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Transport in one-dimensional symmetric devices can be activated by the combination of thermal noise and
a biharmonic drive. For the study case of an overdamped Brownian particle diffusing on a periodic one-
dimensional substrate, we distinguish two apparently different biharmonic regimes: �i� Harmonic mixing,
where the two drive frequencies are commensurate and of the order of some intrinsic relaxation rate. Earlier
predictions based on perturbation expansions seem inadequate to interpret our simulation results; �ii� Vibra-
tional mixing, where one harmonic drive component is characterized by high frequency but finite amplitude-
to-frequency ratio. Its effect on the device response to either a static or a low-frequency additional input signal
is accurately reproduced by rescaling each spatial Fourier component of the substrate potential, separately.
Contrary to common wisdom, based on the linear response theory, we show that extremely high-frequency
modulations can indeed influence the response of slowly �or dc� operated devices, with potential applications
in sensor technology and cellular physiology. Finally, the mixing of two high-frequency beating signal is also
investigated both numerically and analytically.
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I. INTRODUCTION

The spectral density of the response of a system at ther-
modynamical equilibrium to a sinusoidal time modulation
consists of a �-like spike centered at the forcing frequency.
In linear response theory, the system response to two suffi-
ciently weak sinusoidal modulations with different frequency
is well reproduced by the linear superposition of the system
response to each modulation, separately. In other words, the
spectral contents of the system output coincides with that of
the input signal. A significant exception is represented by the
harmonic mixing �HM� of two commensurate input frequen-
cies of comparable magnitude �1�: The system response then
can contain harmonics of both drive frequencies and thus,
under certain conditions, even a dc component.

In this paper we focus on the regime when at least one
drive component is characterized by high frequency but fi-
nite amplitude-to-frequency ratio. Such a fast modulation
modifies the internal dynamics of the system, so that its re-
sponse to the other harmonic drive is sensitive to both modu-
lating frequencies, no matter what their ratio. Such a fre-
quency coupling, termed vibrational mixing, does not fall
within the framework of the linear response theory, as the
amplitude of at least one drive component must be apprecia-
bly large. Right for this reason, however, the regime investi-
gated here is consistent with the operating conditions of
many real devices and is, indeed, of general applicability.

Our study case is represented by a Brownian particle
moving on a one dimensional substrate subjected to an ex-
ternal biharmonic force F�t� and a zero mean valued,
�-correlated Gaussian noise ��t�. Its coordinate x�t� obeys the
Langevin equation �LE�

ẋ = − V��x� + F�t� + ��t� , �1�

where

F�t� = A1 cos��1t + �1� + A2 cos��2t + �2� �2�

with A1 ,A2�0,

���t�� = 0, ���t���0�� = 2D��t� , �3�

and V�x� is the periodic potential of a substrate with period
L=2�.

In Sec. II we compare the results of extensive numerical
simulations with earlier perturbation predictions for the rec-
tification current �ẋ� /2� induced by HM. We conclude that,
in spite of the abundance of numerical results, the analytical
description of HM available in the literature is still incom-
plete and, to some extent, unsatisfactory. We then introduce
the vibrational mixing regime. A high-frequency perturbation
pumps energy into the system forcing free particle oscilla-
tions of amplitude 	0=A2 /�2 comparable with the system
length scale. In Sec. III we demonstrate both numerically and
analytically that the particle response to an additional dc
drive is extremely sensitive to the high-frequency pump pa-
rameter 	0. In Sec. IV we extend our approach to investigate
the rectification current in a rocked ratchet driven by a bihar-
monic force with high and low frequency components �vi-
brational rocked ratchet�. Finally, in Sec. V we consider the
case of a ratchet driven by two high-frequency beating har-
monic forces. We show that in such a limit a vibrational
ratchet can be assimilated to a pulsated ratchet, where the
modulation frequency of the substrate amplitude corresponds
to the drive beating frequency.

II. HARMONIC MIXING

We know from the literature of the 1970’s �1� that a
charged particle confined onto a nonlinear substrate is ca-
pable of mixing two alternating input electric fields of angu-
lar frequencies �1 and �2; its response is expected to contain
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harmonics of �1 and �2. As a result, for commensurate input
frequencies, i.e., m�1=n�2, the time dependent particle ve-
locity would contain a dc component, too. Such a phenom-
enon, termed in the later literature harmonic mixing, is a
rectification effect induced by the asymmetry of the applied
force. In view of general perturbation arguments, HM was
predicted to be of the �n+m�th order in the dynamical pa-
rameters of the system �2,3�. Lately, HM was reinterpreted as
a manifestation of the ratchet phenomenon �4,5�, even if no
substrate asymmetry is required to generate a HM signal.

More recently, the HM mechanism has been investigated
numerically as a tool to control the transport of interacting
particles in artificially engineered quasi-one-dimensional
channels �6,7�. An interesting variation of this problem has
been proposed in the context of soliton dynamics, where the
combination of two ac driving forces was proven to rectify
the motion of a kink-bearing chain owing to the inherent
nonlinearity of a traveling kink �8�.

Let us consider, for simplicity, the overdamped stochastic
dynamics �1� driven by the biharmonic force

F�t� = A1 cos��1t� + A2 cos��2t� �4�

with

V�x� = d�1 − cos x� �5�

and �2=2�1. A truncated continued fraction expansion �2�
led to conclude that in the regime of low temperature, d

D, the nonvanishing dc component �ẋ� of the particle ve-
locity would scale like

�ẋ�
D

� − � A1

2D
�2 A2

2D
. �6�

Quite surprisingly, this result suggests that for small drive
amplitudes and high substrate barriers, A1 ,A2�D�d, the
HM signal is negative and independent of d, at variance with
the numerical results reported in Fig. 1. Numerical simula-
tion runs for increasing d values reveal a resonant �ẋ�d��
curve. This is not unexpected as for d→0 �flattening sub-
strate� the zero-mean force �4�, with �F�t��=0, cannot sustain
a non-null drift current, whereas for d→
 �high substrate
barriers� the interwell activation mechanism gets exponen-
tially suppressed and the relevant drift current drops to zero.
[The conflicting sign in Eq. �6� is likely to be due to an
erroneous definition in Ref. �2�.]

The numerical dependence of �ẋ� on the amplitude of F�t�
is also more complicated than expected from the perturbation
estimate �6�. In Fig. 2 the time average of ẋ�t� is plotted
versus A	A1=A2 at different drive frequencies �2=2�1.
For low drive amplitudes the HM signal �ẋ� grows indeed
proportional to A3, as suggested by the scaling law �6�, but
only for a sufficiently high noise level D.

Moreover, Fig. 2 illustrates another interesting property of
rectification by HM: at relatively high ac frequencies �nona-
diabatic regime�, the curves �ẋ�A�� develop regular oscilla-
tions for A�1 with period and amplitude roughly propor-
tional to �1. The details of such a nonadiabatic mechanism
are explained in Ref. �9�: On setting A at increasingly high
values above the depinning threshold of V�x�, max
�V��x���

FIG. 1. �Color online� Transport via HM in the cosine potential
�5� for �1=�2, A1=A2, and �a� �2=2�1, �b� �2=4�1: �ẋ� versus d.
Simulation parameters: �1=0.01, D=0.2, and A1=0.2 �triangles�,
A1=0.4 �squares�, and A1=1.1 �circles�.

FIG. 2. �Color online� Transport via HM in the cosine potential
�5� for �1=�2, A1=A2, and �a� �2=2�1, �b� �2=4�1: �ẋ� versus
A1. Simulation parameters: �a� squares: �1=0.4, D=0.2; empty
circles: �1=0.8, D=0.2; triangles: �1=0.01, D=0.2; solid circles:
�1=0.05, D=0.4. Inset: squares: �1=0.4, D=0.2; empty circles:
�1=0.8, D=0.2; triangles: �1=0.4, D=0.1; �b� squares: �1=0.4,
D=0.2; circles: �1=0.1, D=0.2; triangles: �1=0.01, D=0.2. In
both panels d=1.
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=1, the number of substrate cells the driven particle crosses
during one half-cycle, increases by one unit, first to the right
and then to the left, thus causing one full �ẋ� oscillation at
regular A increments, �A, proportional to �1. Of course, in
the adiabatic limit, �1→0, these oscillations tend to disap-
pear with �A. Moreover, shortening the drive period or low-
ering the noise level for A�1 enhances the above modula-
tion effect �9�. Finally, on further increasing A the
cancellation of the right and the left drifts becomes more and
more efficient; as a result the envelope of the �ẋ� oscillations
in Fig. 2 decays seemingly inversely proportional to 
A.

An independent perturbation approach �3� led to the fol-
lowing scaling law for the rectification velocity of a Brown-
ian particle �1� in a cosine potential �5� subject to the har-
monic force �4� with �2=2�1

�ẋ�
�1

� � d

D
�2� A1

2�1
�2 A2

2�2
. �7�

This prediction, that applies under the conditions d��1
�D, reproduces at least qualitatively both the d→0
branches of Fig. 1 and the �1→
 tails of the curves �ẋ��1��
in Fig. 3. We leave the task of a quantitative assessment of
Eq. �7� for future simulation work. Here we limit ourselves
to remarking that for large commensurate drive frequencies,
i.e., �1=m�0 and �2=n�0 with �0→
, the HM signal
drops sharply to zero.

We now address two totally different drive regimes that
cannot be assimilated to the HM phenomenon introduced
above. Having in mind the drive force �4�, we consider the
limits:

�i�: �2→
 with �1 and A2 /�2 constant;
�ii�: �+→
 with �−, A1 /�1, and A2 /�2 constant.
Here we have introduced the shorthand notation �±

= 1
2 ��1±�2�. In �i� the frequency and the amplitude of one

harmonic component of F�t� are taken both large, but with
constant amplitude-to-frequency ratio; in �ii� the frequency
and the amplitude of both harmonic components are taken
large with constant amplitude-to-frequency ratios and, addi-
tionally, with constant beating frequency 2�−. The response
of system �1� to an external drive �4� in regime �i� or �ii� can
be well reproduced within Bleckman’s perturbation scheme,
or vibrational mechanics �10�, outlined in Sec. III. Corre-
spondingly, the ensuing frequency mixing effect discussed
below will be termed vibrational mixing.

III. THE VIBRATIONAL MECHANICS SCHEME

Let us consider the overdamped Brownian particle �1�
with F�t� and ��t� defined in Eqs. �2� and �3�, respectively.
The periodic substrate potential V�x� has period L=2� and
general form

V�x� = �
n=1




an cos�nx� + �
n=1




bn sin�nx� , �8�

for an appropriate choice of the Fourier coefficients 
an� and

bn�.

Let us consider for simplicity the regime �i� of Sec. II,
that is we assume that one component of F�t� is slow and the
other one is fast, say, �1��2; then, following the approach
of Refs. �11,12�, we can separate

x�t� → x�t� + 	�t� , �9�

where, in shorthand notation, from now on x�t� represents a
slowly time-modulated stochastic process and 	�t� is the par-
ticle free spatial oscillation

FIG. 4. �Color online� Mobility versus A2 /�2 in the dc case,
�1=0 and �1=0, for different D. The simulation data �dots� have
been obtained by integrating numerically the LE �1� with V�x�
given in Eq. �14� and parameter values: A1=0.23 and �2=0.1. The
solid curves represent the corresponding analytic prediction �11.51�
of Ref. �15� for the reduced LE �11�. Inset: amplitude �J0�A2 /�2�� of

V̄�x� �solid curve� compared with the static force A1.

FIG. 3. �Color online� Transport via HM in the cosine potential
�5� for �1=�2, A1=A2, and �a� �2=2�1, �b� �2=4�1: �ẋ� versus
�1. Simulation parameters: solid symbols: D=0.2; empty symbols:
D=0.4; triangles: A1=0.4; squares: A1=0.6; circles: A1=1.1; in
both panels d=1.
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	�t� = 	0 sin��2t + �2� �10�

with amplitude 	0=A2 /�2. On averaging out 	�t� over time,
the LE for the slow reduced spatial variable x�t� can be writ-
ten as

ẋ = − V̄��x� + A1 cos��1t + �1� + ��t� , �11�

where

V̄�x� = �
n=1




anJ0�n	0�cos�nx� + �
n=1




bnJ0�n	0�sin�nx� .

�12�

Here, we made use of the identities �sin�n	�t���t=0 and
�cos�n	�t���t=J0�n	0�, with J0�x� denoting the Bessel func-
tion of zero-order �13�—see also inset of Fig. 4—and ��¯��t

representing the time average of the argument �¯�.
This is an instance of the adiabatic elimination of a fast

oscillating observable �14�, 	�t�, with constant amplitude 	0.
As a result, the slow observable x�t� diffuses on an effective,

or renormalized potential V̄�x� driven by the slow harmonic

in Eq. �2�, alone. We remark that V̄�x� depends on the ratio
	0=A2 /�2, the amplitude of its nth Fourier component os-
cillating like �J0�n	0��. The adiabatic separation �9� for �1

��2 is tenable as long as the fast oscillation amplitudes are
clearly distinguishable with respect to the corresponding
Brownian diffusion �14�, that is �	�t�2�t=

1
2	0

2
2Dt2 with
t2=2� /�2 or, equivalently

D �
A2

8�
� A2

�2
� . �13�

In the limit �2→
 at constant A2 /�2, the approximate LE
�11� is expected to be very accurate, regardless of the value
of D.

We discuss now a simple application of the vibrational
mechanics scheme in the presence of a dc drive, i.e., �1=0
and �1=0. The simplest choice for the substrate potential is

V�x� = cos x , �14�

corresponding to setting a1=1 and all the remaining Fourier
coefficients an ,bn to zero. The reduced problem �11� and �12�
describes the Brownian diffusion in a washboard potential
with variable tilt A1 �15�.

The observable that best quantifies the response of such a
system to the dc input A1 is the mobility �	�ẋ� /A1. In Fig.
4 we compare the simulation data for the full dynamics
�1�–�3� against the analytic predictions for the static limit of
the LEs �11� and �12� �i.e., when �1=0, �1=0� at increasing
ratios A2 /�2 of the ac component of F�t�. The solid curves
on display have been obtained by computing the analytic
expression �11.51� of Ref. �15� for �. The agreement be-
tween simulation and theory is surprisingly close even for
noise intensities above our threshold of confidence �13�.

The dependence of the system mobility on the high-
frequency input signal is remarkable:

�1� The curves ��A2 /�2� exhibit apparent oscillations
with maxima at �=1. These peaks clearly correspond to val-

ues of 	0=A2 /�2 for which the amplitude of V̄�x�
=J0�	0�cos x vanishes—see inset of Fig. 4;

�2� For D=0 one can apply Eq. �11.54� of Ref. �15� to
predict �=
1− �J0�A2 /�2� /A1�2 for A1�J0�A2 /�2�, and �
=0 otherwise. As a consequence, the mobility curve can de-
velop a number of reentrant peaks, one for each side peak of
�J0�A2 /�2�� higher than A1 �three in Fig. 4; the peak at zero
does not count�;

�3� At finite noise intensities, � is positive definite for any
A2 /�2; the mobility peaks are located as in the noiseless
case, but grow less and less sharp as D increases;

�4� The reduced LEs �11� and �12� holds good for A1=0,
too. This implies that, for an appropriate choice of 	0, a
high-frequency sinusoidal drive A2 cos��2t+�2� can neutral-

ize the effective substrate potential V̄�x�. Explicit numerical
simulations �not shown� substantiate this claim. For instance,
the time-averaged probability density P�x� of the stochastic
process �1�, �3�, and �14� flattens out for 	0 approaching a
zero of the Bessel function J0�	0�.

Properties �1�–�4� fully establish the asymptotic regime
�2→
 at constant A2 /�2 for the dynamics �1�.

IV. ROCKED VIBRATIONAL RATCHETS

We consider now a more complicated example that falls
under the category of the rocked ratchets �16�. The motion of
a Brownian particle on an asymmetric substrate gets rectified
when driven by a time-correlated force, either stochastic or
periodic �4�. Let the Fourier coefficients of the expansion �8�
all be zero but b1=−1 and b2=− 1

4 , i.e.,

V�x� = − sin x − 1
4 sin 2x . �15�

The corresponding LE �1� describes a doubly rocked ratchet
�7�. For arbitrary input frequencies �1, �2, the rectified cur-
rent of the system is known to exhibit marked commensura-
tion effects and a complicated dependence on the noise in-
tensity and all forcing parameters �7,17�. We claim here that
a well defined adiabatic limit exists for �1→0 and �2→

with A2 /�2 constant, as suggested by the separation scheme
�9�. Following the notation of Refs. �11,12�, we term a
rocked ratchet operated under such conditions a rocked vi-
brational ratchet �VR�.

The results of our simulation work are summarized in
Figs. 5 and 6. To explain the persistent oscillations of the
curves ��A2 /�2�, we write down explicitly the renormalized
potential, i.e.

V̄�x� = − J0�	0�sin x − 1
4J0�2	0�sin 2x . �16�

As long as our adiabatic elimination procedure applies, the
ratchet current j= �ẋ� /2� vanishes in correspondence of the
zeros of either Bessel function in Eq. �16�, due to the re-
stored symmetry of the effective substrate. On denoting by jn
the nth zero of J0�x�, one predicts the following sequence of
mobility zeros:
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A2

�2
=

1

2
j1, j1,

1

2
j2,

1

2
j3, j2,

1

2
j4,

1

2
j5, j3, . . . �17�

with j1=2.405, j2=5.520, j3=8.654, j4=11.79, j5=14.93,
etc. �13�.

As shown in Fig. 5, the sequence �17� reproduces very
closely the zero crossings of our simulation curves for small
noise intensities; for D=0.06 we could locate correctly over
20 zeros of the curve ��A2 /�2�. In our derivation of the
effective potential �16� we cautioned that discrepancies may
occur for D above the confidence threshold �13�; the devia-
tions observed in the bottom inset of Fig. 5 invalidate our
approximation scheme only for D�1. The amplitudes of the

large ��A2 /�2� oscillations decay like �A2 /�2�− 1
2 as ex-

pected after noticing that the modulus of J0�x� vanishes as-
ymptotically like 
2/�x for x→
 �13�.

Not all zeros of the sequence �17� mark an inversion of
the ratchet current. For instance, for A2 /�2�

1
2 j1 the current

in the effective ratchet potential, �11� and �16�, is certainly
positive in the low �1 frequency regime �16�; for 1

2 j1
�A2 /�2� j1, the coefficient of sin 2x changes sign and so
does the ratchet polarity �and current�; on further increasing
A2 /�2 larger than j1, the sign of both Fourier coefficients
�16� get reversed with respect to �15�: this is equivalent to
turning V�x� upside-down �beside slightly remodulating its

profile�, so that the polarity of V̄�x� stays negative. Following
this line of reasoning one predicts double zeros �i.e., no cur-
rent inversions� at 	0= j1 , j2 , j3 , j4 , . . . .

In the low frequency regime, �1�1, the reduced ratchet
dynamics, �11� and �16�, can be treated adiabatically. Its mo-
bility can be computed analytically by time averaging Eq.
�11.44� of Ref. �15� over one forcing cycle t1=2� /�1. In
Fig. 6 the analytic curves for ��A2 /�2� fit very closely our
simulation data �dots of the same color� at low noise, no
matter what the amplitude A1 of the slow harmonic in �2�. In
the bottom inset of Fig. 6 deviations from the low frequency
curve become visible for �1�0.1: this does not imply that
the projection scheme leading to the reduced LEs �11� and
�12� fails on increasing �1 with �1��2, but rather that the
adiabatic treatment of the reduced LE becomes untenable.
This conclusion is corroborated by the fact that the mobility
zeros �and signs� of the curves both in the main panel and in
the bottom inset of Fig. 6 are independent of either param-
eters A1 and �1 of the low-frequency component.

Figure 6 illustrates another important VR property. In the
presence of the high-frequency harmonic, alone, A1=0 and
�2
1, the simulated net current is vanishingly small �tri-
angles in the main panel�. In the absence of fast oscillations,
A2=0, instead, the curve ��0� versus A1 is well reproduced
by the adiabatic limit �1�1 �16� �Fig. 6, top inset�. On
comparison, one notices that, for relatively small A1, the am-
plitude of the ��A2 /�2� oscillations can grow notably larger
than the corresponding ��0�. This means that energy pumped
into the system at too high a frequency gets dissipated into
the heat bath, if the system is operated at equilibrium; vice
versa the nonlinear nature of the system induces a coopera-
tive coupling between high-frequency disturbances and opti-
mal drives, thus enhancing the system response beyond the
expectations of the linear response theory.

V. PULSATED VIBRATIONAL RATCHETS

We study now the process �1�–�3� in the regime �ii�, i.e.,
for �1 ,�2→
 with ��2−�1�, 	1	A1 /�1, and 	2	A2 /�2
constant. In order to simplify the algebraic passages below,
we set �1=�2, like in the simulations of Figs. 7–9.

Simple trigonometric manipulations lead to the following
expression for the driven free-particle oscillations

	�t� = �	1 + 	2�sin��+t�cos��−t�

+ �	1 − 	2�cos��+t�sin��−t� , �18�

with

FIG. 5. �Color online� Mobility versus A2 /�2 for the doubly
rocked ratchet �1� and �15� with A1=0.5, �1=0.01, �1=�2=0, and
different values of the noise intensity D. All simulation data have
been obtained for �2=10, but the black crosses where we set D
=0.12 and �2=20. Bottom inset: simulation data for ��A2 /�2� as
in the main panel with an additional curve at D=0.6. Top inset: �
versus D for A2=0, A1=0.5, and �1=0.01; circles: simulation data;
solid curve: adiabatic formula �11.44� of Ref. �15�.

FIG. 6. �Color online� Mobility versus A2 /�2 for the doubly
rocked ratchet �1� and �15� with D=0.12, �1=0.01, �2=10, �1

=�2=0, and different values of A1. Top inset: � versus A1 for A2

=0, D=0.12, and �1=0.01; circles: simulation; solid curves: adia-
batic approximation �11.44� of Ref. �15�. Bottom inset: � versus
A2 /�2 for the for the doubly rocked ratchet �1� and �15� with A1

=0.5, D=0.12, �2=10, �1=�2=0, and different �1.
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	1 ± 	2 =
�+�A1 ± A2� − �−�A1 � A2�

�+
2 − �−

2 . �19�

The parameter range relevant to the discussion of our simu-
lation results is

A1 + A2

�+

 �A1 − A2

�−
� ,

so that

	1 + 	2 �
A1 + A2

�+
�20�

and

	1 − 	2 � −
�−

�+
2 �A1 + A2� , �21�

with 	1−	2 negligible with respect to 	1+	2.
On applying the vibrational mechanics scheme of Sec. III,

the effective LE for the reduced spatial variable x�t� now
reads

ẋ = − V̄��x,t� + ��t� , �22�

where

V̄�x,t� = �
n=1




J0�n
A1 + A2

�+
cos��−t���an cos�nx� + bn sin�nx�� .

�23�

Here we made use of the fact that ��−���+, so that the
time average �cos�n	�t���t could be taken over one fast os-
cillation cycle T+=2� /�+, while the slow amplitude modu-
lation of period T−=2� / ��−� was handled as an adiabatic
perturbation.

The effect of the biharmonic drive F�t� on the substrate
potential is twofold:

�1� The overall amplitude of the periodic function V̄�x� is
modulated in time, which is equivalent to periodically modu-
lating the noise intensity D. This condition is reminiscent of
the so-called temperature ratchets �18� discussed at length in
Ref. �4�;

�2� Since the argument of the Bessel functions in Eq. �23�
depends on the index n, the Fourier coefficients of V̄�x� are
distinctly modulated in time; as a consequence, their relative
weights change in time and so does the profile of V̄�x�.

Separating �sure, rather arbitrarily� the two time depen-
dencies �1� and �2� of V̄�x� helps us explain the simulation
results of Figs. 7–9 obtained for the asymmetric potential
�15�.

Figures 7 and 8 illustrate the most interesting feature of
this class of VR, namely the inversion from positive to nega-
tive current that takes place for �+
 ��−�. We recall that the
positive orientation of �ẋ� corresponds to the normal polarity
of a ratchet �15� slowly rocked by a harmonic drive, whereas
the negative orientation is to be expected when the same
device is being operated in the pulsated mode �like for an
adiabatic temperature ratchet �18��. This is why we term re-
gime �ii� of the process �1�–�3� pulsated VR.

Note that the pulsated VR of Figs. 7 and 8 are operated
for values of �− and �+ such that the HM mechanism plays
no significant role, being the HM spikes confined to values
of �+ much closer to ��−� �as shown in Fig. 9�.

The current inversions in the adiabatic regime �+
 ��−�
can be explained by looking at the time-dependent effective
potential

FIG. 8. �Color online� Transport in a VR �1� and �15� with A1

=A2=0.5, �−=0.01, �1=�2=0, and different values of D: �ẋ� ver-
sus �+.

FIG. 9. �Color online� From harmonic to vibrational mixing: �ẋ�
versus �+ in the bi-harmonically rocked ratchet �15� with A1=A2

=0.5, �1=�2=0, and different values of �−=0.01 and D. Spikes
appear in correspondence with rational values of �2 /�1, i.e., for
commensurate harmonic drives.

FIG. 7. �Color online� Transport in a VR �1� and �15� with D
=0.06, �−=0.01, �1=�2=0, and different values of A1=A2: �ẋ�
versus �+.
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V̄�x,t� = − J0� 2A

�+
cos��−t��sin�x�

−
1

4
J0� 4A

�+
cos��−t��sin�2x� , �24�

associated with the substrate potential V�x� of Eq. �15�. Here
we set �1=�2 and A1=A2	A to make contact with the
simulation conditions of Figs. 7 and 8. For �4A /�+�� j1, i.e.,
for �+��+

* with �+
* =4A / j1, both Fourier coefficients in Eq.

�24� retain their �negative� sign at any time t; V̄�x , t� does not
change polarity and the overall effect of the adiabatic modu-
lation with period T− amounts to pulsating the amplitude of
the effective potential �or, equivalently, the noise level �18��
with the same period. As a consequence, �ẋ� is predicted to
change sign from positive for �+��+

* to negative for �+
��+

*. No more current reversals are expected for higher �+;
as usual in the ratchet phenomenology, �ẋ� tends to zero for
�+→
.

In the actual simulation, see, e.g., Figs. 7 and 8, these
current inversions seem to take place for �+ slightly smaller
than �+

*. This is due to the fact that at �+=�+
* the second

coefficient of Eq. �24� is negative over the entire averaging
cycle T−, but for t=mT− with m=0,1 ,2 , . . ., where it van-
ishes. This means that the average �ẋ� is still negative at
�+=�+

* and vanishes only for lower �but not too lower� �+
values, in strict sense, �+

* is only an upper bound to the
crossover frequency. This argument applies as long as con-
dition �13� holds; that is not the case of A1=0.3 in Fig. 7 and
D=1.0 in Fig. 8.

Finally, we note that the dependence of �ẋ� on the noise
intensity D exhibits the resonant behavior peculiar to most
ratchet currents �4�. This happens both for positive and nega-
tive rectification currents �see Fig. 8�.

VI. CONCLUDING REMARKS

The robustness of the effects simulated here hints at the
possibility of implementing this concept in the design and
operation of efficient electromagnetic �e.m.� wave sensors.
As a matter of fact, the present investigation has been in-
spired by a typical signal detection problem �19�, namely
how to reveal a high frequency signal by means of a sensor
with optimal sensitivity in a relatively low frequency band.
All cases discussed in Secs. III–V suggest a simple recipe:
Although the unknown high-frequency signal alone cannot
be detected, adding a tunable control signal with parameters

within the device sensitivity range causes a nonlinear transfer
of energy �information� from high to low frequencies, thus
enhancing and/or modulating the sensor response to the con-
trol signal. By analyzing the dependence of the device output
on the tunable input signal, we can reveal the existence of
unknown �and otherwise undetectable� high-frequency sig-
nals. Note that in the simulations of Figs. 5 and 6 the input
frequencies �1 and �2 differ by four orders of magnitude or
more, whereas the response function � can be sensitive to
forced output oscillation amplitudes 	0 as small as the device
substrate unit length L. In the simulations of Figs. 7 and 8
instead, the ratchet currents are controlled by beating fre-
quencies ��2−�1� two �or more� orders of magnitude
smaller than the carrier frequency 1

2 ��1+�2�.
As a further application we suggest that the mechanism of

frequency coupling studied here can impact our assessment
of the health hazards associated with electropollution �20�.
While high-frequency �nonionizing� e.m. radiation is likely
to be harmless at the small length scales of sensitive biomol-
ecules, like the DNA helix �21�, still it can affect physiologi-
cal processes at the cell level. Not only high-frequency e.m.
waves heat up the biological tissues, but in view of the
present report, such radiation can interfere with the much
lower-frequency electrochemical control signals that regulate
the ion transport across cell membranes or the information
transfer and processing through neuron networks and sensory
nerves. In conclusion, our results corroborate the recent shift
of the biomedical research focus from structural �and irre-
versible� to functional �and possibly reversible� biological
damages �22� caused by electropollution.

Finally, we mention another potential extension of the vi-
brational mechanics scheme of Sec. III. In a forthcoming
paper we study the inertial effects of the LE

ẍ = − �ẋ − V��x� + F�t� + ��t� �25�

with F�t� and ��t� defined in Sec. I and D	�kT. Here we
limit ourselves to anticipating that the vibrational mechanics
scheme of Sec. II still applies upon replacing 	0=A2 /�2
with

	0 → 	� =
	0


�2 + �2
2

. �26�

As a consequence, �ẋ� depends on both 	0 and �2, which
suggests the design of highly sensitive devices capable of
separating the components of a multispecies mixture accord-
ing to the different particle masses.
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