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A different method is proposed to detect deterministic structure from a pseudoperiodic time series. By using
the correlation coefficient as a measure of the distance between cycles, we are exempt from phase-space
reconstruction and further construct a hierarchy of pseudocycle series that, in turn, preserve less determinism
than the original time series. Appropriate statistics are then devised to reveal the temporal and spatial corre-
lation encoded in this hierarchy of the pseudocycle series, which allows for a reliable detection of determinism
and chaos in the original time series. We demonstrate that this method can reliably identify chaos in the
presence of noise of different sources for both artificial data and experimental time series.
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An accurate identification of the dynamics underlying a
complex time series, i.e., whether the dynamics is generated
by a deterministic process or a stochastic one, or both, is of
crucial importance in understanding the corresponding
physical process, and in turn affects the subsequent model
development. To this end, traditional methods primarily rely
on the estimation of physically meaningful data observables
such as Lyapunov exponents, K2 entropy, and correlation di-
mension. Recently, it has been shown that the smoothness or
continuity of the vector field is a clear hallmark of determin-
ism in the time series, and various nonlinear methods �1–4�
are proposed to investigate the properties of the vector fields
from different aspects. In contrast to these nonlinear ap-
proaches, the surrogate data method �5� provides a linear
statistical test in search of the nonlinear determinism.

One class of real world data that exhibits strong periodic
behavior such as the electrocardiogram �ECG�, laser output,
and the annual sunspot number has aroused great interest due
to their close relation to some important natural and physi-
ological systems. And recently, surrogate data generation al-
gorithms �6,7� have been developed for such pseudoperiodic
time series. However, many available methods are often in-
capable of detecting chaos in the presence of strong period-
icity, which tends to hide underlying fractal structures �8�.
Moreover, the existence of noise, which may mask or mimic
the deterministic structure of the time series �9–11�, can lead
to spurious results for conventional chaotic invariants. The
uniquely developed nonlinear approaches �1–4�, though
more reliable, are usually insufficient for application as di-
rect tests of chaos. Finally, most of these approaches �1–4,6�
depend heavily on a good reconstruction of the phase-space
geometry of the dynamical system. Since there is no unique
way to choose the embedding dimension and the time lag,
the accuracy of such methods is hard to guarantee.

In this paper, we present a method to detect determinism
from a pseudoperiodic time series, and to determine whether
this determinism has chaotic attributes. Unlike most methods
that require the reconstruction of the phase space and the
Euclidian distance between the phase-space points, with our
method the pseudoperiodic time series is divided into succes-

sive, nonoverlapping cycles that serve as the basic process-
ing units. We use the correlation coefficient as a measure of
the distance between different cycles and rearrange them ac-
cordingly, thereby building a hierarchy of pseudocycle series
that effectively encodes the innercorrelation in the original
time series. Several statistics are then devised to extract in-
formation within and across these newly created pseudocycle
series, which enables the detection of determinism and
chaos. This approach is demonstrated to be robust to both
measurement noise �white and colored noise� and dynamical
noise, and we show the effectiveness of our method on both
artificial and experimental time series.

Throughout the paper, we use the x component of the
well-known Rössler system and an experimental laser dataset
for illustration, both of which are chaotic and contain obvi-
ous periodic component. The laser dataset is the record of the
output power of the NH3 laser available in Santa Fe Compe-
tition �Data Set A�. Given a pseudoperiodic time series �xi�1

n

of n observations, the first step is to segment the pseudope-
riodic time series into m consecutive cycles according to the
local minimum �or maximum�, denoted as �C1 ,C2 ,… ,Cm�.
For each pair of cycles Ci and Cj �i , j=1,2 ,… ,m , i� j�
with length li and lj, respectively, we then define the corre-
lation coefficient as follows �without loss of generality,
suppose li� lj�

�ij = max
l=0,1,…,lj−li

Cov�Ci�1:li�,Cj�1 + l:li + l��
�V�Ci�1:li���V�Cj�1 + l:li + l��

, �1�

where Ci�a :b� denotes the segment between the ath and the
bth element in Ci and Cov stands for covariance. This defi-
nition means that if two cycles are not of the same length, we
will shift the shorter cycle Ci onto the longer one Cj for �lj

− li� steps, calculate one correlation coefficient between Ci

and the corresponding part of Cj in each step, and pick out
the largest one as the correlation coefficient between Ci and
Cj.

The correlation coefficient �ij characterizes the similarity
between cycle Ci and Cj. The larger the �ij, the higher the
level of similarity. Considering the continuity and smooth-
ness of the vector fields of deterministic systems, two cycles
with a larger �ij will also be close in the phase space, see Fig.
1�a� for an illustration. The Rössler system is given by*Electronic address: enzhangjie@eie.polyu.edu.hk
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x� = − �y + z� , y� = x + 0.398y , z� = 2 + z�x − 4� . �2�

In Fig. 1�b�, we further examine the relation between �ij
and Dij. Dij is the distance between cycle Ci and Cj in phase
and is defined as

Dij = min
l=0,1,…,lj−li

1

li
�
k=1

li

	Xk − Yk+l	 ,

where Xk and Yk are the kth point of Ci and Cj in the recon-
structed phase space, respectively. We find that �ij decreases
smoothly and monotonously with Dij. Therefore, when we
check the relation between cycles, the correlation coefficient
can be used equivalently as the phase-space distance, which
spares the effort involved in the phase-space reconstruction.

Now we study the correlation coefficient between
each pair of cycles in detail. For cycle Ci , �i=1,2 ,… ,m�, we
first calculate its correlation coefficients with the remaining
�m−1� cycles Cj �j� i�. Then we sort these �ijs in descend-
ing order, and the �m−1� cycles are also rearranged corre-
spondingly. We denote the sorted cycle sequence as a column
vector Ri= �CSi1

,CSi2
,… ,CSi�m−1�

��, where Sij is the index of

the jth most similar cycle to Ci. Then, by picking out the
pth�1� p�m−1� element from each column R1 ,R2 ,… ,Rm

and linking them together in order, we can build a �row�
sequence of m cycles, denoted as Tp= �CS1p

,CS2p
,… ,CSmp

�.
For consistency, the original cycle series is denoted as
T0= �C1 ,C2 ,… ,Cm�.

Note that each cycle in Tp is the pth “closest” to the
corresponding cycle in T0, therefore as p gradually increases,
Tp will grow less and less similar to T0, i.e., T1 is the most
similar and nearest cycle series to T0, while Tm−1 is the most
different and farthest one. We call these m−1 cycle series
pseudocycle series as opposed to the “real” cycle series T0.

The construction of this hierarchy of pseudocycle series
Tp �p=1,2 ,… ,m−1�, as we shall see later, provides a dif-
ferent way to examine the deterministic and chaotic structure
in the original time series. It should be noted that the Tps are
not necessarily reorderings of T0, since, for example, two
cycles may have the same cycle as nearest neighbors which
would result in a double entry in T1.

Now we demonstrate how to extract useful information
from the Tps. For clarity of the notation, we use Sp to
represent the sequence of the cycle indexes in Tp, i.e.,
Sp= �S1p ,S2p ,… ,Smp�. Then we count the number of cycle
pairs in Tp that satisfy the following condition;

Sp�i + k� − Sp�i� = k �1 � i � m − k;k � 1� , �3�

where Sp�j� represents the jth element in Sp. Physically, this
means that we not only see the cycle Ci evolve into cycle
Ci+k after k cycles in T0 �which is trivial�, but also see Ci’s
pth closest cycle CSip

evolve into Ci+k’s pth closest cycle
CS�i+k�p

after k cycles in Tp. Intuitively, this indicates that the

two cycles Ci and CSip
nearby in phase space are strongly

correlated by sharing similar dynamical evolution, and the
correlation time lasts for k cycles. We use Npk to denote the
number of cycle pairs in Tp that satisfy the condition �3�.
Note that for higher p and higher k the condition �3� can be
fulfilled by chance. To avoid this, we use a more stricter
condition, i.e., for each cycle span k only the pairs of cycles
should be counted that fulfill condition �3� for all cycle span
�k. Considering it is hard for this condition to be strictly met
in the presence of noise, we suggest using this condition for
clean data, and condition �3� for noisy data.

For chaotic systems, the distance between two nearby
cycles will increase exponentially over time due to the very
nature of sensitivity to initial conditions. Therefore, the cor-
relation between two cycles, which is reflected in Npk, is also
expected to drop exponentially with the cycle span k. The
semilog arithmic plot ln�Npk�
k thus appears to be a straight
line �see Fig. 2�a��, whose slope is actually related to the
largest Lyapunov exponent. The larger the �� lnNpk /�k�, the
higher the level of chaos. So we can use �� lnNpk /�k� as an
indicator of chaos, which we call cycle divergence rate
�CDR�. Usually we use p=1 for CDR, because T1 is the most
similar cycle series to T0, and therefore maintains most of the
determinism and chaos. When p increases, Tp will inherit
less determinism and chaos from T0, therefore ln�Npk�
k
will be subject to more statistical fluctuations, and
�� lnNpk /�k� �a linear fit to ln�Npk�
k� will also drop be-
cause the level of chaos decreases.

It is interesting to see that by summing the Npk
k curve
for the first � pseudocycle series, i.e., Nk=�p=1

� Npk
��=0.15m�, we can find a power law relation between Nk and
k, i.e., a linear dependency between ln�Nk� and ln�k�. This is
similar to the combination of a number of stochastic pro-
cesses whose autocorrelation functions decay exponentially
with different time constants, and the resultant process as-
sumes a power law relation in its autocorrelation function.
We call �� lnNk /� lnk� the average cycle divergence rate
�ACDR�, see Fig. 5�a� �the line with symbol “ring”� for an
illustration. And a larger ACDR indicates a higher level of

FIG. 1. �a� Three cycles C1 ,C2 ,C3 in the phase space for the
Rössler system. �12=0.9961 and �13=0.9192. Note that �12��13,
therefore C2 is closer to C1 than C3. �b� The relation between �ij

and Dij.
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chaos. Experimentally, ACDR is more robust to noise.
The third statistic we will address is the �� lnNpk /�Dp� �k

being fixed�, called the spatial decorrelation rate, where
Dp is the distance between Tp and T0 in phase space.
This statistic characterizes the decrease of determinism in
Tps. Since Dp is usually unavailable without embedding,
we try to find the relation between Npk and p instead.
As is mentioned, Tp inherits less determinism from T0 when
p increases, hence Npk is expected to drop exponentially with
Dp, i.e., Npk�exp�	1Dp�. Experimentally, we also find
�1−�p��exp�	2Dp�, where �p is the averaged correlation co-
efficients between corresponding cycles in T0 and Tp. Com-
bining these two equations, we have Npk� �1−��	1/	2. Since
�1−�� is found to increase linearly with p �for p�0.15m�,
we finally have Npk� p	1/	2, i.e., we expect Npk to assume a
power law relation with p. This is verified in Fig. 3.

To give a more vivid representation of the correlation be-
tween the cycles, we now follow the spirit of the recurrence
plot �RP� �12� to provide a graphical illustration. The idea is
that for each pair of cycles Ci and Cj, if �ij is beyond a
certain threshold, we then draw a black dot at position �i , j�
in the 2D plane. We call this the cycle recurrence plot �CRP�.
Note that all cycles have already been sorted in the Tps, the
CRP thus can be easily obtained by drawing black points at
�i ,Sp�i��, where i=1,2 ,… ,m , p=1,2 ,… ,�, and �=0.15m,
see Fig. 4. Here we use � because the threshold of the cor-
relation coefficient may differ for distinct time series.

The observation of the points consecutive in time �form-
ing the line parallel to the diagonal� in RP is an important
signature of determinism. Similarly, in CRP the parallel lines
to the diagonal that connects consecutive cycles have the
same significance. Unlike RP, in CRP there is almost no
horizontal or vertical lines. The reason is that the correlation
coefficient � measures the distance between segmented

cycles, rather than the phase-space points. Therefore the cor-
relation reflected in CRP is on a much larger time scale, and
the trivial temporal correlation of the phase-space points,
typical in RP, is largely eliminated. This makes CRP much
more robust to noise. Moreover, the cycle recurrence plot
does not need phase-space reconstruction.

Based on the graphical recurrence plot, various statistics
can be further calculated to give a more quantitative descrip-
tion of the deterministic structure, such as those designed in
recurrence quantification analysis, including the percent re-
currence, the percent determinism, the Shannon entropy, the
trend, and the maximum diagonal line length �13�. These
statistics can also be applied in our cycle recurrence plot.
Among them, the maximum diagonal line length Lmax is re-
lated to the largest Lyapunov exponent. However, the diago-
nal line in RP is easily broken into shorter fractions due to
the influence of noise and the round-off error. Therefore
1/Lmax may be imprecise in many cases. In comparison,
what the cycle divergence rate reflects is the decreasing rate
of the number of strongly correlated cycles Npk over the

FIG. 2. Cycle divergence rate for �a� the x component of Rössler
system �2� �m=1596�. �b� Laser data set �m=1224�.

FIG. 3. Spatial decorrelation rate for �a� the Rössler system. �b�
Laser data set.

FIG. 4. Cycle recurrence plot for x component of the Rössler
system with 5% measurement noise �i.e.; noise with standard devia-
tion that is 5% of that of the data�.
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cycle span k, rather than the absolute number of cycles in the
diagonal line in CRP. Clearly, the cycle divergence rate is a
more reliable statistics.

At last we consider the influence of different types of
noise on the statistics we have defined. In the case of mea-
surement noise, all the pair-wise correlation coefficient �ijs
will decrease. However, since the measurement noise has no
preference in influencing different cycles in the time series,
�ijs will decrease roughly to the same extent, and their rela-
tive order remains nearly unchanged. Experimentally, when
the noise level is low �less than 5%�, the CDR from T1 works
well for chaos detection. For medium and high level noise
�less than 30%�, however, ACDR is more robust. In Fig. 5,
we can see that ACDR can successfully detect chaos in the
presence of additive noise �including white and colored
noise� and dynamical noise. Though ACDR will drop as the
noise level increases, it can bear a noise level �white Gauss-
ian noise� of up to 30%. Moreover, we have also tested the
above three statistics on the experimental laser data set. The
results �see Figs. 2�b�, 3�b�, and 5�d�� clearly indicate the
presence of chaos. We note that the minimum m needed to
produce reasonable results for ACDR is about 100 for data
with noise up to 5%. Larger m is needed for more noisy data.
In this paper, larger m �m=1596 for the Rössler system and
m=1224 for laser dataset� is used to produce a wider scaling
region for visual inspection.

Through this approach, we can also discriminate between
a low-dimensional chaotic signal and a periodic signal with
noise. For the chaotic time series, as we have seen, N1k will
decrease exponentially with k, and a scaling region is present
in the plot of ln�Nk�
 ln�k�. While for periodic signals with
dynamic noise, there are no such relations. For example, in
the case of additive white noise, the correlation coefficients

between different pairs of cycles are totally random, there-
fore the Npk has very small values, and Nk will assume sta-
tistically the same value for different k. For the colored
noise, though cycles of the noisy periodic signal might ap-
pear “correlated” due to the intrinsic correlation of the col-
ored noise, we cannot find the scaling region in the plot of
ln�Nk�
 ln�k�, since Nk are roughly the same for k shorter
than the decorrelation time of the noise. As a comparison to
the embedding-based methods, we have calculated the corre-
lation dimension �Dc� for a periodic time series sin�10
t�
contaminated by colored noise rn+1=0.8rn+0.9�n. The result
Dc=1.38 shows that the traditional method cannot reliably
differentiate a noisy periodic time series from a chaotic one.
In contrast, our method works for this case, as discussed
above.

In summary, we have proposed a method to detect deter-
ministic structure and chaos for time series data exhibiting
strong pseudoperiodic behavior. The intrinsic correlation of
the data set is studied on the scale of single cycles by using
a similarity measure, thus phase-space reconstruction can be
avoided. The primary uniqueness lies in the hierarchy of the
pseudocycle series that in turn shares decreasing similarity
with the original signal. From these, reliable statistics can be
defined for robust detection of determinism and chaos. For
many real world systems that may contain both deterministic
component and random noise of different sources, on which
traditional invariants may fail, the proposed approach is a
more robust and reliable alternative.

We wish to thank Kai Zhang and Tomomichi Nakamura
for their valuable suggestions and help. This research was
funded by a Hong Kong University Grants Council Grant
Competitive Earmarked Research Grant �CERG� No. PolyU
5353/03E.

FIG. 5. ACDR for the Rössler
system with �a� additive Gaussian
noise of different levels. �b� Addi-
tive colored noise from the AR
process rn+1=arn+b�n ��n is the
Gaussian noise term� when a
=0.1,b=0.3 �noise level 4%�, a
=0.5,b=0.8 �noise level 12%�,
and a=0.8,b=0.9 �noise level
20%�. �c� Dynamical noise of dif-
ferent levels. Noise term E��t� is
added to the right-hand side of the
first equation in �2�, which is inte-
grated at a time span of 0.2. �d�
ACDR for the laser data set.
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