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The linear stability of a liquid layer flowing down an inclined plane lined with a deformable, viscoelastic
solid layer is analyzed in order to determine the effect of the elastohydrodynamic coupling between the liquid
flow and solid deformation on the free-surface instability in the liquid layer. The stability of this two-layer
system is characterized by two qualitatively different interfacial instability modes: In the absence of the
deformable solid layer, the free surface of the liquid film undergoes a long-wave instability due to fluid inertia.
With the presence of the deformable solid layer, the interface between the fluid and the solid undergoes a
finite-wavelength instability when the deformable solid becomes sufficiently soft. The effect of the solid layer
deformability on the free-surface instability of the liquid film flow is analyzed using a long-wave asymptotic
analysis. The asymptotic results show that for a fixed Reynolds number and inclination angle, the free-surface
instability is completely suppressed in the long-wave limit when the nondimensional �inverse� solid elasticity
parameter �=Va� / �GR� increases beyond a critical value. Here, Va is the average velocity of the liquid film
flow, � is the viscosity of the liquid, G is the shear modulus of the solid layer, and R is the thickness of the
liquid layer. The predictions of the asymptotic analysis are verified and extended to finite wavelengths using a
numerical solution, and this indicates that the suppression of the free-surface instability indeed continues to
finite wavelength disturbances. Further increase of � is found to have two consequences: first, the interface
between the liquid and the deformable solid layer could become unstable at finite wavelengths; second, the
free-surface interfacial mode could also become unstable at finite wavelengths due to an increase in solid layer
deformability. However, our numerical results demonstrate that, for a given average velocity, there exists a
sufficient window in the value of shear modulus G where both the unstable modes are absent at all wave-
lengths. Our study therefore suggests that soft solid layer coatings could potentially provide a passive method
of suppressing free-surface instabilities in liquid film flows.
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I. INTRODUCTION

The onset of instability in the flow of a liquid film down
an inclined plane and the consequent nonlinear spatiotempo-
ral dynamics engendered by the instability has been an ex-
tensively studied subject in fluid dynamics �1�, beginning
from the pioneering studies of Benjamin �2� and Yih �3�.
Apart from being interesting from a fundamental standpoint,
a clear understanding of instabilities in liquid film flows is
relevant to applications ranging from coating processes, dis-
tillation and/or absorption equipment, and pulmonary fluid
mechanics �4�. Yih �3� employed a long-wave asymptotic
analysis and showed that the liquid flow down an inclined
plane could become unstable to long-wave disturbances at a
sufficiently low Reynolds number. In particular, for the case
of a vertical plate, the flow is unstable at any nonzero Rey-
nolds number. Once the flow becomes unstable, the instabil-
ity manifests as gravity-driven free-surface waves at the
liquid-gas interface. A large number of subsequent studies
have analyzed the nonlinear evolution of these unstable
waves, and an extensive summary of the theoretical and
computational studies in this area can be found in �1�. A
similar instability for viscoelastic liquid flow down an in-
clined plane has been analyzed by Shaqfeh et al. �5�. Recent
studies have addressed the effect of surfactants on the free-

surface instability, in the presence of additional interfacial
shear, for both Newtonian �6� and viscoelastic �7� liquids.
These studies show that, in addition to the free-surface insta-
bility, there is another “surfactant mode” which also becomes
unstable due to a shear-induced Marangoni effect. There
have also been several recent studies which are aimed at
controlling the free-surface instability �see �8,9�, and refer-
ences therein�. Lin et al. �8� studied the effect of in-plane
horizontal oscillations �in the direction parallel to the flow�
in the inclined plate on the free-surface instability using the
Floquet theory. They showed that by use of appropriate am-
plitudes and frequencies of the forced oscillations, it is pos-
sible to suppress the free-surface instability of the liquid film
flow. More recently, Jiang and Lin �9� studied the effect of
horizontal oscillations on a two-layer liquid film flow. They
showed that the onset of instability in this system can be
suppressed in certain parameter regimes by imparting oscil-
lations of appropriate amplitudes and frequencies. In other
parametric regimes, they showed that it is possible to even
enhance the instability in the liquid film flow. These studies
have suggested “active methods” toward suppressing the
free-surface instability, where forced oscillations of the in-
clined plate are used to suppress the instability.

In this paper, we study the stability of a liquid flow down
an inclined plane lined with a soft viscoelastic solid layer
�see Fig. 1�, in order to examine whether the deformability in
the solid layer can suppress the free-surface instability. If
indeed the deformable solid layer can suppress the free-
surface instability, then this would represent a “passive” ap-*Corresponding author; Electronic address: vshankar@iitk.ac.in
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proach to controlling such instabilities, without any constant
forcing such as oscillations. When a viscous liquid flows past
a soft solid layer �shear modulus �104–106 Pa�, the normal
and tangential stresses exerted by the fluid at the fluid-solid
interface are sufficient to cause deformation in the solid
layer, which in turn affects the adjacent fluid flow. Previous
studies �10,11� have shown that this elastohydrodynamic
coupling can destabilize liquid-solid interfaces and lead to
the formation of interfacial waves. In this study, we ask the
question of whether this elastohydrodynamic coupling can
affect the free-surface instability in liquid flow down an in-
clined plane, and specifically, whether the free-surface insta-
bility can be completely suppressed by the presence of the
solid layer. A previous study �12� on the effect of a deform-
able solid layer on the two-layer plane Couette flow of two
different Newtonian liquids has shown that in certain con-
figurations �depending on the viscosity ratio of the two liq-
uids and thickness ratio�, the solid layer could have a stabi-
lizing effect on the two-fluid interfacial instability. That
study provides further motivation to examine the present
configuration of liquid flow down an inclined plane lined
with a deformable solid layer. In addition, the configuration
of liquid flow down an inclined plane lined with a deform-
able solid layer is perhaps more readily realized in experi-
ments when compared to the two-liquid configuration that
was studied in �12�. In a slightly different context, the phe-
nomenon studied here could also be relevant to biological
flows such as flow in the airways of the lung, involving
deformable conduits with liquid linings �4�.

The rest of this paper is structured as follows: The gov-
erning equations, base state, and linear stability analysis are
presented in Sec. II A–II C. In Sec. III, we carry out a long-
wave asymptotic analysis to examine the effect of the de-
formable solid layer on the free-surface instability of the liq-
uid flow. This is followed by a numerical study in Sec. IV
which extends the long-wave asymptotic predictions to finite
wavelengths. We finally conclude in Sec. V by summarizing
the salient results from the present study, and also by dis-
cussing the implications of the present results to experimen-
tal investigations.

II. MATHEMATICAL FORMULATION

A. Governing equations

The system of interest �see Fig. 1� consists of a linear
viscoelastic solid of thickness HR, shear modulus G, and

viscosity �w strongly bonded to a rigid surface at z*= �1
+H�R, a layer of Newtonian liquid of thickness R in the
adjacent region 0�z*�R flowing under the influence of
gravity. The liquid layer is exposed to a passive gas at the
free-surface z*=0. The angle of inclination made by the rigid
surface with the horizontal is denoted by �. Under laminar
flow conditions, the solid layer is at rest, and the liquid film
undergoes a steady unidirectional flow in the x direction,
with a velocity distribution �3�:

v̄x
*�z*� =

�g sin �

2�
�R2 − z*2� . �1�

Here, � is the density of the liquid, � is its viscosity, g is
acceleration due to gravity, and all dimensional variables are
denoted with a superscript *. The cross-sectional average
velocity of the laminar flow is given by Va
=�gR2 sin � / �3��. It is useful to nondimensionalize various
physical quantities at the outset, and the following scales are
used to this end: the average velocity of the laminar flow Va
is used for velocities, the thickness of the fluid R is used for
lengths and displacements, R /Va for time, and �Va /R for
stresses and pressure. Thus, H is the nondimensional thick-
ness of the solid layer.

The nondimensional governing equations for the liquid
flow are, respectively, the Navier-Stokes mass and momen-
tum equations:

�zvz + �xvx = 0, �2�

Re��t + vx�x + vz�z�vx = − �xp + 3 + �2vx, �3�

Re��t + vx�x + vz�z�vz = − �zp + 3 cot � + �2vz, �4�

where �t�� /�t and similar definitions hold for �x and �z.
Here, we consider only two-dimensional disturbances in the
x-z plane, and hence we neglect the velocity and variations in
the third �y� dimension. Thus, �2= ��x

2+�z
2� is the Laplacian

operator in two dimensions. The Reynolds number in the
momentum equations is defined as Re=�VaR /�. The terms 3
and 3 cot �, respectively, in the x and z momentum equations
are due to the gravitational body force in the fluid. The total
stress tensor Tij =−p�ij +�ij �i , j=x ,z� in the liquid is given
by a sum of an isotropic pressure p and a deviatoric shear
stress tensor �ij, and �ij = ��iv j +� jvi� for the Newtonian liquid
of interest in this study. The interface z=h�x� is exposed to a
gas, and hence is treated as a “free surface” where the shear
stress in the liquid vanishes. The normal stresses in the liquid
at z=h�x� must equal the hydrostatic pressure in the gas ad-
jacent to it. The dynamical evolution of the free interface
position h�x� is governed by the kinematic condition to be
applied at z=h�x�:

�th + vx�xh = vz. �5�

The deformable solid layer is modeled as an incompress-
ible linear viscoelastic solid �13� following the previous
studies �10,14,15� in flow past deformable solid surfaces. A
recent study by Gkanis and Kumar �16� on the stability of the
single-layer plane Couette flow of a Newtonian fluid past a
deformable solid has examined the role of nonlinear rheo-

FIG. 1. Schematic diagram illustrating the system configuration
and nondimensional coordinate system: a Newtonian liquid layer
flowing past a deformable solid layer under the influence of gravity.
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logical properties in the solid by modeling the deformable
solid using the neo-Hookean model. This study shows that
for nonzero interfacial tension between the fluid and the solid
medium, and sufficiently large values of solid layer thickness
�H	2�, the results from both linear and nonlinear solid
models agree quite well, while for smaller values of solid
thickness, the linear model somewhat overpredicts the criti-
cal velocity required for destabilizing the flow. It is demon-
strated later in this paper that the linear viscoelastic model is
expected to yield accurate results for the present study, and
hence we employ this simple model to describe the deforma-
tion in the solid layer.

The dynamics of the solid layer is described by a dis-
placement field ui which represents the deviation of material
points in the solid from their base-state positions. The veloc-
ity field in the solid layer is given by vi=�tui. In an incom-
pressible solid, the displacement field satisfies the solenoidal
condition

�iui = 0. �6�

The nondimensional momentum conservation equation in the
solid is given by

Re �t
2ui = � j
ij +

ĝi

sin �
, �7�

where 
ij =−pg�ij +�ij is the total stress tensor in the solid
layer which is given by a sum of isotropic pressure pg and a
deviatoric stress �ij, ĝi is a unit vector pointing in the direc-
tion of gravity. The density of the solid is assumed to be
equal to the density of the liquid without loss of generality. If
the densities were different, then the ratio of solid to liquid
densities �s /�l will appear in the left side of the above equa-
tion. The low-wave-number �k�1� asymptotic analysis car-
ried out in Sec. III shows that, to leading order in the analy-
sis, inertial stresses in the solid are O�k2� smaller than the
elastic stresses, and the inertial stresses of the solid layer do
not appear in the low-wave-number limit. Therefore the low-
wave-number asymptotic results are expected to be valid for
any value of the ratio �s /�l. At finite wave numbers, the
inertial stresses could become comparable to the elastic
stresses in the solid layer, and in such cases, there will be
some quantitative difference in the results when the ratio
�s /�l�1. However, the qualitative predictions of the present
study are expected to remain unaltered due to the change in
density ratio. The deviatoric stress �ij is given by a sum of
elastic and viscous stresses in the solid layer: �ij = �1/�
+�r�t���iuj +� jui� where �=Va� / �GR� is the nondimensional
parameter characterizing the elasticity of the solid layer, and
�r=�w /� is the ratio of solid to fluid viscosities. A useful
interpretation of � is that it is the estimated ratio of viscous
shear stresses in the fluid to elastic stresses in the solid layer,
and for a fixed set of Va, R, and �, �→0 in the limit of a
rigid solid layer where the shear modulus G becomes very
large ��1011 Pa�. The solid layer is assumed to be perfectly
bonded to the rigid surface at z= �1+H�, and so zero dis-
placement conditions apply at this surface. The conditions at
the interface z=g�x� between the liquid and the solid layer

are the continuity of velocities and stresses in the liquid and
solid layers.

B. Base state

The base laminar state whose stability is of interest in this
study is obtained by solving for the steady unidirectional
flow in the x direction due to gravity, and the nondimensional
velocity and pressure distribution in the fluid are given by

v̄x�z� = 3
2 �1 − z2� , �8�

p̄�z� = 3z cot � , �9�

where the base flow quantities are denoted by an overbar.
The solid layer is at rest in this steady base state, but there is
a nonzero unidirectional displacement ūx due to the liquid
shear stresses at z=1 and the body force

ūx�z� =
3�

2
��1 + H�2 − z2� , �10�

p̄g�z� = 3z cot � . �11�

C. Linear stability analysis

The stability of the coupled fluid-solid system is exam-
ined using a linear stability analysis where small perturba-
tions �denoted by primed quantities� are imposed to the fluid
velocity field vi= v̄i+vi� and other dynamical variables in the
fluid and the solid layer are similarly perturbed. A temporal
linear stability analysis is used to determine the evolution of
these small perturbations to the base state. The perturbation
quantities are expanded in the form of Fourier modes in the
x direction, and with an exponential dependence in time:

vi��x,z,t� = ṽi�z�exp�ik�x − ct�� , �12�

ui��x,z,t� = ũi�z�exp�ik�x − ct�� , �13�

where k is the wave number �inversely proportional to the
wavelength� of perturbations, c is a complex wave speed that
determines the growth of perturbations, and ṽi�z� and ũi�z�
are eigenfunctions which have to be determined from the
linearized differential equations governing the stability. As
mentioned earlier, only two-dimensional perturbations are
considered here. The complex wave speed is written as c
=cr+ici, where cr denotes the phase velocity of perturba-
tions, and ci dictates the growth or decay of perturbations,
and if ci0 the given base state is temporally unstable.

The linearized equations governing the stability of the
two-layer system are obtained by substituting the above ex-
pansions �12� and �13� in the governing equations �3�–�7�,
and linearization is carried out about the laminar base-state
of interest �8�. This yields the following equations for the
liquid layer:

dzṽz + ikṽx = 0, �14�

Re�ik�v̄x − c�ṽx + �dzv̄x�ṽz� = − ikp̃ + �dz
2 − k2�ṽx, �15�
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Re�ik�v̄x − c�ṽz� = − dzp̃ + �dz
2 − k2�ṽz. �16�

The above equations can be combined to give a single
fourth-order Orr-Sommerfeld equation �17�:

ik Re��v̄x − c��dz
2 − k2� − dz

2v̄x�ṽz = �dz
2 − k2�2ṽz. �17�

The linearized stability equations for the displacement field
in the solid layer are obtained similarly:

dzũz + ikũx = 0, �18�

− Re k2c2ũx = − ikp̃g + � 1

�
− ikc�r��dz

2 − k2�ũx, �19�

− Re k2c2ũz = − dzp̃g + � 1

�
− ikc�r��dz

2 − k2�ũz. �20�

These equations can be combined to give a single fourth-
order differential equation for ũz:

�1 − ikc�r���dz
2 − k2�2ũz + Re k2c2��dz

2 − k2�ũz = 0.

�21�

The linearized kinematic condition describing the evolu-

tion of h̃, the Fourier expansion coefficient of h�x , t�
= h̃ exp�ik�x−ct��, is obtained from �5�

ik�v̄x�z = 0� − c�h̃ = ṽz�z = 0� , �22�

where all the dynamical quantities are linearized about the
unperturbed interface z=0. The linearized boundary condi-
tions at the unperturbed free-surface position z=0 are ob-
tained by Taylor-expanding the boundary conditions about
z=0 to give

− 3h̃ + �dzṽx + ikṽz� = 0, �23�

− p̃ − 3h̃ cot � + 2dzṽz − k2�h̃ = 0. �24�

The first of the above equations is the linearized tangential
stress condition at the unperturbed free surface z=0, and the
second equation is the linearized normal stress condition.
Here, �=� / �Va�� is the nondimensional surface tension be-
tween the liquid and the gas, with � being the dimensional
surface tension. Note that in both the tangential and normal
stress conditions, the process of linearization has given rise

to additional contributions proportional to −3h̃, which couple
the base laminar flow with the height fluctuations of the free
interface.

The velocity and stress continuity conditions at the inter-
face z=g�x� between the liquid and the solid layer are also
linearized �10� about the unperturbed interface at z=1 to give

ṽz = − ikcũz, �25�

ṽx + dzv̄x	z=1ũz = − ikcũx, �26�

�dzṽx + ikṽz� = � 1

�
− ikc�r��dzũx + ikũz� , �27�

− p̃ + 2dzṽz = − p̃g + 2� 1

�
− ikc�r�dzũz. �28�

Here too, the interface conditions are linearized about the
unperturbed interface z=1, and within the linear stability
analysis, we have set the Fourier coefficient of the interfacial
fluctuation g̃= ũz�z=1�. The second term in the left side of
�26� represents a nontrivial contribution that arises as a result
of Taylor-expansion of the velocity about the unperturbed
interface. This contribution was shown to be responsible for
destabilizing the fluid-solid interface by Kumaran et al. �10�.
The boundary conditions for the displacement field at z= �1
+H� are simply zero displacement conditions:

ũz = 0, ũx = 0. �29�

This completes the specification of the stability problem
for the two-layer configuration of interest here. The complex
wave speed c is an unknown eigenvalue which is a function
of Re, k, �, H, �, and �r. For arbitrary values of k and Re,
there is no closed-form analytical solution to the problem,
and so the governing equations must be solved numerically
in general. However, as first shown by Yih �3�, liquid flow
down an inclined plane becomes unstable in the long-wave
limit, and a long-wave asymptotic analysis is therefore ap-
propriate for the present problem as well.

III. LONG-WAVE ASYMPTOTIC ANALYSIS

In this section, we carry out a low wave number �i.e., long
wavelength� asymptotic analysis for the case of liquid flow
down an inclined plane lined with a deformable solid layer.
Specifically, we focus on the effect of the solid layer deform-
ability on the free-surface instability undergone by the
liquid-gas interface. In order for the long-wave analysis to be
valid, the wavelength of the disturbances must be large com-
pared to all cross-stream widths, and, in general, k must sat-
isfy k�1/ �1+H�. For H�O�1�, this implies k�1, while in
the limit H�1, this implies k�1/H. This suggests that for
larger values of H, the long-wave analysis is valid at much
smaller values of k. In the ensuing analysis, we consider
solid-layer thickness H�O�1�, so we consider the low-
wave-number limit k�1, with Re �O�1� and ��O�1�, i.e.,
the parameters Re and � do not scale with the wave number
in any particular way, and can be treated as arbitrary vari-
ables. This is required, since both Re and � are physical
parameters that can be tuned as desired by changing the vis-
cosity of the fluid, the shear modulus of the solid, the incli-
nation angle, and the fluid density. We adapt Yih’s �3� origi-
nal long-wave analysis to the present problem, by modifying
it to include the presence of the deformable solid layer. For
k�1, the complex wave speed is expanded in an asymptotic
series in k:

c = c�0� + kc�1� + ¯ , �30�

and in this study, it suffices to calculate the leading order and
the O�k� correction to c. We set ṽz�O�1�, and this implies
that ṽx�O�k−1� from the continuity equation �14�, and p̃
�O�k−2� from the x-momentum equation �15�. Thus, the ve-
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locity and the pressure in the liquid layer are expanded as

ṽz = ṽz
�0� + kṽz

�1� + ¯ , �31�

ṽx = k−1ṽx
�0� + ṽx

�1� + ¯ , �32�

p̃ = k−2p̃�0� + k−1p̃�1� + ¯ . �33�

Subsequent analysis shows that it is sufficient to calculate
only the leading order and the first correction to the dynami-
cal variables in the liquid. The displacement and pressure
fields in the solid layer are expanded in a similar fashion:

ũz = ũz
�0� + kũz

�1� + ¯ , �34�

ũx = k−1ũx
�0� + ũx

�1� + ¯ , �35�

p̃g = k−2p̃g
�0� + k−1p̃g

�1� + ¯ . �36�

The Fourier coefficient of the free-surface height fluctuation

h̃ is also expanded in an asymptotic series, and h̃�O�k−1� as
can be seen from Eq. �22�. We therefore have:

h̃ = k−1h̃�0� + h̃�1� + ¯ . �37�

After substituting the above expansions in the governing sta-
bility equations for the liquid layer �14�–�17�, we obtain the
following differential equations governing the leading order
and first correction to ṽz:

dz
4ṽz

�0� = 0, �38�

dz
4ṽz

�1� = i Re��v̄x − c�0��dz
2ṽz

�0� − �dz
2v̄x�ṽz

�0�� . �39�

It turns out that the leading-order displacement field is suffi-
cient in the present low-k analysis, and it is governed by the
following differential equation:

dz
4ũz

�0� = 0. �40�

Next, we solve the leading-order problem and then the first
correction in the following subsections.

A. Leading order

The governing equation for ṽz
�0� in the liquid layer is Eq.

�38�, and the equation for ũz
�0� in the solid layer is Eq. �40�.

The boundary and interface conditions for the leading-order
problem are obtained by substituting the asymptotic expan-
sions in Eqs. �22�–�29�. This results in the following condi-
tions at z=0:

− 3h̃�0� + dzṽx
�0� = 0, �41�

− p̃�0� = 0. �42�

The leading-order conditions at the fluid-solid interface z
=1 are given by

ṽz
�0� = 0, �43�

ṽx
�0� = 0, �44�

dzṽx
�0� =

1

�
dzũx

�0�, �45�

p̃�0� = p̃g
�0�. �46�

The boundary conditions at z= �1+H� are simply

ũz
�0� = 0, ũx

�0� = 0. �47�

An important consequence of the low-wave-number ex-
pansion for the interface conditions �Eqs. �25� and �26�� is
that to leading order the fluid velocities ṽz

�0� and ṽx
�0� satisfy

the no-slip conditions at z=1 as in a rigid boundary �Eqs.
�43� and �44��. This is because the right side of Eqs. �25� and
�26� are O�k� smaller than fluid velocities on the left side.
This implies that the solid-layer deformability does not in-
fluence the leading-order fluid velocity field, and so the
leading-order wave speed in the present problem must be
identical to that of Yih’s �3� analysis. However, the leading-
order velocity field in the liquid layer exerts a shear stress on
the solid layer via the tangential stress condition �Eq. �45��,
and this causes a deformation in the solid layer at leading
order. We now present the solution to the leading-order ve-
locity and displacement fields, and the leading-order wave
speed.

The general solution to differential equation �38� is sim-
ply

ṽz
�0� = A1 + A2z + A3z2 + A4z3. �48�

Since the stability problem is linear and homogeneous, the
eigenfunction ṽz is determined only up to a multiplicative
constant, and without loss of generality we set A1=1. Physi-
cally, this implies that we are normalizing the amplitude of
the normal component of the liquid velocity at the free sur-
face to be 1. After satisfying the leading-order boundary con-
ditions �Eqs. �42�–�44��, we obtain the solution to the dy-
namical variables in the liquid layer as

ṽz
�0� = �z − 1�2, �49�

ṽx
�0� = 2i�z − 1� , �50�

p̃�0� = 0. �51�

Upon using the leading tangential stress condition at z=0

�Eq. �41��, we obtain h̃�0�=2i /3, and using the linearized ki-
nematic condition �22�, we obtain, to leading order

c�0� = 3, �52�

which is identical, as expected, to Yih’s �3� result for liquid
flow down an inclined rigid plane. Physically, this implies
that the flow is neutrally stable to leading order, and there-
fore the first correction must be calculated in order to deter-
mine its stability. For subsequent analysis, we require the
leading-order deformation field in the solid layer, and this is
obtained by solving the differential equation �40�:

ũz
�0� = B1 + B2z + B3z2 + B4z3. �53�

The constants are determined by the boundary conditions
�Eqs. �45�–�47�� to give
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ũz
�0� = ��z − �1 + H��2, �54�

ũx
�0� = 2i��z − �1 + H�� , �55�

p̃g
�0� = 0. �56�

With these solutions, we now proceed to calculate the first
correction to the wave speed c�1�.

B. First correction

The solution to the inhomogeneous differential equation
�39� governing ṽz

�1� can be determined to be:

ṽz
�1� = C1 + C2z + C3z2 + C4z3 −

i Re

20
z5. �57�

The constant C1 can be set to zero since we have already
fixed the amplitude of ṽz at z=0 to be 1 by setting A1=1 at
leading order. The other three constants are determined from
the first correction to the boundary conditions at z=1 and z
=0. These are obtained from Eqs. �22�–�25� as follows. At
z=0, the first correction to the normal and tangential stress
conditions become

− 3h̃�1� + dzṽx
�1� = 0, �58�

− p̃�1� − 3 cot �h̃�0� = 0. �59�

At z=1, the first correction to the velocity continuity condi-
tions become:

ṽz
�1� = − ic�0�ũz

�0�, �60�

ṽx
�1� + dzv̄x	z=1ũz

�0� = − ic�0�ũx
�0�. �61�

Note here that, in contrast to a rigid inclined surface, the
deformation in the solid layer appears in the normal and
tangential velocity conditions: the leading-order deformation
field in the solid layer affects the first correction to the fluid
velocity field. Using the conditions �59�–�61�, the constants
C2, C3 and C4 are determined to give

ṽz
�1� =

− iz

60

3�60�H�2 + H − 2z� + Re�− 1 + z�2�− 7 + 2z + z2��

+ 20�− 1 + z�2 cot �� . �62�

The effect of the solid-layer deformation appears in the
above expression through the term proportional to �H. Using
this result for ṽz

�1�, the first correction to the height fluctuation

h̃�1� can be calculated from Eq. �58� to give

h̃�1� = − 4�H + 8
15 Re − 4

9 cot � . �63�

The first correction to the wave speed c�1� is then obtained
from the first correction to the kinematic condition �22�:

i�v̄x�z = 0� − c�0��h̃�1� − ic�1�h̃�0� = ṽz
�1��z = 0� . �64�

In the above equation, all the quantities except c�1� are now
calculated, so c�1� can be obtained as

c�1� = i
� 6
5 Re − cot �� − 9�H� , �65�

which is a purely imaginary quantity and hence dictates the
stability of the system. The first term �inside square brackets�
in the right side of the above equation is identical to Yih’s �3�
result �Eq. 37 of Yih’s paper� for liquid flow down an in-
clined rigid surface. This term indicates that in a rigid in-
clined surface, when 6

5 Re cot �, the free surface of the
liquid layer undergoes a long-wave instability. The second
term in the right side proportional to �H is due to the effect
of the solid-layer deformability on the free-surface instability
mode. Importantly, this term occurs with a negative sign
meaning that the solid layer always has a stabilizing effect
on the free-surface instability. It was previously noted that
the parameter � represents the ratio of viscous stresses in the
liquid to elastic stresses in the solid layer, and in the limit of
a rigid solid layer, �→0. Clearly, in Eq. �65�, the contribu-
tion from the deformable solid layer vanishes with �→0
�rigid solid layer limit�, and when H=0 �no deformable solid
layer; only the rigid wall present at z=1�. However, for non-
zero values of �H, the solid-layer deformability stabilizes
the free-surface instability. In particular, the free-surface in-
stability is completely stabilized in the long-wave limit if

9�H  � 6
5 Re − cot �� . �66�

Or, equivalently, in terms of the dimensional parameters that
are present in � and Re, the above result translates into:

3�RHg

G


2�2R3g

5�2 −
cot �

sin �
, �67�

in order for the free-surface instability to be stabilized in the
long-wave limit. This is one of the central results of the
present study. The present prediction of complete stabiliza-
tion of the free-surface instability �in the long-wave limit� by
the deformable solid layer is in marked contrast with the
earlier study �12� on the effect of the solid layer on the two-
layer plane Couette flow. There, the authors found that the
solid layer contribution could be stabilizing or destabilizing
depending on the thickness and viscosity ratio of the two
liquids.

The first correction to the kinematic condition Eq. �64�
provides some additional insight into the mechanism of the
stabilization by the solid layer. We first note that the right
side of Eq. �64� is zero, as can be seen from Eq. �62�. Using

Eq. �58� to eliminate h̃�1� in terms of dzṽx
�1�, and using h̃�0�

=2i /3, we obtain the result for c�1� as

c�1� =
3i

4
dzṽx

�1�	z=0. �68�

Thus, the first correction to the wave speed, which deter-
mines the stability of the free-surface mode, is directly re-
lated to the first correction to the shear stress in the liquid at
the free surface. As pointed out in the preceding discussion,
the destabilizing term due to fluid inertia �proportional to Re�
appears only at the first correction to the fluid velocity field.
In addition to this contribution, and in contrast to a rigid
surface, the deformation in the soft solid layer creates a per-
turbation flow, which also appears at O�k�. If the perturbation
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flow at O�k� due to the solid deformation opposes the flow
due to fluid inertia, then one would expect this to result in
stabilization of the free-surface instability. Figs. 2 and 3
show representative plots of the x and z components of the
first correction to the fluid velocity field, both for a rigid
surface ��=0� and for a soft solid surface ��=0.15�. These
figures clearly demonstrate the qualitative change in the ve-
locity profile for ṽx

�1� and ṽz
�1� due to the presence of the solid

layer. In particular, c�1� is proportional to dzṽx
�1�	z=0, and this

turns out to be negative in the presence of the soft layer,

while it is positive for a rigid surface. This discussion clearly
demonstrates that the perturbation flow created at O�k� due
to the deformation in the solid layer qualitatively alters the
nature of the free-surface instability in the liquid layer.

We further note that in the low-k limit, the ratio of solid to
liquid viscosity �r and the liquid-gas surface tension � be-
come subdominant, and hence do not appear in the above
results. It is appropriate here to provide some estimates for
the dimensional parameters in the problem so that the pre-
dicted suppression of the long-wave instability can be real-
ized in an experiment. This is done using Eq. �67�. Let us
first consider the case �=� /2, H=1, �=103 kg/m3, g
=9.8 m/s2, G=104 Pa, and R=10−2 m. For �=� /2 �liquid
film flowing vertically in the direction of gravity�,
cot�� /2�=0, and so 9�H

6
5 Re in order for the instability to

be suppressed. For the above choice of dimensional param-
eters, we find that when �	11.55 Pa s, then the predicted
suppression can be realized in experiments. For �=� /4 �and
all other parameters same as above�, we require a critical Re
in order for the instability to be present. Therefore, in this
case we find the predicted suppression to be present if
1.6479���1.665 Pa s. There is an upper limit because if
the viscosity is too high, then the instability is not present in
the first place in a rigid inclined surface. There is a lower
limit because if the viscosity is too low, then for the shear
modulus assumed �104 Pa�, the solid layer cannot stabilize
the long-wave instability. This discussion shows that it must
be possible to experimentally realize the present predictions
for flow of more viscous liquid films ���1−10 Pa s, R
�1 cm� down a soft elastomeric layer �G�104 Pa�.

If the predicted stabilization is to be realized in an experi-
ment, it is not sufficient only if the long waves are stabilized
by the deformable solid layer. Any arbitrary disturbance is
expected to be composed of modes with all wavelengths, and
so it is necessary to suppress the instability at all wave-
lengths. To this end, we extend our long-wave asymptotic
results to finite wavelengths using a numerical solution of the
governing stability equations in the next section.

IV. RESULTS FROM NUMERICAL SOLUTION

A. Numerical method

We first briefly outline the numerical technique used to
solve the governing equations and boundary conditions de-
scribed in Sec. II C. There are two fourth-order ordinary dif-
ferential equations �ODE� governing ṽz �for the liquid� and
ũz �for the solid�. We first recast the fourth-order ODEs as a
set of four first-order ODEs, and use a fourth-order Runge-
Kutta integrator with adaptive step size control to numeri-
cally integrate the set of first-order ODEs �17�. To carry this
out in the solid layer, we must specify “initial conditions” for
the function ũz and its first three derivatives at a given value
of the independent variable z. For the solid layer at z= �1
+H�, we have the zero displacement conditions: ũz=0 and
ũx=i /kdzũz=0. We use two different �linearly independent�
sets of higher derivatives dz

2ũz= �1,0� and dz
3ũz= �0,1� at z

= �1+H� and numerically integrate the differential equation
�21� up to z=1. This yields two linearly independent solu-

FIG. 2. Effect of solid layer deformability on the first correction
to the eigenfunction: 	ṽx

�1�	 vs z for �=� /2, Re=1, H=1; �=0 and
0.15.

FIG. 3. Effect of solid layer deformability on the first correction
to the eigenfunction: 	ṽz

�1�	 vs z for �=� /2, Re=1, H=1; �=0 and
0.15.
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tions to the displacement field consistent with the two zero
displacement conditions at z= �1+H� in the solid layer. Cor-
responding to these two linearly independent solutions, we
evaluate the velocity field of the fluid ṽz and its higher de-
rivatives from the interfacial conditions at z=1 �Eqs.
�25�–�28��. Using these two sets of values for ṽz and its
derivatives, we integrate the differential equation �17� in the
fluid from z=1 to z=0. The velocity field in the fluid is
obtained as a linear combination of these two solutions. At
z=0, the fluid velocity field must satisfy the free-surface con-
ditions �23� and �24�. This is written in a matrix form, and
the determinant of this matrix is set to zero to obtain the
characteristic equation. This is solved numerically using a
Newton-Raphson iteration procedure to obtain the eigen-
value c, for specified values of �, Re, k, �, H, �, and �r. We
use the low-k asymptotic results as a starting guess for the
numerical procedure, and continue the low-k results numeri-
cally to finite values of k. The results from the numerical
method were first validated by comparing it with the predic-
tions of the asymptotic analysis, and excellent agreement
was found.

B. Results

There are several objectives behind our numerical solu-
tion of the governing stability equations for the coupled
fluid-solid problem. First, it is of interest to enquire if the
predicted stabilization using long-wave analysis continues to
perturbations with finite wavelengths. Second, stabilization
of the free-surface instability is achieved when � is increased
beyond a critical value. If � is further increased, there is
possibility of the interface between the liquid and the de-
formable solid to become unstable. The instability of the
liquid-solid interface was first analyzed, to the best of our
knowledge, by Kumaran et al. �10� for plane Couette flow
past a deformable solid, and they showed that the interface
becomes unstable at finite wavelengths when � increases be-
yond a particular value. Consequently, will there be a suffi-
cient “window” in the parameter � �equivalently, the shear
modulus G for fixed values of other parameters� where the
free-surface instability is stabilized, but the liquid-solid inter-
face instability is not excited? We address these issues using
the numerical solution. For ease of reference, we refer to the
free-surface �liquid-gas� interfacial mode as “mode 1” and
the liquid-solid interfacial mode as “mode 2” in the follow-
ing discussion. To obtain the numerical results for mode 1,
we use the low-k asymptotic results from the preceding sec-
tion as a starting guess, and use the numerical procedure
outlined above to continue the low-k results to finite values
of k. For mode 2 instability, which happens at finite k, we use
a Re=0 analysis �similar to �10�, where analytical solution is
possible for arbitrary k�, to identify the presence of the un-
stable liquid-solid interfacial mode. The Re=0 results are
then numerically continued to the desired finite Re.

Figure 4 shows the variation of the imaginary part of the
wave speed ci as a function of the wave number k for differ-
ent values of � for �=� /4 and Re=1. When �=0 �rigid
inclined plane�, ci is positive �mode 1 unstable� from k�1 to
k�0.4, and for larger values of k the system is stable. As �

is increased to 0.5 and 2, the instability is suppressed by the
solid layer at all wave numbers. Here, we have set the non-
dimensional surface tension �=0, since even the flow down
a rigid inclined plane is stable for k0.4. �The only role of
nonzero surface tension � is to stabilize short wavelength
perturbations, if they are unstable.� However, as � is further
increased to 5.5 �see Fig. 5�, we find that perturbations with
k�1 are destabilized by the deformability of the solid layer.
Thus, it is seen that when � is not too high, the free-surface

FIG. 4. Stabilization of mode 1 by the deformable solid layer: ci

vs k for �=� /4, Re=1, H=0.5, �r=0, �=0, and different values of
�.

FIG. 5. Destabilization of finite-k waves of mode 1 by the solid
layer at higher values of �: ci vs k for �=� /4, Re=1, H=0.5, �r

=0, �=0.
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�mode 1� instability is completely suppressed at all wave
numbers, but at higher values of �, mode 1 is destabilized at
finite k, while perturbations with such wavelengths are stable
in a rigid inclined plane. For the value of H chosen in these
two figures, we did not observe any mode 2 instability.

As H is increased from 0.5 to 2 in Fig. 6, we observe that
there are two different unstable modes at finite k, where both
modes 1 and 2 become unstable at this value of �=1. How-
ever, when � is decreased, both these finite-k unstable modes
become stable. In Fig. 7, we consider Re=0.1 and �=� /4,
and in this configuration, there is no mode 1 instability in
flow down a rigid inclined plane �as Re=0.1 is not large
enough�. We examine the effect of solid-layer deformability
on this configuration in Fig. 7, and this shows that as � is
increased, while waves with low k still remain stable, waves
with finite k do become unstable. This shows that as � is
increased further, there is always a deformability-induced
free-surface instability at finite wavelengths. Our discussion
thus shows that as � is increased from 0 there is a stabiliza-
tion of mode 1 by the deformable solid layer at all wave-
lengths, when � increases beyond a critical value as given by
the long-wave asymptotic analysis �Eq. �66��. When � is
further increased, much higher than the critical value for sta-
bilization of mode 1, in general, this has a destabilizing ef-
fect on finite-k waves of both modes 1 and 2.

The above results pertain to Re�1. When Re is increased
to 10 �Fig. 8�, it is seen that regardless of the value of �,
there is always a finite-k mode 1 instability induced by the
deformable solid layer. Thus, at higher Re, the deformable
solid layer has a stabilizing effect only on perturbations with
low k, and it has a destabilizing effect on finite-k perturba-
tions. The results presented thus far are for the growth rate
�proportional to ci� vs wave number for a fixed value of �. It
is useful to present the stability results in terms of a “neutral
stability diagram” in the �-k plane where stable and unstable

regions are demarcated. This will aid in selection of nondi-
mensional parameters where the solid layer has completely
suppressed the mode 1 instability at all wavelengths; such
estimates can then be used in experimental studies to verify
the present theoretical predictions.

Figure 9 presents the neutral stability diagram for Re=1,
�=� /4, and H=0.5. Recall that �=0 is the limit of a rigid
solid layer, and in that limit, the free-surface is unstable for

FIG. 6. Destabilization of finite-k waves of both modes 1 and 2
by the solid layer: ci vs k for �=� /4, Re=1, �=1, H=2, �r=0,
�=0.

FIG. 7. Destabilization of mode 1 at finite k by the solid layer
when it is stable in a rigid channel: ci vs k for �=� /4, Re=0.1,
H=2, �r=0, �=0.

FIG. 8. Effect of solid layer deformability on mode 1 at Re
=10: Illustration of finite-k instability at all values of � for �
=� /4, H=0.5, �r=0, and �=0. Stabilization of waves at all k is not
possible for any value of �.
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k�0.4 �also see the ci vs k curve in Fig. 4�. As � is increased
beyond the lower neutral curve, there is a transition from
unstable to stable perturbations of mode 1. There is a large
region in � �for fixed values of other parameters, this trans-
lates into a large region in the shear modulus of the solid
layer� where mode 1 is stabilized by the solid-layer deform-
ability. As � is increased further, there is another neutral
curve at finite k where there is a transition from stable to
unstable perturbations. Our analysis did not show any mode
2 instability for the chosen value of H=0.5. As H is in-
creased to 2 �Fig. 10�, it is seen that there is a lower neutral
curve for mode 1 which indicates that mode 1 is stabilized as
� is increased beyond it, and there are two neutral curves at
higher values of � and at finite k. These two neutral curves
correspond to the destabilization of both mode 1 and mode 2
due to an increase in � at finite k.

The low-k asymptotic analysis indicated that the solid-
fluid viscosity ratio �r is subdominant in that limit, and
hence does not affect the stabilization at low k. In Fig. 11, we
examine the effect of increase in �r on the neutral stability
diagram presented in Fig. 9. This shows that an increase in
�r has virtually no effect on the lower neutral curve, but has
a stabilizing effect on the upper neutral curve. Thus, nonzero
�r further increases the gap between the two neutral curves,
and hence increases the region where mode 1 is completely
suppressed. While the results presented above are for �
=� /4, Fig. 12 illustrates that a similar suppression is ex-
pected even for �=� /6. Here, mode 1 instability is sup-
pressed as � is increased beyond the lower neutral curve, and
mode 2 instability is excited when � is increased beyond the
upper neutral curve.

In Fig. 13, we present the neutral stability curves for �
=� /2 �vertical-wall configuration�. Let us first focus on the
results for the case of surface tension �=0. For this case, we

find that there are two different neutral curves for modes 1
and 2 at lower values of k, but as k approaches 1, both these
neutral curves merge with one another. The region where
both modes 1 and 2 are stable is confined only up to k=1,
after which there is an instability of either mode 1 or mode 2.

FIG. 9. Neutral stability curve for mode 1 instability in the �-k
plane: �=� /4, Re=1, H=0.5, �r=0, and �=0. Mode 2 instability
is absent for this configuration.

FIG. 10. Neutral stability curves for modes 1 and 2 in the �-k
plane: �=� /4, Re=1, H=2, �r=0, and �=0. At finite k, and at
sufficiently higher values of �, the fluid-solid interfacial mode also
becomes unstable, apart from the destabilization of the free-surface
mode at finite k by the deformable solid layer.

FIG. 11. Effect of the solid-layer viscosity �r on the neutral
stability curves in the �-k plane: �=� /4, Re=1, H=0.5, and �
=0. While �r has negligible effect on the lower neutral curve, it has
a stabilizing effect on the upper neutral curve at finite k.
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However, upon increasing the liquid-gas surface tension � to
0.1, we find that the neutral curves for modes 1 and 2 are
separated, and in this case there is a range of values �about
two orders of magnitude� of � where both the modes are
stable for all values of k. Our numerical results, therefore,
show that it is possible to choose the shear modulus of the
solid layer so that the nondimensional parameter � is in the

stable range for perturbations with all wavelengths.
It is appropriate here to remark on the validity of the use

of a simple linear viscoelastic model for the deformable solid
layer in the present study. The nondimensional base-state
strain in the solid layer is proportional to �, and strictly
speaking, the use of the linear solid model is valid only when
��1. The earlier study of Gkanis and Kumar �16� which
used the neo-Hookean model for the solid for the stability of
plane Couette flow past a deformable wall has shown, how-
ever, that in practice the predictions of the linear solid model
remains accurate for ��1, when H	2 for the interfacial
mode �mode 2� between the fluid and the solid layer. Our
results for the stabilization of the free-surface mode �mode 1�
shows that ��10−3–10−2 for achieving this effect. There-
fore, the present predictions for the stabilization of mode 1
are expected to be accurate despite the use of a linear solid
model, since the � required to realize these effects is very
small compared to unity. However, the use of a more com-
plex constitutive relation for the solid layer will have some
quantitative effect on mode 2 neutral curves, and the linear
model is expected to be accurate for only H	2. It must be
mentioned that in applications where one might use a soft
solid layer to stabilize the free-surface instability, it might be
advantageous to use solid layers with smaller thickness with
H�1. In such cases of small solid layer thickness, the pre-
dictions of the linear solid model for mode 2 must become
less accurate, and it may be desirable to use a nonlinear solid
model, similar to Gkanis and Kumar �16�.

V. SUMMARY AND CONCLUSIONS

The effect of the solid layer deformability on the free-
surface instability in liquid film flow down an inclined plane
lined with a soft solid layer was analyzed first using a long-
wave asymptotic analysis, and then using a numerical solu-
tion of the governing stability equations. In the absence of
the soft solid layer, the liquid film flow undergoes a long-
wave instability due to fluid inertia. The present asymptotic
results show that the effect of the solid layer appears at the
same order �O�k�� as the destabilizing effect of fluid inertia,
but the deformability of the solid layer always has a stabiliz-
ing effect on the free-surface instability in the long-wave
limit. Physically, at leading order in the asymptotic analysis,
the normal and tangential fluid velocity fields satisfy the no-
slip condition �as in a rigid inclined plane�, and so the
leading-order wave speed c�0� remains the same as in a rigid
inclined plane. However, the leading-order fluid velocity
field exerts a tangential stress on the solid layer, causing a
deformation in the solid. This leading-order deformation in
the solid layer affects the first correction to the fluid velocity
field, thereby qualitatively altering the nature of the free-
surface instability. For a fixed value of Re and the inclination
angle �, the free-surface instability is stabilized when �
=Va� / �GR� increases beyond a critical value. The long-
wave asymptotic results are further extended to finite wave-
lengths using a numerical solution of the stability equations.
In general, this shows that the suppression of the free-surface
instability continues to finite wavelengths. However, an in-
crease in � substantially away from the value required for

FIG. 12. Neutral stability curve illustrating the suppression of
mode 1 instability for �=� /6, Re=2, H=0.5, �r=0, and �=0. This
figure illustrates the stabilizing effect of the solid layer on mode 1
and the destabilization at finite-k of mode 2 at higher values of �.

FIG. 13. Effect of liquid-gas surface tension � on the neutral
curves for �=� /2, Re=0.1, H=0.2, �r=0. This figure illustrates
the “merging” of the two modes for k�1 in the absence of surface
tension, and the ‘splitting’ of the two modes with surface tension.
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stabilization of the free-surface instability results in destabi-
lization of either the liquid-solid interfacial mode or the free-
surface interfacial mode at finite wavelengths. Representative
numerical results presented for a variety of parameter re-
gimes indicate, nevertheless, that there exists a wide range of
values of � �typically two orders of magnitude� where both
the interfacial modes are stabilized at all wave numbers. Fur-
thermore, the suppression of instability for all wavelengths is
found to be valid only for Re�O�1�; when the Reynolds
number is increased to 10 �for �=� /4�, it was found that
there was always a finite-wavelength instability induced by
the deformable solid layer.

There are several implications from the present study for
future experimental investigations. First, as discussed in Sec.
III B, the predicted stabilization can be realized in experi-
ments involving the flow of viscous liquids �viscosity �1
−10 Pa s� past a soft elastomeric solid layer �shear modulus
�104 Pa�. Secondly, by decreasing the angle of inclination

�, it is possible to verify the destabilizing effect of solid-
layer deformability on the free-surface instability at finite
wavelengths, when there is no long-wave instability in liquid
flow down a rigid inclined plane. Thirdly, while the present
study was restricted to the realm of linear stability, the non-
linear dynamics of liquid flow past an inclined plane lined
with a soft solid layer could also potentially be qualitatively
different from that of a rigid inclined plane. For example, it
might be expected that the nonlinear evolution of the finite-
wavelength instability due to the deformability of the solid
layer could be very different from that of the long-wave in-
stability of liquid flow down a rigid inclined plate. This is an
issue that is worth studying in future experimental and theo-
retical investigations. In conclusion, the present study pre-
dicts a discernible consequence of the elastohydrodynamic
coupling between the liquid flow and the deformation in the
soft solid on the free-surface instability of falling liquid films
which can be readily tested by experiments.
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