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Resonance-induced oscillons in a reaction-diffusion system
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A new type of oscillon that arises from interaction between subcritical Turing and wave instabilities is found
in a system of reaction-diffusion equations. These oscillons can be induced resonantly by localized external
periodic perturbations. This phenomenon may be useful for frequency selection and/or information processing.
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I. INTRODUCTION

Oscillons, i.e., localized, spatially stationary, temporally
oscillatory structures, were first found experimentally in a
vertically vibrated layer of sand [1]. They were subsequently
observed in an autonomous reaction-diffusion system [2], in
optical systems [3], in plasmas [4], in nonlinear Faraday fluid
mechanics experiments [5], and in the Swift-Hohenberg
equation [6]. The possible practical application of oscillons
in memory devices or processors [2,7,8] has heightened in-
terest in their investigation. Oscillons may originate via sev-
eral scenarios, e.g., the interaction of subcritical Turing and
subcritical Hopf instabilities [2] or a homoclinic bifurcation
[3]. In this work we investigate a new mechanism for gener-
ating oscillons: interaction between subcritical Turing and
subcritical wave instabilities, suggested in [2].

Like any oscillatory system with a characteristic fre-
quency, an oscillon may be expected to exhibit resonance
when subject to external periodic signals. If, in a spatially
extended system initially in a homogeneous steady state
(SS), an autonomous oscillon can arise via a subcritical bi-
furcation, then it should be possible to induce oscillons by a
local periodic perturbation with appropriate frequency, am-
plitude, and spatial extent. Here we investigate such reso-
nances in a new type of oscillon found in a model of the
Belousov-Zhabotinsky (BZ) reaction dispersed in an aerosol
OT [AOT=sodium bis(ethylhexyl) sulfosuccinate] water-in-
oil microemulsion (BZ-AOT system). Our study is relevant
to the resonant forcing of silent neurons [9] and to
resonance-induced pacemakers and waves [10-12], since all
these systems have subcritical (Hopf) bifurcations and in-
volve local resonant perturbations.

In Sec. II, we discuss our model. In Secs. III and IV we
perform linear stability analysis of the model and investigate
numerically the behavior of a new type of oscillon. In Sec. V,
the resonantly induced “steady state — oscillon” transition is
studied. In Sec. VI, we examine the possible practical appli-
cation of oscillons in heterogeneous media as a frequency-
selection device. In Sec. VII, we explore briefly spatial reso-
nances with two or more oscillons. We conclude in Secs.
VIII and IX, noting possible links between our chemical sys-
tem and biological ones.

II. MODEL

The BZ reaction [13], the oxidation of an organic sub-
strate (usually malonic acid) by bromate in acid medium
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catalyzed by a catalyst, such as Fe(phen); or Ru(bpy)s,
is a complex net of chemical reactions. When dispersed in
water-in-oil microemulsion, it becomes even more complex
[14,15]. The Field-Koros-Noyes (FKN) mechanism [16]
provides a detailed description of the chemistry of the BZ
reaction.

Employing such complex models to study patterns in spa-
tially extended systems, however, is computationally chal-
lenging and tends to obscure the origins of new behaviors.
Therefore one typically employs a simplified version of the
full FKN model. The most popular simplified model is the
three-variable Oregonator [17], which has been successful in
simulating many temporal and spatial phenomena in the
aqueous BZ reaction. It can be reduced to a two-variable
model [18]:

avldot=[v(l —v) —hz(v - q)l(v+q)]e, (1)

dzldt=v -z, (2)

where v is the dimensionless activator concentration
([HBrO,]) and z is the catalyst concentration, which plays
the role of inhibitor in this set of equations, while ¢, ¢, and &
are kinetic and stoichiometric parameters.

To explain the numerous patterns found experimentally in
the BZ-AOT system (e.g., Turing patterns and standing
waves) we have introduced two additional dimensionless
variables in model (1) and (2) [19,20], u ([Br,]) and radical
r ([BrO,]), which can diffuse rapidly in the continuous oil
phase and are linked by first order reactions to the inhibitor
(z) and activator (v), respectively,

dvldt=[v(l —v) —hz(v - g)/(v+q)— Bv +rlle + D,Av,

3)

dzZldt=v—z+yu—az+DAz, (4)
uldt = (az — yu)le, + D, Au, (5)
arlot=(Bv —r)le, + D,Ar, (6)

where the Laplacian A=4*/dy* in 1D and A=d*/x*
+d*/3dy* in 2D. Values of all parameters are discussed in
Sec. III.

In this work, we show that the four-variable reaction-
diffusion model (3)-(6) is able to describe a new type of
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FIG. 1. Dispersion curves for system (3)—(6) for ;=1.3 and 1.5.
Curves: i1, Im(A;)/10; i2, Im(A,)/40 [upper curve of two i2 (il)
curves corresponds to £,=1.5(1.3)]; rl, Re(A,) (Turing peaks of
curve rl for £;=1.5 and &,=1.3 are indistinguishable); 12, Re(A,).
Parameters: ¢=0.0025, h=1.2, «=048, y=0.045, B=0.65,
£=0.046, &;=1.5 (12-1) and 1.3 (12-2), &,=0.1, D,=0.01, D,
=0.01, D,=0.45, and D,=0.025.

oscillon, which may resemble the oscillon found experimen-
tally in the BZ-AOT system [2].

In Ref. [2] we used another simplified FKN-type model to
study oscillon behavior:

wldt=[v(1-v)-s(v-q)-PBv+rle+D,Av, (7)

dzldt=v —z+ D Az, (8)
Aul ot =[s(q +2v) — yulslle," + D, Au, 9)
rldr=(Bv —r)le, + D,Ar, (10)

where the inhibitor s (dimensionless Br~) is a function of z,
v, and u: s=hz/(2q+3v)+[v,u/(2g+3v)]"? and £ is a func-
tion of u and z: h=ho+u/(Kz+u). In Egs. (7)-(10), the fast
diffusing inhibitor u is linked both to activator v and catalyst
z. Model (7)-(10) is much more complex, and therefore less
preferable, than model (3)—(6).

Both models (3)—(6) and (7)—(10) have oscillon solutions.
At the present stage of our understanding of patterns in the
BZ-AOT system, we cannot say which model more accu-
rately describes the experiments, though differences in the
nature of the oscillon solutions found should make it possible
to design experiments to distinguish between the models.
There certainly exist other classes of models that also gener-
ate oscillons (as well as other patterns in the BZ-AOT sys-
tem), for example, reaction-diffusion models with cross-
diffusion terms, like

dvldr = reaction terms + D,Av + V(D,, Vu)  (11)

where V denotes gradient, and the cross-diffusion coefficient
D,,—0,if v—0 [21].

III. LINEAR STABILITY ANALYSIS

Typical dispersion curves for system (3)—(6) with param-
eters that give oscillon formation both in 1D and 2D are
shown in Fig. 1. All eigenvalues A have negative real parts
for all wave numbers &, and therefore the unperturbed system
has a stable homogeneous SS. The corresponding 0D (point
or well-mixed) system has only the SS solution (a stable
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focus) and hence cannot oscillate. Eigenvalue A, is complex
at small k, while at larger k (k> 1) it transforms into two real
(negative) eigenvalues, the more positive of which (curve rl
in Fig. 1) is responsible for the subcritical Turing instability.
Eigenvalue A, is complex for a broader range of k and is
responsible for the wave instability.

Note that all parameters used in model (3)—(6) (see cap-
tion to Fig. 1) are physically realistic. Our values of £, g, and
q are in the range typically used in the Oregonator model.
The ratio a/y is proportional to the partition coefficient for
Br, between the oil phase and droplet (AOT+water)
pseudophase, which implies that «/y> 1. The coefficient 8
must be less than 1, since it represents the fraction of BrO,’
radicals generated in the reaction HBrO,(+BrO;") —2BrO,’
(+2 catalyst) —2HBrO, that are transferred to the oil phase
instead of reacting with the catalyst. We expect 8 to depend
on the catalyst concentration, but this effect is not included
in the simple model (3)—(6). Chemical considerations also
imply that &, >¢, and &,<<1 [19,20].

Species v and z, which are inside water nanodroplets, dif-
fuse with the droplets at a significantly slower speed than
small molecules in the oil phase, and therefore their diffusion
coefficients D, and D, should be approximately equal to
each other and significantly smaller than the diffusion coef-
ficients of the oil-soluble species, D, and D,.

The system behavior and the eigenvalues depend sensi-
tively on the parameters. The temporal and spatial character-
istics of u, &,, and D,, primarily affect A, the Turing insta-
bility (curve rl in Fig. 1), while &, and D,, the corresponding
characteristics of the fast diffusing activator, r, mainly influ-
ence Re(A,) and Im(A,), i.e., the wave instability. It is most
convenient to vary these parameters, since they leave the SS
unchanged. A small increase in D, or &, leads to an increase
in Re(A ;) and to a shift from SS to oscillons or to oscillatory
Turing patterns that occupy the entire area, even while
Re(A,) is still negative, while increasing D, induces changes
in the opposite direction. Variations in &; mainly affect the
frequency of the oscillon [Im(A,)]. In a heterogeneous sys-
tem with spatially distributed &, oscillons with different fre-
quencies can be induced.

If we vary any of the parameters individually, the range of
values that yields oscillon solutions is quite narrow. If, how-
ever, we change two or more parameters simultaneously in
such a way that the maxima of dispersion curves rl and 12 in
Fig. 1 remain negative and close to zero, we can find a rela-
tively broad range of oscillon behavior. It is necessary to
carry out numerical simulations for each set of parameters
that potentially (from linear stability analysis) can give o0s-
cillons. Therefore elucidating in detail the regions in the pa-
rameter space where oscillon solutions occur is a time-
consuming problem that we defer for future investigations.
Such studies may yield a more realistic ratio between the
diffusion coefficients D, and D, than the one employed in
this work.

The oscillons originating from subcritical Hopf and Tur-
ing instabilities [2] and those found here share a common
feature, seen in Fig. 1: the dispersion curves have a Turing
peak (curve rl) where the relevant eigenvalue, A, is real in
a range of k in which the other pertinent eigenvalue, A,, is
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FIG. 2. Cross sections of one-hump (bold and dashed lines) and
two-hump (thin and dotted lines) oscillons at maximum and mini-
mum of z oscillation. Spatial unit A=27/kz, €;=1.5. All other pa-
rameters as in Fig. 1.

complex (curves 12, i2). In this context we can say that the
two eigenvalues interact with each other.

IV. SIMULATION OF THE OSCILLON

Our numerical simulations were carried out with the Flex-
PDE package [22] with periodic and with zero flux boundary
conditions. FlexPDE refines the triangular finite element
mesh until the estimated error in any variable is less than a
specified tolerance, which we chose as 1074, at every cell of
the mesh. Smaller tolerances did not change the results.

An appropriate local initial perturbation can induce
oscillons like those shown in Fig. 2. We typically decrease z
from its SS value zgs, zo=zss[1 -4, @(y)], where y is the
spatial coordinate in 1D, A" is the amplitude of the pertur-
bation, and ¢(y)=0 everywhere, except ¢(y)=1 for y, <y
<y,+L, for a one-hump oscillon and in addition ¢(y)=1 if
Y2 <y<y,+L, for a two-hump oscillon. The values y, and
y,>y, are arbitrary, but for coordinated behavior of two
humps, the difference y,—y; =g must lie in a particular
range. Note that the frequencies of one-hump and two-hump
oscillons differ slightly (by about 3%). For the combination
of subcritical Hopf and Turing instabilities considered in [2],
different superthreshold local perturbations gave rise to both
stationary and oscillatory localized peaks at the same set of
model parameters. In the present case, only oscillons can be
induced.

Since our oscillon is associated with a wave instability, it
exhibits some properties of packet waves; specifically, it can
travel at a velocity related to the group velocity,
dIm(A,)/dk. For ,=1.5, d Im(A,)/dk=0 at the wave num-
ber k(=2) where Re(A,) (curve r2-1 in Fig. 1) reaches its
maximum, i.e., the wave number that tends to be selected,
and the pattern is stationary. For &;=1.3, in contrast,
dIm(A,)/dk=0.04 at k=6 (the maximum of curve r2-2),
and the oscillon can move. This movement differs in 1D and
2D. In both cases an initial single symmetric motionless os-
cillon is stable. To initiate movement or splitting of the os-
cillon, we create an asymmetry, e.g., by transiently changing
D, in a small region to the left or right of the oscillon. In
experiment the asymmetry can be generated, for example, by
a local thermal perturbation on one side of the oscillon. As
soon as the oscillon develops some asymmetry, we return the
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FIG. 3. (a)-(e). Moving single oscillon in 1D. Size of each
frame is 4.35\ X 3T, where T,;=2.588, the period of the oscillon,
N=3.6. Frames (a)—(e) are separated by 51.12T, &,=1.3, all other
parameters as in Fig. 1. (f) Metastable localized structure in 2D
with small localized spiral instead of oscillon near the bottom ver-
tex. Period of the spiral is T,;. Frame size=6\ X 6\. (g) Dynamics
of splitting oscillons in 2D, S is proportional to the area occupied
by oscillatory patterns. Numbers at the plateaus indicate the num-
bers of oscillons; the last octet configuration is shown in (f).

altered parameter to its original homogeneous value. In 1D,
the asymmetric oscillon starts to move with a constant ve-
locity [see Figs. 3(a)-3(e)]. With periodic boundary condi-
tions, the oscillon moves indefinitely without changing its
shape.

The 1D moving oscillon is intermediate in character be-
tween traveling solitonlike packet waves [subcritical wave
instability with positive Re(A) [23]] and stationary oscillons
[2]. Note that solitonlike packet waves reflect from a zero-
flux boundary, while moving oscillons instead produce a lo-
calized structure near the boundary, for example, two in-
phase and one antiphase oscillating peaks separated by the
Turing wavelength X\. When two oncoming oscillons ap-
proach one another, they give rise to a new, two-hump oscil-
lon that can either be stationary or, after some time, begins to
move.

In 2D, an initially asymmetric oscillon splits into two, and
each of these new oscillons splits again perpendicular to the
direction of the first splitting. The average distance between
oscillons is about N=2m/ky, where k; corresponds to the
maximum of curve rl in Fig. 1. This metastable structure of
four oscillons persists for some time before producing four
new oscillons [see Figs. 3(f) and 3(g)]. One of these new
oscillons quickly transforms into a small localized spiral
similar to the localized spirals found in a model of coupled
layers [24]. This octet structure is stable for at least several
tens of oscillation periods. If we suppress all oscillons except
the localized spiral, that object transforms into a normal os-
cillon, which later undergoes a new cycle of splitting. The
localized spiral arises only in asymmetric environments like
that in Fig. 3(f) and is quite stable in such situations.
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FIG. 4. Threshold amplitudes for generating oscillons. Curves 1
and 2 are A, in 1D and 2D, respectively; curve 3 is Ap,/zgg for
T,=2.25 in 1D; curve 4 is 54, X L,,. Parameters of system (3)—(6)
as in Fig. 1, ;=1.5.

V. LOCAL PERIODIC PERTURBATION AND
RESONANCES

To study resonance effects, we first determined the thresh-
old amplitude A, of an initial perturbation of spatial
extent L, needed to generate a stationary one-hump oscillon
(curves 1 and 2 in Fig. 4). If L,> \, the final pattern in 1D is
the homogeneous SS, while in 2D, an initial circular pertur-
bation with L,>0.6\ leads to the generation of multiple
oscillons.

We next considered time-periodic perturbations, in which
Eq. (4) in 1D was augmented by a term Ap' sin(2mt/T,) p(y),
where ¢(y) describes the spatial extent L, of the perturbed
zone.

9zldt=v —z+ yu—az+A," sin2mt/T,) () + DAz

)
In our computer experiments, this external periodic local
perturbation was applied until the behavior of the system
became stationary, generally after <1007),. Then, the pertur-
bation was switched off, and the system relaxed either to SS
or to an oscillon. The threshold values, Ay, obtained at
T,=2.25, close to the natural period of the oscillon,
Tp=2.305, are presented in curve 3 of Fig. 4. A,/zgg is al-
most one order of magnitude smaller than A, For time-
periodic perturbations with L,<0.2\, the product A, XL,
(see curve 4 of Fig. 4), analogous to the energy of the per-
turbation, is constant over nearly two orders of magnitude
change in L,. For further investigation of resonance effects,
we fix Lp/)\=0.2, close to the minima of curves 1 and 3 in
Fig. 4.

The time-periodic perturbation periodically increases and
decreases z, while the initial perturbation considered earlier
only consisted of a decrease in z below zgg. We next exam-
ined how the shape of an external periodic perturbation af-
fects the system response. With fixed L,, we measured
threshold amplitudes A,(f) as a function of frequency f for
the above harmonic perturbation and for the four different
shapes of square periodic perturbations shown in Fig. 5.
Shapes 1 and 2 are sequences of purely activating and purely
inhibitory square impulses, respectively. Shape 3 resembles
the harmonic perturbation, while in shape 4, the inhibitory
impulses follow immediately after the activating impulses.
The ratio of impulse duration to perturbation period, /7,
was set to 0.25 for all cases. Note that the behavior of
A,(7/T,) is similar to that of A,(L,/\) shown in Fig. 4
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FIG. 5. Shapes of periodic square perturbations.

(curve 1), and 7/7,=0.25 lies close to the minimum of this
curve.

The results shown in Fig. 6 reveal that there are only
minor differences among the curves for perturbations that
contain both activating and inhibitory pulses: the harmonic
and square-shaped perturbations of shapes 3 and 4 (see Fig.
5). All of these curves exhibit significant resonance effects of
nearly two orders of magnitude in A,. On the other hand,
with only activating pulses (shape 2), the resonance tongues
are rather shallow, while the sequence of purely inhibitory
pulses (shape 1) yields almost no observable resonance. Note
the relatively shallow resonance at f:f,=2:1 and the ab-
sence of any resonance at f:f=3:2.

There are important differences between the resonances
found in periodic forcing of existing oscillations (Arnold
tongues) and the resonances in the present case of subcritical
bifurcations. Figure 7(a) demonstrates oscillations for a
periodic perturbation with amplitude A,"<A, (at period
T=2.4), while Fig. 7(b) shows the opposite case, when
A>A, (at T=2.7). When A <A, the average period of
oscillation is equal to the period of the external perturbations
[Fig. 7(c)], while when A '>A, this relation holds true

FIG. 6. Resonances A,(f). (a) 1, harmonic perturbation; 2, in-
hibitory pulses (shape 2 in Fig. 5); and 3, activating pulses (shape 1
in Fig. 5). (b) 1, shape 4 in Fig. 5; 2, shape 3 in Fig. 5; fo=1/T,,
Ty=2.305. Parameters of system (3)—(6) as in Fig. 1, g,=1.5.
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FIG. 7. Oscillations in system (3)—(6) under local periodic per-
turbation (shape 4 in Fig. 5) with period T at (a) Ap’ <A, and (b) at
Ap'>AP. All system parameters as in Fig. 1, £;=1.5. (c) and (d)
show dependences (open rhombs) of time intervals between
neighboring maxima of oscillations shown in (a) and (b), respec-
tively, on time. Averaged intervals (T) are taken for those times
when the shape of oscillations does not change with time [for (d),
time>180]. Filled squares in (d) are 3-point running averages of
time intervals between neighboring maxima. Panels (e) and (f) are
enlarged segments of (a) and (b), respectively.

only initially. As the amplitude of oscillation increases,
the period tends to the natural period 7|y of the unperturbed
oscillon [Fig. 7(d)]. Figures 7(e) and 7(f) present enlarge-
ments of segments from Figs. 7(a) and 7(b), respectively.
Since the system actually possesses two frequencies, f
(=1/T, with large amplitude) and f (=1/T with small ampli-
tude), beats can be seen in Fig. 7(b). In the case of frequency
locking in Arnold tongues, the system oscillates only at the
frequency of the external perturbation (1:1 resonance) or its
subharmonics.

VI. FREQUENCY SELECTION IN A HETEROGENEOUS
MEDIUM

The deep resonance at f:f,=1:1 can be used for resonant
induction of oscillons in a heterogeneous medium. To dem-
onstrate this possibility, we consider a system consisting of
five zones [Fig. 8(a)]. In the two zones labeled “1,” g,=1.5;
the central zone “2” has £;=1.3. In a 1D homogeneous sys-
tem, zones 1 and 2 would exhibit the resonances shown in
Fig. 8(b) by curves 1 and 2, respectively. The two “inert”
zones “3” support only SS. We attempt to initiate oscillons in
this system starting from the homogeneous SS. We construct
an impulse [narrow black and white horizontal bars in Fig.
8(a), corresponding to activating and inhibitory perturba-
tions, respectively] that moves with velocity v and frequency
v/L from left to right along a segment of length L equal to
the length of the arrow in Fig. 8(a) and crosses all five zones
(the outer portion of each zone 1 is left unperturbed). The
length R, of the black and white zones of the impulse is
chosen so that R,/L=7/T,=0.25, where 7 and T, character-
ize perturbation 4 in Fig. 5. Therefore each point on the
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FIG. 8. Resonance induced oscillons in a heterogeneous me-
dium. (a) In zone 1, &=1.5, D,=0.445, D,=0.025; in zone 2,
e,=1.3, D,=045, D,=0.025; in zone 3, £=0.05, ¢;=1.6, D,=0.1,
D,=0.015. System size=9\ X 4\, A=3.6; perturbing impulse runs
in a band of size 6.5\ X \/4. All other parameters as in Fig. 1. (b)
Phase diagram in the TP—AP'/ Zgs plane for computer experiments
described in (a), Tp=L/ v; X, no oscillons; 4, oscillons in zone 1
only; A, oscillon in zone 2 only; and [J, oscillons in both zones 1
and 2. Curves (1) and (2) are threshold values A,/zgg obtained in
ID for system (3)—(6) with &;=(curve 1) 1.5, (curve 2) 1.3.

perturbed segment experiences the shape 4 perturbation in
Fig. 5. This system is analogous to a chain of excitable cells
perturbed at a constant frequency through a long neuron.
The behavior of the system is summarized in
Fig. 8(b). Two examples of resulting oscillons obtained for
Ap’/zss=0.02 at L/v=Ty,, (=2.305, the natural period of os-
cillons in zone 1) and L/v=T, (=2.588, the natural period of
oscillons in zone 2) are presented in Figs. 9(a) and 9(b),
respectively. Since the width of each zone is equal to A, at
most one oscillon can form per zone. As seen in Fig. 8(b), if
the parameters Ap’ and v lie near the tip of tongue 1 (2), then

(a)

(b)

FIG. 9. (a) Contour map of oscillons (vertical axis is z) that
emerge in zones 1 (see Fig. 8) when the period of the impulse is
2.305. (b) Oscillon in zone 2 (see Fig. 8) for a perturbing impulse of
period 2.588.
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oscillons emerge only in zone 1 (2). The small deviation
from the behavior predicted by curves 1 and 2 arise (a) be-
cause the curves are calculated in 1D and (b) from perturba-
tions caused by the boundaries with zone 3 in our heteroge-
neous 2D medium. At larger AF', where tongues 1 and 2
overlap, oscillons can emerge in both zones 1 and 2.

The ability of such a system to discriminate between
impulses of different frequencies offers the possibility
of constructing devices for filtering and spatially sorting
signals according to their frequencies. We analyzed
mixed perturbations of the form [Apl’ sin(2mt/T,,;)
+Ap2' sin(2mt/T),;)]¢p(y) in 1D and analogous mixed im-
pulses with different velocities v in 2D in geometries analo-
gous to Fig. 8(a). In both cases, a mixed impulse induces an
oscillon in a zone if and only if A, exceeds A,(T},), the
critical amplitude [Fig. 8(b)] at T),;, for at least one of the
components of the impulse.

Our preliminary experiments on periodic and constant il-
lumination of the photosensitive Ru(bpy);—catalyzed
BZ-AOT system reveal that stationary (Turing) patterns can
be transformed to oscillatory (global or localized) patterns
above a threshold intensity of light. The frequency of the
oscillatory patterns may depend on the light intensity. By
illuminating the BZ-AOT system through spatially structured
masks, a desired spatial heterogeneity can be imprinted
[25-28]. The moving impulse can be created by a laser
beam, which can induce and suppress oscillations. The com-
bination of constant illumination through a mask with a mov-
ing light beam can create arrangements like that shown in
Fig. 8(a), where the system parameters take on different val-
ues in chosen regions.

Thus, as our example of frequency selection shows, oscil-
lons can be used not only for memory devices but also for
signal processing.

VII. SPATIAL RESONANCE IN A HOMOGENEOUS
MEDIUM

In contrast to homogeneous systems with only a subcriti-
cal Hopf bifurcation [12], our homogeneous system with
subcritical wave and Turing instabilities can respond locally
and resonantly to local periodic perturbations. As noted
above, two-hump oscillons have a slightly smaller frequency
than one-hump oscillons, which allows the possibility of spa-
tial resonance when we introduce two local periodic im-
pulses separated in space by a gap, g=y,—y;. The depen-
dence of the critical amplitude A, on g for two identical
impulses with period 7=2.2 is shown in Fig. 10. This depen-
dence has a minimum, Ap_min, at g/A=1. As g is increased,
A, plateaus at A, (=A,, for a single impulse, Appi/ Apmin
=15 and 1.8 for T=22 and 2.1, respectively) at
g>(3-4)\; for smaller gaps A, rises to 44, ., at g=0.5\.
At g <0.5\, two external impulses generate a single oscillon
(i.e., the two perturbations merge). Thus, if we take two im-
pulses with amplitude A[,' just slightly larger then A, .,
[e.g., A, =(1.1-1.3)A, 1in] and separated by g=\, we obtain
a two-hump oscillon. Impulses with the same amplitude Ap'
but separated by g=(2-3)\ [or by g=(0.5-0.8)\] decay to
SS, since for this gap range, AP’ <A, Figure 11 illustrates
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g/

FIG. 10. Dependence (rhombs) of the threshold amplitude A,
(shown as A,/zgg) on the gap g between two synchronous local
perturbations with period 7T.,=2.2 (shape 4 in Fig. 5) in 1D. Num-
bers 1 and 2 near the horizontal dashed lines indicate how many
oscillons emerge in the system after perturbation. System (3)—(6)
has parameters as in Fig. 1 with &;=1.5.

this behavior, which is a form of spatial resonance, since the
emergence of oscillons depends only on the distance between
the two impulses. Similar behavior was observed in the spa-
tial resonance of Turing patterns [26].

VIII. CONCLUSION

We have shown that localized oscillatory solutions of
reaction-diffusion equations, like Egs. (3)—(6), can arise from
interaction between subcritical wave and Turing instabilities.
Localized periodic perturbation of a homogeneous medium
that supports oscillon solutions can resonantly induce oscil-
lons (1:1, 1:2, and 2:1 resonances). The ability to generate
oscillons by local perturbations opens the possibility of ap-
plications such as memory devices or spatial filtering. Pre-
liminary experiments in our laboratory on the photosensitive
BZ-AOQOT system demonstrate that when the system is in the
region of subcritical Turing instability and simultaneously
near a region of oscillatory instability (Hopf or wave), it can
preserve the image of a complex mask, supporting the nu-
merical calculations presented in this work.

IX. OUTLOOK

Other localized oscillatory patterns in systems with sub-
critical bifurcations should exhibit analogous resonances.
One possible instance involves the transmission of informa-

004/ (@) (b) .
™o.03
2
002— | : : .
40 0 40 80 120

0

time time

FIG. 11. Spatial resonance in a system (3)—(6) with parameters
as in Fig. 1 except ¢;=1.5 and D,=0.445. Two external synchro-
nous local perturbations with amplitude Ap'=0.0013 and period
T=2.1 (shape 4 in Fig. 5) are separated in space by g=(curve 1) A
and (curve 2) 2\. Oscillations in (a) and (b) are shown at a single
spatial point at the center of one external perturbation; the system is
shown (a) during perturbations (perturbation starts at 7=0) and (b)
after perturbation (perturbation stops at t=0). Curves 1 and 2 in (a)
are identical.
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tion from a neuron plasma membrane to the cell nucleus
[29,30]. An appropriate frequency of action potentials (in the
form of postsynaptic bursting signals, the analog of our ex-
ternal perturbation) may induce intracellular Ca®>* waves or
oscillations (analog of our oscillons) that, in turn, may acti-
vate genes in a nucleus. In addition to potential applications
of oscillons for memory [2,7,8], the examples considered
above of spatial resonances and frequency-selection with the
aid of oscillon solutions in reaction-diffusion systems sug-

PHYSICAL REVIEW E 73, 016201 (2006)

gest that living systems may make use of similar mecha-
nisms to carry out information storage and processing.
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