rule could lead to considerable
improvements for computing transport properties of such
high-temperature plasmas.
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