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We study the dynamics of three particles in a finite interval, in which two light particles are separated by a
heavy “piston,” with elastic collisions between particles but inelastic collisions between the light particles and
the interval ends. A symmetry breaking occurs in which the piston migrates near one end of the interval and
performs small-amplitude periodic oscillations on a logarithmic time scale. The properties of this dissipative
limit cycle can be understood simply in terms of a effective restitution coefficient picture. Many dynamical
features of the three-particle system closely resemble those of the many-body inelastic piston problem.
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I. INTRODUCTION

In the preceding paper, denoted as HR �1�, we discussed
the collision dynamics of an elastic three-particle system on
a finite interval that consists of a massive particle—a
piston—that separates two lighter particles. The motivation
for studying this idealized system was to shed light on the
enigmatic piston problem �2�, where a gas-filled container is
divided into two compartments by a heavy but freely moving
piston. When the gases in each compartment have different
initial thermodynamic states and when the piston moves
without friction, the approach to equilibrium is unexpectedly
complex and still incompletely understood �3–6�.

As discussed in HR, some of the rich phenomenology of
the piston problem can be captured by the much simpler
three-particle system in a finite interval. To understand the
evolution of the latter system, it proved convenient to map
the trajectories of the three particles on the line onto an
equivalent elastic billiard particle that moves within a highly
skewed tetrahedral region, with the specular reflection when-
ever the billiard hits the tetrahedron boundaries �7–11�. From
this simple geometrical mapping, we deduced several
anomalous dynamical properties of the three-particle system,
such as the power-law distribution of time intervals for the
piston to make successive crossings of the interval midpoint.

In the inelastic piston problem, the collisions between the
constituent particles in the gas are inelastic, so that each gas
undergoes inelastic collapse if either the number of particles
is sufficiently large or the restitution coefficient is suffi-
ciently small. Recent work by Brito et al. �12� has again
discovered surprisingly rich dynamics, very different in char-
acter from the elastic case, in which one of the gases cools
more quickly and gets compressed into a solid by the piston.
An even stranger feature is that this compression is not
monotonic, but rather the piston has superimposed oscilla-
tions whose period grows exponentially with time. Thus the

cooling of the inelastic piston problem is much richer than
that of the classical inelastic gas problem �13�.

Given the complex behavior exhibited by the many-body
piston system, we are again led to investigate a simpler al-
ternative: a three-particle system in the unit interval that con-
tains a heavy piston that lies between two light particles.
Collisions between light particles and the ends of the interval
�henceforth termed walls� are inelastic, to mimic the many-
particle piston problem when the gases are inelastic, while
the collisions between the particles and the piston are elastic.

When the light particles have the same initial energy but
nonsymmetric positions, one light particle loses energy more
quickly than the other. As a consequence, the piston migrates
to the wall that is closer to the cooler light particle. Some-
what unexpectedly, a typical system eventually falls into a
periodic state on a logarithmic time scale where the piston
undergoes small-amplitude oscillations near one wall with a
constant period in ln t, while the light particles undergo
complementary oscillatory motions. We term this phenom-
enon as the log-periodic state. Another intriguing aspect of
the three-particle system is that it closely mirrors the time
evolution in the many-particle inelastic piston system �12�.
Thus we are able to understand features of the many-body
problem in terms of simple physical pictures that arise from
studying the three-particle system on the interval.

In the next section, we describe the two basic dynamical
features of the three-particle system, namely, the initial sym-
metry breaking and the log-periodic state. We then give a
macroscopic description of the collapse process and the sub-
sequent oscillatory motion of the piston in Sec. III. Finally,
in Sec. IV, we develop an effective restitution coefficient
description for the particle collisions that accounts for many
of our observations. Various calculational details are given in
an appendix.

II. BASIC PHENOMENOLOGY

A. Symmetry breaking

For the many-body system in which the gases on either
side of the piston are inelastic and have identical macro-
scopic initial conditions, Brito et al. �12� found an instability
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in which one of the gases cools more rapidly and the piston
ultimately compresses the cooler gas into a solid. While such
an instability seems intuitively plausible, an unexpected fea-
ture is that the piston moves nonmonotonically during this
cooling, with regular oscillations that are periodic on a loga-
rithmic time scale. In this section, we show that much of this
phenomenology also arises in the idealized three-particle
system on the unit interval.

The particles are located at x1, x2, and x3, with 0�x1
�x2�x3�1. The light particles, with masses m1=m3=1 and
locations x1 and x3, collide elastically with a massive piston
with mass m2�1 at x2 and inelastically with the walls. Thus
a light particle that hits a wall with speed v=�2E is reflected
with speed rv, where r� �0,1� is the restitution coefficient.
The energy change in this collision is �E=−E�1−r2��0.

Figure 1 shows a representative result for the piston
position x2�t� versus t on a logarithmic scale for
the case m2=100 and r=0.9. The initial velocities are
(v1�0� ,v2�0� ,v3�0�)= �1,0 ,−1� so that two light particles
approach the piston with equal and opposite velocities. Thus
the system initially has zero momentum and total energy
E=1. The initial positions of the light particles were chosen
uniformly in �0,1 /2� and in �1/2 ,1�; for the example of
Fig. 1, (x1�0� ,x2�0� ,x3�0�)= �0.083 25,0.5,0.862 83�. As a
result, the first collision is between the piston and particle 3.
This small initial asymmetry eventually drives the piston
from oscillations about x2=1/2 to the nonsymmetric long-
time behavior depicted in Fig. 1. It bears emphasizing that
the phenomenology of the three-particle system up to ap-
proximately 105 time steps is qualitatively similar to that of
the many-particle inelastic piston problem �12�.

In the long-time limit, the piston migrates close to one of
the walls. Which of the two walls is selected is determined
by the identity of the first collision. When the piston is ini-
tially located at x2=1/2 and the two particles approach with
equal and opposite velocities, the piston is driven to the right
wall if the first collision occurs with its right neighbor and

vice versa. The light particle that first hits the piston then
collides earliest with the wall and begins cooling earlier. This
fact leads to the piston eventually compressing the particle
that experiences the first collision with a wall.

B. The log-periodic state

Numerically, we find that the three-particle system as-
ymptotically falls into a log-periodic state—where the piston
undergoes small-amplitude oscillations with a constant pe-
riod in ln t—for almost all initial conditions. In this state, one
of the light particles is trapped in a small gap between the
piston and the wall �Fig. 2�, while the other light particle has
most of the energy and travels over almost the entire interval.

During these oscillations, the light particle that is com-
pressed by the piston performs a sequence of violent rattlings
each time the piston approaches and eventually is reflected
by the nearer wall �top panel in Fig. 2�. The piston then
collides with the other light particle whose energy is nearly
equal to that of the entire system and whose momentum is
comparable in magnitude to that of the piston. After this
collision, the piston is reflected back toward the nearer wall
and the rattling sequence with the trapped light particle be-
gins anew.

Generally this long-time state has a one-cycle periodicity
in which the position of the piston recurs at each maximum
of its oscillation cycle �Fig. 2�. However, for piston mass m2
less that a r-dependent threshold mass �t�r�, we empirically
find that the asymptotic state can be a two-cycle, three-cycle,
etc., with lower cycles more likely to occur than high cycles.
Conversely, for m2 greater than an upper threshold

�c�r� =
�1 + r��1 + r + 4�r� + 4r

�1 − r�2 , �1�

inelastic collapse occurs, where the piston ultimately sticks
to a wall �see the Appendix for the derivation of �c�. For the
purposes of the present discussion, we are interested in the

FIG. 1. �Color online� Piston position x2�t� versus t on a loga-
rithmic time scale for m2=100 and r=0.9. The solid curve is the
simulation result while the dashed curve is the prediction from the
macroscopic equations of motion, Eqs. �3�–�5�.

FIG. 2. �Color online� Magnification of the long-time evolution
in Fig. 1. Bottom: The log-periodic state. Top: Detail of a “rattling”
collision sequence between the piston and the trapped light particle.
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case where m2 is in the range ��t�r� ,�c�r�� so that the system
falls into a one-cycle log-periodic state.

This state may be characterized by the relaxation time
��m2 ,r� until the piston settles into the log-periodic motion
and the amplitude, A�m2 ,r�, and period on a logarithmic
time scale, ��m2 ,r�, of the ensuing oscillations. The latter is
defined via tk+1=e�tk, where tk and tk+1 are the times for two
consecutive maxima of x2�t� in the final state �bottom panel
in Fig. 2�.

Figure 3 shows the relaxation time � as a function of m2
for m2 in the range ��t ,�c� for representative values of r. We
expect that the oscillatory regime is reached more quickly for
larger m2 since energy is more quickly dissipated when the
piston is heavier, as confirmed by the data. We also find that
� decays exponentially with m2, that is, ��exp�−m2 /��r��,
with a characteristic mass scale ��r� that is nearly equal to
the threshold mass �t�r�. Both � and �t numerically scale as
�1−r�−� for r close to 1, with ��2.1. This is slightly larger
than the anticipated exponent value of 2 that is based on the
hypothesis that there should be only one characteristic mass
that scales as �c��1−r�−2 in the limit r→1 from Eq. �1�.
We attribute the discrepancy in � to corrections to scaling;
the largest restitution coefficient r=0.95 that is practical to
study is still not very close to 1.

When the piston is in the log-periodic state, the amplitude
A is a monotonically decreasing function of m2 and vanishes
as m2→�c�r�, signaling the onset of inelastic collapse �Fig.
4�. The logarithmic period of the oscillations � �not shown�
scales approximately as ��m2 ,r���1−r� and depends
weakly on m2.

Because these three characteristics of the oscillations—�,
A, and �—seem to be governed by the same mass scale, we
anticipate that data collapse will occur. Empirically, we find
that these quantities are consistent with the scaling forms

��m2,r� � �1 − r�−	
��m2�1 − r��� ,

A�m2,r� � �1 − r��
A�m2�1 − r��� ,

��m2,r� � �1 − r�
��m2�1 − r��� , �2�

with ��2.1. Additionally, 	�2.6 is an apparently indepen-
dent exponent that characterizes the relaxation time �, while

� , 
A, and 
� are scaling functions. The insets to Figs. 3
and 4 show that the data collapse for � and A is quite good.

Although the asymptotic state of the system is periodic on
a logarithmic time scale, we emphasize that the total energy
of the system, E�t�, continues to dissipate due to inelastic
collisions with the walls. At a coarse-grained level, we re-
cover Haff’s law �14� E�t�� t−2 �upper curve in Fig. 5�, as
expected. Notice that for the specific example being studied
�in which the piston compresses particle 3�, E�t��E1�t�. At a

FIG. 3. �Color online� Plot of � as a function of m2 on a semi-
logarithmic scale, for restitution coefficients r=0.875, 0.8875, 0.9,
0.9125, 0.925, 0.9375, and 0.95 �bottom to top�. The inset shows
the data collapse of � for different values of r using �=2.1 and
	=2.6.

FIG. 4. �Color online� The amplitude of the log-periodic oscil-
lations, A, as a function of the piston mass on a semilogarithmic
scale for the same r values as in Fig. 3 �data shifting to the right for
increasing r�. The curves are the predictions from Eq. �12�, based
on an effective restitution coefficient picture �see text�. Inset: Data
collapse of A for different values of r and �=2.1.

FIG. 5. �Color online� Energy of each particle as a function of
time on a double logarithmic scale for the system depicted in Fig. 1.
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finer time scale, however, E�t� undergoes a sequence of steps
and almost constant plateaus. The largest drop in energy oc-
curs when the more energetic light particle collides with the
wall, while the rattling dynamics between the piston and the
other light particle leads to a small decrease in the energy of
the system.

III. MACROSCOPIC DESCRIPTION

We can understand the initial instability of the piston in
terms of macroscopic equations of motion �12,14�. The mac-
roscopic approach given here ostensibly applies for any
value of the restitution coefficient r for fixed piston mass m2,
or equivalently for any m2 for fixed r. In particular, this
approach correctly describes the initial instability of the in-
elastic piston for any value of the parameters r and m2. The
only feature that the macroscopic approach fails to describe
is the final state for piston masses below the critical mass,
m2��c.

According to the macroscopic description, the energies of
the light particles change in time by two processes. First, the
energy decreases due to inelastic collisions with the walls.
This cooling is macroscopically described by Haff’s law, in
which the energy change is proportional to the particle en-
ergy and the number of collisions per unit time. Thus
dEi�t��coll=−Ei�t��1−r2�ncoll�t�dt, with i=1,3. The collision
rate may be approximated by ncoll�t���2Ei�t� /�i�t�, where
�2Ei�t� is the thermal velocity and �i�t� is the length of the
region available for particle i; thus �1�t�=x2�t� and �3�t�=1
−x2�t�. On the other hand, the energies of the light particles
also change because of compression or expansion by the pis-
ton. The macroscopic equation describing this process is
dEi�t��piston=−Pid�i, i=1,3, where Pi is the pressure exerted
on particle i, and d�i is the length change

Assuming the ideal gas law Pi=Ti /�i �Boltzmann’s con-
stant is set to 1�, and writing Ti=2Ei, we obtain

dE1

dt
= − 2E1

v2

x2
− �2�1 − r2�

E1
3/2

x2
, �3�

dE3

dt
= 2E3

v2

1 − x2
− �2�1 − r2�

E3
3/2

1 − x2
. �4�

This is essentially the approach of Haff �14� for the inelastic
gas, and it was also adopted for the inelastic many-particle
piston problem of Brito et al. �12�. The force exerted on the
piston is given by the pressure difference, P1− P2, so that the
macroscopic equation of motion for the piston is

m2
d2x2

dt2 =
2E1

x2
−

2E3

1 − x2
. �5�

Equations �3�–�5� describe the evolution of the three-particle
system on a coarse-grained time scale and they are the ana-
logs of the equations derived in Ref. �12� for the many-body
inelastic piston problem.

A particular solution to these macroscopic equations is
symmetric cooling of both light particles, E1�t�=E3�t�
=E0�1+�2E0�1−r2�t�−2, with E0 the initial light particle en-

ergy, while the piston remains at x2�t�=1/2. However, linear
perturbation analysis shows that any small disturbance from
symmetry grows and the piston is driven toward one of the
walls, with an oscillatory modulation that is periodic on
logarithmic time scale �12�.

A typical piston trajectory that is obtained by numerically
solving Eqs. �3�–�5� with a slightly asymmetrical state is
shown in Fig. 1. The numerical solution to the macroscopic
equations and the simulation results for the three-particle
system are extremely close over the time range 103� t
�105. However, after approximately 105 time steps �for the
case m2=100 and r=0.9�, the macroscopic equations predict
that inelastic collapse occurs, after which the piston sticks to
one of the walls �12�. In contrast, for the three-particle sys-
tem, the piston localizes near one wall but continues to un-
dergo small-amplitude, nearly regular oscillations on a loga-
rithmic time scale �Fig. 2�.

To help understand this discrepancy between the macro-
scopic approach and the simulations results for the three-
particle system in the long-time limit, it is helpful to recon-
sider the elastic case r=1. Here Eqs. �3� and �4� can be
immediately integrated, and substituting the results of these
integrations into �5� gives

m2
d2x2

dt2 =
A1

x2
3 −

A3

�1 − x2�3 ,

where A1,3 are constants. This equation of motion describes
the oscillations of a particle in the effective potential well
Veff�x�= 1

2 �A1x−2+A3�1−x�−2�. This effective potential can be
derived rigorously in the limit m2→� �see �15� and also the
Appendix of HR�. Thus the long-time extreme excursions in
the elastic system, which are not described by the effective
potential, appear to stem from the finiteness of the piston
mass.

By analogy, we anticipate that the macroscopic equations
�3�–�5� should describe the final state for the inelastic piston
in the m2→� limit. On the other hand, the log-periodic state
emerges only when the piston mass is finite. This feature
seems to play a parallel role as in the elastic system, in that
departures from the predictions of the macroscopic equation
arise only when the piston mass is finite.

IV. EFFECTIVE RESTITUTION COEFFICIENT

To understand the properties of the log-periodic oscilla-
tions, we map the three-particle system onto an equivalent
two-particle system, from which the basic characteristics of
the log-periodic state follow. The first step is to determine
the net effect of the sequence of rattling collisions between
the piston and a light particle as the piston approaches a wall
and is ultimately reflected. We show in the Appendix that this
collision sequence is equivalent to a one-body problem in
which the piston is reflected from the wall with an effective
restitution coefficient reff�m2 ,r� that is smaller than the bare
restitution coefficient r.

Next, we exploit the symmetry breaking, in which the
piston localizes near one wall, to reduce the initial three-
body problem into an effective two-body problem that con-
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sists of the piston and one light particle. In this reduced
system, the piston collides inelastically with the wall with
restitution coefficient reff, while the light particle collides
elastically with the piston and inelastically with the other
wall with restitution coefficient r �Fig. 6�. Using this equiva-
lence, we will determine the properties of the log-periodic
state.

For the initial step of determining the effective restitution
coefficient as a function of r and m2, the calculational details
are given in the Appendix and the final result for reff�m2 ,r� is
quoted in Eq. �A12�. As shown in Fig. 7, reff decreases as r
decreases and goes to zero as r approaches a critical value
rc�m2�, quoted in Eq. �A7�, that signals inelastic collapse.
When r�rc, the effective restitution coefficient is zero, and
the result of the rattlings between the piston and the inter-
vening light particle is inelastic collapse. For fixed r, notice
also that reff decreases rapidly as m2 is increased.

With this effective restitution coefficient equivalence, we
now reduce the original three-particle system to the equiva-
lent two-particle system. Without loss of generality, we as-
sume that the piston is close to the wall at x=1. The effective
system then consists of a light particle at x1 and the piston at
x2, with 0�x1�x2�1. For sufficiently large piston mass,
the sequence of collisions consists of: �i� the piston making

an effective collision with the wall with restitution coeffi-
cient reff, �ii� the second light particle undergoing a bare
inelastic collision with the other wall, and �iii� an elastic
particle-piston collision, with each of these steps being non-
overlapping. From the collision rules for each of these steps
�see Eqs. �A1� and �A2��, the new velocities after each such
collision sequence are given in terms of the incoming veloci-
ties by

	v1�

v2�

 =�

m2 − 1

M
r −

2m2

M
reff

−
2

M
r −

m2 − 1

M
reff
�	v1

v2

 
 Lv, �6�

where M =1+m2, and v1 ,v1��0 and v2 ,v2��0. The velocity
vector after n such cycles is v�n�=Lnv. Diagonalizing L, we
find �see the Appendix�

v1
�n� =


+
n�
− − a� − 
−

n�
+ − a�

− − 
+

v1 +
b�
−

n − 
+
n�


− − 
+
v2, �7�

v2
�n� =

�
+
n − 
−

n��
+ − a��
− − a�
b�
− − 
+�

v1

+

−

n�
− − a� − 
+
n�
+ − a�


− − 
+
v2, �8�

where a=r�m2−1� /M and b=−2reffm2 /M are the elements
in the first row of L, and 
± are the eigenvalues of matrix L,


± =
m2 − 1

2M
�r − reff�	1 ±�1 +

4rreffM
2

�m2 − 1�2�r − reff�2
 .

�9�

Both eigenvalues are real, with 
−�0, 
+�0, and �
− �
� �
+ � �1.

We test this effective description of the collision dynamics
by comparing the exact piston trajectory in the three-particle
system for a given m2 and r with the piston trajectory in the
reduced two-particle system. After shifting the effective tra-
jectory by an overall phase factor, both systems have visually
indistinguishable periodic behavior, thus confirming the va-
lidity of the coarse-grained approach.

We now determine the relation that v1
�n� and v2

�n� must
satisfy for the effective two-particle system to be in a log-
periodic state. For such a periodicity, successive collisions
between particle 1 and the piston must occur at the same
position x0 for all n. Thus the time �ti

�n� for particle i to go
from x0 to its respective wall and return to x0 in the nth cycle
must be the same for both particles. That is,

�t1
�n� =

x0

�v1
�n��

1 + r

r
= �t2

�n� =
1 − x0

�v2
�n��

1 + reff

reff

 �t�n�.

Thus

FIG. 6. Schematic space-time diagram of the particle trajectories
in the log-periodic state �left� and the effective trajectories �right�.

FIG. 7. �Color online� The effective restitution coefficient as a
function of r for piston masses m2=2, 5, 10, 30, 100, and 1000. The
initial velocities are �v1 ,v2�= �0,−1�. The curves are the theoretical
predictions from Eq. �A12�, and the symbols correspond to simula-
tion results.
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�v2
�n��

�v1
�n��

=
1 − x0

x0

r�1 + reff�
reff�1 + r�

�10�

is a constant that is independent of n in the log-periodic
state. Therefore �v2

�n+1��� �v1
�n+1��= �v2

�n��� �v1
�n��. Then using

v�n+1�=Lv�n�, we express v�n+1� in terms of v�n� and thereby
obtain

�v2
�n��

�v1
�n��

=
�1 + m2�
+ − �m2 − 1�r

2m2reff
, �11�

where 
+�m2 ,r� is the larger eigenvalue of L. Comparing
Eqs. �10� and �11� finally yields

x0 = 	1 +
�1 + r���1 + m2�
+ − �m2 − 1�r�

2m2r�1 + reff�

−1

, �12�

and the amplitude of the piston oscillations is then A�m2 ,r�
=1−x0. This result agrees with the simulation results shown
in Fig. 4, even close to inelastic collapse.

We may also compute the logarithmic period of the piston
oscillations. Since �t�n+1�� �t�n�= �v2

�n��� �v2
�n+1��, we express

�v2
�n+1�� in terms of �v1

�n�� and �v2
�n�� from Eq. �8�, and then use

Eq. �11� to obtain

�t�n+1�

�t�n� =


+ −
m2 − 1

1 + m2
r

reff	r −
m2 − 1

1 + m2

+
 � 1. �13�

Thus in the log-periodic state �t�n� grows exponentially in the
number of cycles n, as seen in our simulations. From the
logarithmic period ��m2 ,r� introduced in Sec. II B, we have
tn−1=e−�tn, so that �t�n�= tn�1−e−��. This relation then gives

�=ln�tn+1� tn
�=ln��t�n+1�� �t�n��. The agreement between this

prediction for � with simulation results �not shown� is again
extremely good.

Finally, the robustness of the log-periodic state can be
understood in simple terms. Starting with an arbitrary �not
log-periodic� initial state, it is easy to show from Eqs. �7� and
�8� that both v1

�n� and v2
�n� converge exponentially quickly

with n to a state where the ratio �v2
�n��� �v1

�n�� satisfies the
condition �11� that signals log-periodicity. This convergence
occurs because for reff�r, �
− /
+�n quickly goes to zero as
n increases. In this sense, the log-periodic state is an attractor
of the dynamics.

V. SUMMARY

We investigated the dynamics of a three-particle system
on the unit interval in which a massive particle �correspond-
ing to a piston� lies between two light particles. The particles
collide elastically with the piston, but inelastically with the
walls. This toy model is meant to mimic the behavior of the
inelastic piston problem in which a massive piston separates
two inelastic gases, each of which contains many particles.
The dynamics of this many-body problem is extremely rich.
The piston moves nonmonotonically at early times and cor-
respondingly the response of the two gases is also nonmono-
tonic. Eventually there is an inelastic collapse in which one

of the gases is compressed into a solid by the piston.
One of the motivations for our study of the three-particle

system was to capture some of the intriguing phenomenol-
ogy of the many-particle inelastic piston problem. A new
feature of the three-particle system, however, is that the pis-
ton settles into a log-periodic state at long times over a wide
range of restitution coefficients, in which the period is con-
stant on a logarithmic time scale. The characteristics of this
log-periodic state can be understood in terms of a simple
effective picture in which the rattling collision sequence be-
tween the piston and the trapped light particle is replaced by
an effective inelastic collision between the piston and the
wall, with effective restitution coefficient reff�r. This
equivalence provides a satisfyingly complete account of the
log-periodic state. Finally, it should be noted that the log-
periodic behavior is a consequence of the finiteness of the
piston mass. As m2 increases, the amplitude of the oscilla-
tions decreases and as m2→� the inelastic collapse of the
many-particle inelastic piston problem is recovered.
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APPENDIX: CALCULATION OF THE EFFECTIVE
RESTITUTION COEFFICIENT

We use a matrix approach to compute the effective resti-
tution coefficient reff that describes the final velocity of the
piston at the end of the rattling collisions as a function of m2
and the bare restitution coefficient r. Without loss of gener-
ality, we assume that the piston compresses particle 1 which
then undergoes the rattling collision sequence. For concrete-
ness, the light particle is taken to be at rest at x1�0 with a
wall at x=0. A massive particle �the piston� approaches the
light particle from the right with v2=−1. Collisions between
particle 1 and the wall at x=0 are inelastic, with restitution
coefficient r, while 1-2 collisions are elastic. After the rat-
tling collision sequence ends, the piston recedes from the
wall with velocity v2�=−v2 reff.

The velocities after each collision are given in terms of
the velocities before the collision by

v1� =
1 − m2

M
v1 +

2m2

M
v2,

v2� =
2

M
v1 +

m2 − 1

M
v2, �A1�

for the 1–2 collision, and

v1� = − v1 r ,

v2� = v2, �A2�

for the wall collision, where M =1+m2. Thus the combined
effect of a 1-2 and an ensuing particle-wall collision is given
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by the composition of the two transformations implicit in
Eqs. �A1� and �A2�. Therefore

	v1�

v2�

 =�−

1 − m2

M
r −

2m2

M
r

2

M

m2 − 1

M
�	v1

v2

 
 Mv. �A3�

The velocity vector after n such cycles is given by

v�n� = Mnv�0�, with v�0� = 	 0

− 1

 .

The collision sequence ends when the velocities of the two
particles after n cycles satisfy v1

�n�−v2
�n��0, corresponding to

the two particles receding from the wall with the piston mov-
ing faster than the light particle. We define this situation as
“escape” of the piston. The number of collisions for escape
to occur is given by the smallest value of n that leads to the
above conditions on the outgoing velocities. The effective
restitution coefficient is then given by v2

�n� when n equals its
value at escape.

To determine the threshold value of n, we use the fact that
�see, e.g., �16��

Mnv = SMdiag
n S−1v , �A4�

where S is the similarity matrix that diagonalizes M, and
Mdiag=S−1MnS is the diagonalized form of the transforma-
tion matrix. The eigenvalues of M are �±= �T±�T2−4D� /2,
where T= �m2−1��1+r� /M is the trace and D=r is the deter-
minant of M,

�± =
�m2 − 1��1 + r�

2M
	1 ±�1 −

4rM2

�m2 − 1�2�1 + r�2
 .

�A5�

Consequently the similarity transformation matrix is

S = � 1 1

�+ − a

b

�− − a

b
� ,

where a=r�m2−1� /M and b=−2m2r /M are the elements of
the first row of M, i.e., the matrix S consists of the eigen-
vectors of M arranged columnwise. Consequently S−1

= �S�−1S†, where �S� is the determinant of S, and S† is its
transpose.

Assembling these results, the velocity after n cycles �and
2n individual collisions� is

v�n� =� b
�+

n − �−
n

�− − �+

�+
n��+ − a�
�− − �+

−
�−

n��− − a�
�− − �+

� 
 	v1
�n�

v2
�n� 
 . �A6�

In the case where escape of the piston requires n+1 particle-
particle collisions and n particle-wall collisions, we should
multiply the transformation matrix Mn on the left by the

matrix defined by Eq. �A1� to account for this last particle-
particle collision. However, to compute only the final veloc-
ity of particle 2, it suffices to calculate v�n+1� from Eq. �A6�.

Depending on the sign of the discriminant T2−4D, the
eigenvalues �± can be real or complex. For r greater than a
threshold value rc�m2�, T2�4D. Thus �± are complex con-
jugates �note, however, that v�n� has always real compo-
nents�. At the threshold, T2=4D, leading to �+=�−, so that
v�n� is undetermined. This indeterminacy signals inelastic
collapse: for r�rc�m2� there is an infinite number of colli-
sions in a finite time, and v1

�n�−v2
�n��0 ∀ n. The condition

T2=4D gives the critical restitution coefficient for inelastic
collapse:

rc�m2� =
�1 + m2��1 + m2 − 4�m2� + 4m2

�m2 − 1�2 . �A7�

Notice that rc�1−4/�m2 in the limit of large m2. Equiva-
lently, the condition T2=4D defines a critical mass �c�r�,
such that inelastic collapse occurs for m2��c�r�. We now
find

�c�r� =
�1 + r��1 + r + 4�r� + 4r

�1 − r�2 . �A8�

Note that for r close to 1, �c�r��16�1−r�−2.
For r�rc�m2� the piston eventually escapes with velocity

v2
�n0�, where n0 is the number of cycles until escape. To de-

termine n0, define f�n�
v1
�n�−v2

�n�. Initially f�0�=1, and f�n�
decreases as n increases and eventually changes sign. Next,
we define the real variable z by the condition f�z�=0. From
Eq. �A6�,

f�z� =
b��+

z − �−
z � − �+

z ��+ − a� + �−
z ��− − a�

�− − �+
= 0. �A9�

Since �± are complex conjugates, we write �±=Q e±i� so that
Eq. �A9� becomes, using �+

z −�−
z =2iQzsin�z�� and a+b=−r,

r sin�z�� + Q sin��z + 1��� = 0, �A10�

with solutions

z�k� =
1

�
�k� − tan−1	 Q sin�

r + Q cos�

� , �A11�

where k can be any integer number. The first solution that
has a physical meaning �i.e., z�1� corresponds to k=1, so
z=z�1�. The number of collision cycles before escape is thus
n0= �z�, where �z� is the next integer larger than z. The escape
velocity is v2

�n0� and reff=v2
�n0�. However, for large enough

piston mass, the number of collisions before escape is typi-
cally large, and we can approximate n0 by z. Hence, we
finally obtain for the effective restitution coefficient,

reff�m2,r� =
�+

z ��+ − a� − �−
z ��− − a�

�− − �+
, �A12�

with z given by Eq. �A11� with k=1. A plot of reff as a
function of r is given in Fig. 7.
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