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We present a simple deterministic and based on local rules model of evolving social network, which leads to
a network with the properties of a real social system, e.g., small-world topology and assortative mixing. The
state of an individual Si is characterized by the values of Q cultural features, drawn from Gaussian distribution
with variance �. The other control parameter is sociability Ti, which describes the maximal number of con-
nections of an individual. The state of individuals and connections between them evolve in time. As results
from numerical computations, an initial diversity of cultural features in a community has an essential influence
on an evolution of social network. It was found that for a critical value of control parameter �c�Q� there is a
structural transition and a hierarchical network with small-world topology of connections and a high clustering
coefficient emerges. The emergence of small-world properties can be related to the creation of subculture
groups in a community. The power-law relation between the clustering coefficient of a node and its connec-
tivity C�k��k−� was observed in the case of a scale-free distribution of sociability Ti and a high enough
cultural diversity in a population.
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I. INTRODUCTION

In recent years it was found that a structure of different
biological, technical, economical, and social systems has the
form of complex networks �1–4�.

The short length of the average shortest-path distance, the
high value of the clustering coefficient and scale-free distri-
bution of connectivity are some of the common properties of
those networks �2,3,5�. Social networks, which are an impor-
tant example of complex networks, also have such proper-
ties. They are successfully modeled using different ap-
proaches �4,6–11�, in particular, small-world topology of
interpersonal connections �2,3,12,13� and their hierarchical
structure �13,14� are taken into account. Small-world net-
works are networks, which on one hand, have some proper-
ties of random graphs �i.e., the length of the average shortest-
path distance is short and increases logarithmically with the
size of the network�; on the other hand, they are similar to
regular networks, because the value of the clustering coeffi-
cient is high.

Different approaches to generation of graphs with desir-
able properties, e.g., a degree distribution or correlations be-
tween nodes connectivity, were presented �5�. In most of
them it is assumed that a new connection can be created
between each pair of nodes with a certain probability �e.g.,
proportional to node connectivity �2,5��, but some models
are based on local �i.e., involving a node and its neighbors�
rules �15,16�.

The dynamic properties of systems which can be de-
scribed in terms of complex networks attract great interest
among physicists—the evolution of different networks �e.g.,
technical �17� or social �18�� is well described and success-

fully modeled. In the case of social networks it is not only
the evolution of the structure of the network that is investi-
gated, but also the evolution of the state of the nodes �indi-
viduals�. The state of an individual changes as a result of
interactions with other individuals, e.g., in models of opinion
formation, the state of an individual depends on the states of
its neighbors �19,20�. In these models it is usually assumed
that an individual can have one of two permitted states. This
assumption make it possible to simplify analytical calcula-
tions and to describe a social system using the Ising model
�21�. Individuals can also have additional parameters fixed
during time evolution, e.g., authority �22�. However, if we
want to simulate cultural evolution �23� the Ising-type ap-
proach is too simple. Axelrod’s model for the dissemination
of culture is a good example of a more sophisticated ap-
proach �6,24,25�. In this model individuals are described by
a vector of Q cultural features and each component can take
n integer values �cultural traits�. The more similar are the
neighbors, i.e., the greater the number of the same cultural
traits, the greater the probability that the neighbours will in-
teract. As a result of this interaction, a cultural feature which
has different values in both individuals is chosen and is
modified in such a way that the trait of the second individual
is assigned to the first one. In order to perform a statistical
analysis of the model the order parameter is introduced,
which is the size of the largest homogeneous domain, i.e., a
group of individuals sharing the same cultural traits in all
cultural features. The calculations of this model in a regular
network identify a nonequilibrium phase transition separat-
ing an ordered �culturally polarized� phase from a disordered
�culturally fragmented� one �26�.

An interesting model of social networks is presented in
Ref. �27�, where individuals are randomly located in social
space and the position of an individual is described by a
vector of cultural features. In this model the connections be-
tween individuals are created with probability dependent on
the distance between them in social space—the greater the
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distance, the smaller the probability of a connection.
The fixed structure of a social network is the common

feature of the abovementioned models of the evolution of the
states of individuals. On the other hand, in some models the
structure of a network changes in time, while the state of the
nodes �e.g., intrinsic variables� is fixed �28�. However, real
social networks evolve in both of these levels at the same
time. Moreover, it appears that a co-evolution of the states of
the nodes and interactions between them can lead to very
interesting behavior of these systems �29–31�. To our knowl-
edge, there is no deterministic model of co-evolution of the
state of individuals and interactions between them, which
would be based on simple local rules and lead to a network
with the properties of a real social network.

In our model an individual is described like in Axelrod’s
model with the vector of Q cultural features. The second
control parameter � describes initial distribution of cultural
traits. The state of an individual changes in time as a result of
interaction with its neighbors. Initially the network of ac-
quaintances has the form of a regular network with large
average shortest-path �L� and the clustering coefficient
C=0. During the time evolution new connections between
pairs of individuals are created and some existing connec-
tions die out. These processes of adding and removing the
connections of an individual are determined by its state and
the states of its neighbors. In the simplest case a new friend
belongs to friends of our friends and such a mechanism,
observed in real social networks, is applied in our model
�32,33�. Our calculations show that in a specific range of
control parameters this simple assumption is sufficient to re-
produce the nontrivial feature of a social network—small-
world topology of interpersonal connections. We calculate a
phase diagram in a two-dimensional plane of control param-
eters �Q ,�� describing cultural diversity in a population. To
get deeper insight into the structure of a network we also
investigate community structure �34�.

II. EVOLUTION OF A NETWORK AND INITIAL
CONDITIONS

In our model we investigate the evolution of a social net-
work in a population consisting of N individuals, located in a
regular lattice. We assume that the number of individuals
is fixed, because the timescale on which people change
their interpersonal interactions is much shorter than the
timescale on which the size of the population changes �32�.
The state of an individual is described by a vector
Si= �Si1 ,Si2 , . . . ,Siq , . . . ,SiQ� with Q components, called cul-
tural features. Each Siq can take an integer value �cultural
trait� and it is assumed that there is an infinite number of
cultural traits �Siq= . . . ,−2 ,−1 ,0 ,1 ,2 , . . . �. Initially the val-
ues of Siq are independently drawn from probability distribu-
tion P�Siq=x��exp�−x2 /2�2� �e.g., Gaussian distribution
with mean value zero�, where the variance � is a measure of
cultural diversity. Note that maximal cultural traits are not
limited by a parameter of the model like in Axelrod’s model,
but they are characterized by initial distribution. The number
of social connections of the ith individual is denoted by ki
and their localization evolves in time. To simplify our model

we assume that social connections are symmetric and have
the same value. Thus, a complex network evolving in time is
formed.

All individuals are located in the lattice with size
N=L�L and no periodic boundary conditions are used. In
the time t=0 each individual is connected only with four
nearest neighbors �individuals on the border of the lattice
have fewer connections�. We assume that those connections
can not be removed, because they describe basic connec-
tions, e.g., with family �for most people their contacts with
closest family are independent of differences in cultural fea-
tures�. Such a network has large average shortest-path dis-
tance �which is typical for regular networks� and the cluster-
ing coefficient C=0. The updating of the state of the network
is performed using synchronous dynamics.

Let us describe the rules of the time evolution of the net-
work. The value of Si changes in time as a result of interac-
tions with other individuals. These changes depend on the
states of other individuals connected with Si. The next state
of the ith individual in time t+1 is a result of its state in the
current time step and interactions with other individuals:

Siq�t + 1� = Siq�t� + hiq �1�

for each component q=1,2 , . . . ,Q the value of each cul-
tural feature is modified independently and hi=−1,0 ,1. The
value of hiq depends on the states of ki neighbors of the ith
individual. The components of the vectors Sj of these neigh-
bors can have higher, equal or lower values than the ith
individual. The new state of the ith individual increases by 1
�hiq=1� when the number of the neighbors with higher val-
ues of the qth component is greater than the number of
neighbors with the same value of this component and it is
greater than the number of neighbors with lower values of
this component �both conditions must be fulfilled�. On the
other hand, the value Siq decreases �hiq=−1� if the number of
neighbors with lower values of the qth component is greater
than the number of neighbors with the same value of this
component and if it is greater than the influence of neighbors
with higher values of this component. Like in the previous
case, both conditions must be fulfilled, otherwise hiq=0.

In order to describe the evolution of the network we de-
fine the social distance dij between a pair of individuals �i , j�:

dij = �
q=1

Q

	Siq − Sjq	 �2�

In each time step the current number of connections of a
node ki is compared to its sociability Ti—a parameter de-
scribing the maximal number of acquaintances, which can be
maintained by the ith individual �32�. If ki�Ti one connec-
tion of the ith individual with the most distant neighbor is
removed. On the other hand, if ki�Ti, a new connection
between the ith individual and an individual chosen from
neighbors of the neighbors of the ith individual is created
with respect to the shortest dij distance �9,27� �in the case of
more than one individual with the same social distance
dij—the spatially closer one is chosen�, which is shown in
Fig. 1. In this way the network does not settle in a fixed point
�its evolution never stops�, which is a characteristic feature

A. GRABOWSKI AND R. A. KOSIŃSKI PHYSICAL REVIEW E 73, 016135 �2006�

016135-2



of living communities. After transient time the distribution of
connectivity k is similar to the distribution of sociability T.
The behavior of the degree of a node as a function of time is
not interesting and quickly reaches saturation.

In our work two different distributions of sociability were
used: Uniform distribution �Ti=24 for all individuals—in
this way the results are easily comparable with a regular
network where an individual is connected to all individuals
in the radius two� and scale-free distribution, where
P�T��T−� ��=3, as in Barabási-Albert network with linear
preferential attachment �2�, was used in most computations�.
In order to obtain better comparable results the average so-
ciability was the same in both distributions �in the case of
scale-free distribution maximal sociability Tmax=100 was
used�.

III. RESULTS AND DISCUSSION

For the initial conditions described in Sec. II and both
types of Ti distributions the time evolution of the network is
calculated and it is terminated when the time dependence of

the parameters characterizing the structure of the network
�L� and C reaches a plateau. A typical time evolution of these
parameters is depicted in Fig. 2. One can see that the length
of the average shortest-path distance decreases significantly,
while the value of the clustering coefficient increases. These
changes are connected with the processes of removing and
creating new connections between individuals. The structure
of the network after simulation depends significantly on the
values � and Q used in computations �see Fig. 3�. With an
increase of the values of these parameters �L� decreases. This
means that the more complex the initial state of the network
�the cultural features are more diversified in the population�,
the smaller the �L�. For small values of � and Q all individu-
als have similar states Si and new connections are created
with spatially close individuals. For greater values of � and
Q the number of individuals with a state different from the

FIG. 1. A scheme of the creation of a new connection. A new
neighbor of individual Si �pointed with an arrow� is chosen from
neighbors of the current neighbors of individual Si.

FIG. 2. The time dependence of the clustering coefficient C and
the average shortest-path distance �L� divided by its value in time
t=1, for Q=3, �=15, and N=90 000.

FIG. 3. The relation between the average shortest-path distance �L� �a� and the clustering coefficient C �b� and the variance �, for a
different number of cultural features Q. The results are for uniform and scale-free distribution of sociability in the left and the right column,
respectively.
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mean value �i.e., mean values of the proper components� is
greater. These individuals are randomly located in the popu-
lation. They do not create long existing connections with
spatially close individuals, because the diversity of their
states is high. By looking for individuals with similar states
in the population they create new connections with the
neighbors of their neighbors. The greater the values �, the
greater the probability that these individuals find each other,
because the number of these individuals is greater and they
are spatially closer. Hence, the value of the length of the
average shortest-path distance �L� is much lower.

It appears that the relation between the size of the network
and the length of the average shortest-path distance depends
on values of Q and �. Figure 4�a� illustrates the influence of
the size of the network N on �L� for different values of � and
scale-free distribution of sociability. For values of � larger
than a critical value �c�Q�, the length of the average shortest-
path distance �L� increases linearly with log N. Hence, a
small-world network is obtained only for large enough Q and
�, �see Fig. 4�b� where the phase diagram is depicted�, i.e.,
when the diversity of cultural features of individuals in a
population and the number of cultural features are high
enough. Thus, a structural transition to small-world topology

of the network for a certain value �c�Q� is observed. It is
interesting that we obtain the same relation of �c�Q� for both
distributions of sociability: Uniform and scale-free. This in-
dicates that a high enough cultural diversity is the only con-
dition to obtaining small-world topology of a social network.
In addition, the value of the clustering coefficient decreases
slightly, approximately linearly, with log N.

The clustering coefficient C of the network is high and for
certain values of � it is higher than for a regular network
with the same number of connections �see Fig. 3�b��. The
clustering coefficient reaches maximum for a certain critical
value �=�max. Initially ����max� the clustering coefficient
increases with �. For ���max the opposite situation is
true—C decreases with �.

For the smallest values of � the clustering coefficient is
relatively small. This is so because all individuals are in the
same state and an individual creates connections with spa-
tially closest individuals. For an increase in �, there is an
increase in the diversity of the states of individuals. In con-
sequence, there is also an increase in C. This can be ex-
plained using Fig. 5�a�, which illustrates the network with
clusters formed by individuals in the same states and where a
set of connections �black lines� of a chosen individual is
shown. A large number of connections between individuals
in one cluster results in a high value of C. For a greater value
of Q the clustering coefficient increases. This is so because
individuals create—from the point of view of cultural
features—groups that are more hermetic, i.e., groups of
highly interconnected individuals with a number of cultural
features with similar values.

For ���max the value of the clustering coefficient de-
creases with � as a result of an increasing randomness in the
spatial localization of connections. This is so because, for
high values of �, there are many individuals, whose state is
different from the mean value. The average value of the so-
cial distance in groups formed by those individuals is greater.
In consequence, the formed groups are less hermetic and the
spatial distribution of connections in the network is more
random. However, groups of highly interconnected individu-
als remain in the network. They are formed by spatially dis-
tant individuals with similar states, as is shown in Figs. 5�b�
and 5�c�. Therefore, the clustering coefficient is smaller but
still large.

For large enough values of � and Q, when the diversity of
the values of cultural features is high enough, there is a large
number of individuals who belong to many different groups,
because each of them has cultural features that fit more than
one group. In consequence, due to the existence of such in-
dividuals, these groups become less hermetic and the cluster-
ing coefficient decreases with increasing Q.

It can be seen in Fig. 3 that, for the case of scale-free
distribution of sociability, the influence of the values of the
parameters Q, � on �L� and C is similar to these relations
obtained for Ti=const. However, there are some discrepan-
cies: The average shortest-path �L� and the clustering coeffi-
cient C are smaller. Individuals with high connectivity play
the role of hubs, which connect individuals from different
and spatially distant parts of the network and shorten the
average shortest-path. Moreover, hubs are more likely to

FIG. 4. The relation between the length of the average shortest-
path �L� and the size of the network N for Q=3 and different values
of � �a�—for a large enough �=�c the length of the average
shortest-path increases linearly with logarithm of size of the net-
work �L�� log N. In order to obtain a phase diagram �b� we calcu-
late critical values �c for each value of Q. It is visible that for a
large enough � and Q the network has small-world properties. It is
interesting that for simplest case �Q=1� the network has not small-
world properties even for very large values of �.
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connect with other hubs than with individuals with a small
number of connections—the average connectivity of neigh-
bors kNN of a node increases with its number of connections
�approximately linearly and kNN�0.1k for a large range of
values of the control parameters�. Hence, a network gener-
ated by our model is assortatively mixed by degree and such
correlation is observed in many real social networks �9�.
Note that we did not introduce to our model any mechanism
that favors the creation of a connection between individuals
with similar connectivity. On the other hand, the clustering
coefficient of hubs is very small in comparison to individuals
with low connectivity; hence, in the case of uniform distri-
bution of sociability, the clustering coefficient of the whole
network is higher.

The behavior of the clustering coefficient C for our model
and for real networks is an interesting problem. In the case of
Q=1 the clustering coefficient of a node decreases exponen-
tially with its number of connections; however for Q�1 the
power-law relation C�k��k−� is visible �see Fig. 6�
�1,17,35�. The value of � slightly depends on the values of Q
and � and equals approximately �
0.7 for a wide range of
values of these parameters. Such a relation is observed in
some real social networks �1,18�. It is interesting that the
value of parameter � is close to the value obtained for
the Internet at an autonomous system level �17�, where
C�k��k−0.75. The power-law relation C�k�, obtained in our
calculation, is similar to the relation observed in hierarchical
networks �1�. Such power laws hint at the presence of a
hierarchical architecture: when small groups organize into
increasingly larger groups in a hierarchical manner, local
clustering decreases on different scales according to such a
power law. This may be connected with the fact that indi-
viduals create connections on the basis of social distances—
spatial distance between individuals is much less important.
The influence of spatial distance between nodes in Euclidean
growing scale-free networks on C�k� relation is described in
Ref. �36�.

Let us discuss the time evolution of cultural features in a
community. The initial, Gaussian distributions of cultural
traits evolve in time and some cultural traits became more
favorable, which is shown in Fig. 7 for networks presented in
Fig. 5. During the time evolution of a network, peaks corre-
sponding to some cultural traits appear in the distribution of
cultural features. The main cultural trends in the community
are represented by peaks near the cultural trait x=0. Addi-
tional peaks, distant from the main cultural trend are con-
nected with certain cultural traits �e.g., x=9 or x=−8 in Figs.
7�a� and 7�b�, respectively�, which can be interpreted as a
creation of certain subcultures in the community. They are
accompanied by a shortening of the length of the average
shortest-path distance in social network. It can be seen that
individuals forming a subculture group are randomly distrib-
uted in the community, which can be seen in Figs. 5�b� and
in 5�c� where the connections of an individual with the cul-
tural trait x=9 and x=−8 are shown, respectively. The num-
ber of subcultures depends on the initial cultural diversity in
a population; the greater the �, the greater the number of
subcultures. Note that the obtained distribution of cultural

FIG. 5. Populations of N=30�30 individuals for Q=1, �=2 �a�
and Q=2, �=8 �b� and �c�, for uniform and scale-free distribution
of sociability, respectively, are shown with respect to the values of
the first cultural feature �q=1�. Individuals with the same cultural
trait are marked with the same color. Interpersonal connections of
chosen individuals Sa= �0�, Sb= �9,−2�, and Sc= �−8,1�, are shown
in �a�–�c�, respectively. Note that in the population, individuals with
three different cultural traits �a� and with 12 different cultural traits
�b� and �c�, are visible.

FIG. 6. A typical relation between the clustering coefficient C of
a node �individual� and its number of connections k �in a double
logarithmic scale� for scale-free distribution of Ti and different val-
ues of �: �=1, �=2, �=3, and �=4 from top to bottom, respec-
tively. The values of the other parameters are: Q=3, �=12.5, and
N=106.
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traits is not always symmetric. For some cases, especially for
scale-free distribution of sociability and large �, the mean
value of a cultural feature is far from zero—the opinion of
the population is polarized.

To get deeper insight into the structure of networks gen-
erated by our model, we investigate the community structure
�34� using an algorithm recently proposed by Newman �37�.
This algorithm makes it possible to evaluate the community
structure in a network by generating a dendrogram—a hier-
archical tree describing the partition of a network into
smaller sub-networks. Figures 8�a� and 8�b� illustrate the re-
sults obtained after applying the above-mentioned algorithm
to the networks from Figs. 5�b� and 5�c�, respectively. Den-
drograms are cut when the maximal value of modularity M is
reached �34,37�. The numbers of individuals in each sub-
group are given at the bottom of the figure. As results from
our computation, the modularity of a network increases with
� and is lower in the case of scale-free distribution of socia-
bility �cf. Figs. 8�a� and 8�b� for these two distributions and
the same value of ��. Individuals with the number of con-
nections much larger than average connectivity belong to
different groups of individuals. Therefore, it is more difficult
to distinguish different communities in the population, e.g.,
the algorithm used failed to find a subculture in the scale-free
network but managed to do this in the case of a network with

T=const. Thus, in the case of real heterogeneous social net-
works it can be difficult to find subcultures �subgroups� when
analyzing only the structure of the network. It is interesting
that in the network some small communities emerge �the
number of individuals is similar to the average connectivity�,
which are very hermetic and individuals inside of such a
community have the same values of all cultural features. The
number of such communities is much greater in the case of
uniform distribution of sociability �see Fig. 8�a�� than in the
case of scale-free distribution of sociability �in Fig. 8�b� only
one such community is visible�.

IV. CONCLUSIONS

In our model we investigate a network of interpersonal
contacts connecting individuals who are characterized by the
vector of cultural features and sociability T. Both the states
of the individuals and the interpersonal interactions evolve in
time. As results from our computations the initial diversity of
cultural features in the community, measured with the pa-
rameter �, has an essential influence on the evolution of a
social network. An increase in � results in a decrease of the
length of the average shortest-path distance. The number of
cultural features Q is also important. The linear relation be-
tween the average shortest-path and the logarithm of the size
of the network �L�� log N is observed only for large enough
� and Q. This means that small-world topology of interper-
sonal connections appears in the social network for high
enough cultural diversity. It should be stressed that initially
in our model there were no long-range connections—they
are created due to the grouping of the spatially distant indi-
viduals with similar cultural features. This phenomenon is
connected with the emergence of subculture groups—a pro-
cess observed in living societies. As a result of this grouping
process, the network with a high value of the clustering co-
efficient emerges. These properties are typical for social net-
works �3,12�.

It was found that in a network with scale-free distribution
of connectivity and the same number of connections, the

FIG. 7. The number NX of individuals with the cultural trait x as
a function of the cultural trait of the first �q=1� cultural feature for
N=30�30, Q=2 and �=8. Peaks for the value of the cultural trait
of the first cultural feature x=9 in �a� and x=−8 in �b� correspond to
individuals marked in black in Figs. 5�b� and 5�c�, respectively.
These individuals form one of the subcultures in this population.

FIG. 8. The dendrograms describing partition of a network into
smaller sub-networks in the case of uniform �a� and scale-free �b�
distribution of sociability. The dendrogram is cut when a maximal
value of modularity M is reached; M =0.37 and 0.35 for �a� and �b�,
respectively. A community is distinguished in �a�, because it is the
subculture of individuals having for the value of the cultural trait of
the first cultural feature x=9 �see Fig. 7�a��.
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average shortest-path and the clustering coefficient are
smaller than in the case of uniform distribution of connectiv-
ity. This is so, because individuals with high connectivity
connect with many other individuals from distant parts of the
network. On the other hand, these individuals have a signifi-
cantly lower value of the clustering coefficient. The power-
law relation between the clustering coefficient of a node and
its number of connections C�k��k−�, obtained in our calcu-

lation, reveals a hierarchical structure of a social network.
Assortative mixing by degree is another property of the con-
sidered networks.

It should be noted that a similar evolution of a network,
especially the creation of new connections, is observed in
many other systems, e.g., the evolution of the network of
WWW pages, where most links from a page are connected to
pages concerning the same subject.
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