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We consider systems confined to a d-dimensional slab of macroscopic lateral extension and finite thickness
L that undergo a continuous bulk phase transition in the limit L→� and are describable by an O�n� symmetri-
cal Hamiltonian. Periodic boundary conditions are applied across the slab. We study the effects of long-range
pair interactions whose potential decays as bx−�d+�� as x→�, with 2���4 and 2�d+��6, on the Casimir
effect at and near the bulk critical temperature Tc,�, for 2�d�4. These interactions decay sufficiently fast to
leave bulk critical exponents and other universal bulk quantities unchanged—i.e., they are irrelevant in the
renormalization group �RG� sense. Yet they entail important modifications of the standard scaling behavior of
the excess free energy and the Casimir force FC. We generalize the phenomenological scaling Ansätze for these
quantities by incorporating these long-range interactions. For the scaled reduced Casimir force per unit cross-
sectional area, we obtain the form LdFC /kBT��0�L /���+g�L−����L /���+g�L−�����L /���. Here �0, ��,
and �� are universal scaling functions; g� and g� are scaling fields associated with the leading corrections to
scaling and those of the long-range interaction, respectively; � and ��=�+�−2 are the associated correction-
to-scaling exponents, where � denotes the standard bulk correlation exponent of the system without long-range
interactions; �� is the �second-moment� bulk correlation length �which itself involves corrections to scaling�.
The contribution 	g� decays for T�Tc,� algebraically in L rather than exponentially, and hence becomes
dominant in an appropriate regime of temperatures and L. We derive exact results for spherical and Gaussian
models which confirm these findings. In the case d+�=6, which includes that of nonretarded van der Waals
interactions in d=3 dimensions, the power laws of the corrections to scaling proportional to b of the spherical
model are found to get modified by logarithms. Using general RG ideas, we show that these logarithmic
singularities originate from the degeneracy �=��=4−d that occurs for the spherical model when d+�=6, in
conjunction with the b dependence of g�.
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I. INTRODUCTION

When macroscopic bodies are immersed into a medium,
the forces acting between them in its absence are usually
altered. Moreover, additional �effective� forces not present
without the medium may be induced by fluctuations occur-
ring in it. A well-known example of fluctuation-induced
forces is the so-called Casimir force between metallic bod-
ies, named after its discoverer Casimir �1�, which is induced
by vacuum fluctuations of the electromagnetic field and was
recently verified through high-precision experiments �2,3�.

Although the Casimir effect was well received at the time
of its discovery, interest in it diminished soon afterward, and
for a long time it did not attract much attention. Since ap-
proximately 1970 there has been a resurgence of interest in
it, which has evolved into an enormous research activity dur-
ing the past decades �4–13�.

There are a number of good reasons for this development.
To begin with, fluctuation-induced forces are ubiquitous in
nature. Casimir’s original work �1� was concerned with the
force induced by vacuum fluctuations of the electromagnetic
field. Subsequently it has been realized that analogous forces
exist that are not mediated by massless particles such as pho-
tons, but are induced by low-energy excitations such as spin
waves—or, more generally, Goldstone modes in systems
with a spontaneously broken continuous symmetry—or ther-

mal fluctuations. Since Goldstone modes are massless, the
associated fluctuations are scale invariant and induce a long-
ranged Casimir force. The same applies to thermal fluctua-
tions at critical points because of the divergence of the cor-
relation length. The upshot is that Casimir forces have turned
out to be of interest for many diverse fields of physics, such
as quantum field theories �4–8�, condensed matter physics,
the physics of fluids and quantum fluids �9–11�, wetting phe-
nomena �14–16�, microfluidics, and nanostructured materials
�17�.

Second, owing to the progress in experimental techniques
made in recent years, detailed investigations of Casimir
forces have become possible �2,3,18–23�. Third, a further
important reason for the ongoing interest in Casimir forces is
that they exhibit universal features: Microscopic details of
both the fluctuating medium as well as the immersed macro-
scopic bodies do not normally matter, at least as long as
long-range interactions are absent or may be safely ignored.

Last but not least, an equally important reason has been
the theoretical progress in dealing with interacting field theo-
ries with boundaries that has been achieved since the 1980s
�24–30�. This has led to detailed investigations of the Ca-
simir effect for interacting field theories �13,28,31–35�.

In this paper we will be concerned with the thermody-
namic Casimir effect—i.e., the Casimir effect induced by
thermal fluctuations. Our aim is to study the effects of long-
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range interactions of van der Waals type on the Casimir force
in systems undergoing a continuous bulk phase transition. To
this end we shall consider long-range two-body interactions
with a pair potential v����x� that behaves as

v����x� �
x→�

const � x−�d+�� �1.1�

in the large-distance limit. The familiar dispersion forces in
fluids belong to this category: Important examples are the
nonretarded and retarded van der Waals interactions of a �d
=3�-dimensional fluid, which correspond to the cases �=3
and �=4, respectively.

According to scaling considerations �to be recalled in Sec.
II�, the leading infrared singularities at the critical point of
systems with short-range forces do not get modified by such
long-range interactions because the associated pair potentials
decay sufficiently fast at large distances. They are irrelevant
in the renormalization group �RG� sense, giving corrections
to the leading critical behavior. Long-range interactions of
this kind have been termed “subleading long-range interac-
tions” �36–39�. They are generically present in fluids
�40–42� but occur also in other, for example, magnetic, sys-
tems.

For typical three-dimensional systems of the n-vector type
with n��, the associated correction-to-scaling exponent ��

is larger than the familiar exponent � that governs the lead-
ing corrections to scaling �see, e.g., Ref. �43��. Hence such
long-range interactions yield next-to-leading corrections to
scaling.

Despite their irrelevance, they have important conse-
quences, even for the near-critical behavior of bulk systems.
Since they involve pair potentials that decrease as inverse
powers of the distance x in the limit x→�, the usual expo-
nential large-x decay of correlations away from the critical
point gets replaced by an algebraic one.

Their consequences for the medium-induced force be-
tween two macroscopic bodies immersed into the medium a
distance L apart is of a similar kind and importance: They
yield contributions that decay quite generally as an inverse
power of L, irrespective of whether or not the temperature T
is close to the bulk critical temperature Tc,� of the medium.
When T�Tc,�, they compete with the long-ranged Casimir
force produced by critical or near-critical fluctuations. As
previous work �36–39,44� suggests, and will be shown in
detail below, they actually become the dominant part of the
medium-induced force in a certain regime of temperatures
and L.

We will consider the case of a slab geometry of cross-
sectional area A=L�

d−1 and thickness L. Reliable results for
this geometry are important for the interpretation of Monte
Carlo simulations of appropriate models with subleading
long-range interactions.

In view of our above remarks, a most obvious system
class to consider would be fluids. To describe the long-
distance physics of classical fluids near their liquid-gas criti-
cal point, a one-component order parameter is used. Instead
of considering this case, we will focus our attention on sys-
tems that involve an n-component order parameter and can

be modeled by an O�n� symmetrical Hamiltonian, and inves-
tigate them in the limit n→�. For simplicity, we will restrict
ourselves to the case of periodic boundary conditions along
all—namely, both the perpendicular as well as the d−1 prin-
cipal parallel—directions. Under these conditions, the large-
n limit of the O�n� model is equivalent to the spherical
model �45–47�. We will present exact results for the Casimir
force at and above the bulk critical temperature Tc, for both
spherical and Gaussian models with subleading long-range
interactions.

Our motivation for considering spherical models is two-
fold. First, studying the effects of such long-range interac-
tions on the Casimir force for such models is an interesting
problem in its own right. Second, the exact results obtained
for these models provide nontrivial checks for the results of
perturbative field-theoretic renormalization group ap-
proaches and are expected to give valuable guidance for ac-
ceptable approximations, an issue we plan to take up in a
subsequent paper �48�.

A special feature of the spherical model with 2�d�4 is
that the correction-to-scaling exponents �� and � become
equal when d+�=6, a condition satisfied, for example, for
nonretarded van der Waals interactions in d=3 dimensions.
As our exact results show, the corrections to scaling induced
by the long-range interaction �1.1� then get modified by loga-
rithms.

The remainder of this paper is organized as follows. In the
next section, we provide the required background on Casimir
forces. We begin by recalling the definition of the Casimir
force. Then we discuss its scaling form when all interactions
are short ranged, specify the form of the subleading long-
range interactions to be considered, and recapitulate the scal-
ing arguments which show that they do not modify the lead-
ing critical singularities. Next, we generalize the finite-size
scaling Ansatz by incorporating them. In Sec. III we intro-
duce the spherical model with subleading long-range inter-
actions which we solve for 2�d�4 to produce exact large-
n results for the Casimir force. The finite-size behavior of the
equation of state is analyzed in Sec. IV. Section V deals with
the finite-size behavior of the free energy and the Casimir
force. Section VI contains a brief summary and discussion.
Finally, there are three Appendixes in which various techni-
cal details are explained.

II. BACKGROUND

A. Definition and scaling form of Casimir force

We consider a statistical mechanical system, a model
magnet or fluid, whose shape is a d-dimensional slab of
thickness L and hyperquadratic cross section with area A
=L�

d−1. As previously mentioned, we choose periodic bound-
ary conditions �BCs� along all d principal hypercubic axes,
so that the system has the topology of a d-torus. Unless
stated otherwise, the dimensionality d is presumed to satisfy
2�d�4.

Let FL,A�T� be the total free energy of the system. Taking
the thermodynamic limit L�→� at fixed L��, we denote
the reduced free energy per cross-sectional area A as fL�T�
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� limA→� FL,A /AkBT. For L→�, fL�T� /L approaches fbk�T�,
the reduced bulk free energy density �49�. We therefore in-
troduce the reduced excess free energy by

fex�T,L� = fL�T� − Lfbk�T� . �2.1�

The limit L→� of this quantity exists, but depends on the
boundary conditions: for periodic boundary conditions and
the film geometry with boundary planes B1 and B2 intro-
duced above, we have �49�

fex�T,H,�� = 	0, periodic BCs,

fs,1 + fs,2, film geometry,

 �2.2�

where fs,i, i=1,2, are the surface excess free energies of the
respective semi-infinite systems bounded by Bi.

In either case, the thermodynamic Casimir force per unit
area is defined in terms of fex as

FC�T,L� = − kBT
�fex�T,L�

�L
. �2.3�

According to this definition, this quantity is a generalized
force conjugate to the thickness L of the slab, which ap-
proaches zero as L→�. We are interested in its behavior for
L�a, where a is a typical microscopic length scale �we
henceforth set it to unity�. Suppose for the moment that all
interactions are short ranged. Then finite-size scaling theory
should be applicable in this limit. According to it, the Ca-
simir force takes the scaling form �11,50�

FC�T,L�/kBT = L−d�0�L/��� , �2.4�

where �� is the bulk correlation length �51�, while �0 is a
universal scaling function. This holds up to eventual contri-
butions from regular background terms and irrelevant scaling
fields, which we disregard for the moment but will come
back to later, in particular, in Sec. II B 2.

As the temperature T approaches its bulk critical value
Tc,�, with L fixed at a finite value, the correlation length ��

diverges and L /��→0. The corresponding limiting value of
the scaling function �0 �which exists� is conventionally writ-
ten as

�0�0� = �d − 1�
C, �2.5�

which defines the so-called Casimir amplitude 
C �14�. This
quantity is related to the critical Casimir force via

FC�Tc,�,L�/kBTc,� = �d − 1�

C

Ld . �2.6�

Just like the scaling function �0, it is a universal quantity; it
is independent of microscopic details, but depends on the
bulk universality class considered and on other gross features
such as boundary conditions.

Let us be a bit more precise. Suppose that instead of
choosing periodic boundary conditions we considered a lat-
tice model with free boundary conditions along the perpen-
dicular direction. Then the topmost and lowest layers of the
system would be free surfaces, corresponding to macroscopic
planar boundaries between which the Casimir force acts.
Provided �a� no symmetry-breaking boundary terms are in-
cluded in the Hamiltonian and �b� no long-range surface or-

der is possible for T�Tc,�, one expects the long-distance
physics of the system near the bulk critical point to be de-
scribed by an O�n� �4 model with Dirichlet boundary con-
ditions. This is because upon coarse graining, the lattice
model with free boundary conditions maps onto such a con-
tinuum field theory, albeit one satisfying Robin boundary
conditions inside of averages �29,30�.

If conditions �a� and �b� are satisfied, one has reason to
believe that the theory belongs to the basin of attraction of
the fixed point describing the so-called ordinary surface tran-
sition. This fixed point is infrared stable and corresponds to a
Dirichlet boundary condition on large scales. The analogs of
the Casimir amplitude 
C and the scaling function � for this
case of Dirichlet boundary conditions on both surface planes
differ from their counterparts for periodic boundary condi-
tions. Details of the mesoscopic Robin boundary
condition—or microscopic details of the boundaries—do not
matter as long as the resulting continuum theory belongs to
the basin of attraction of the mentioned fixed point.

More generally, we have for a film geometry bounded in
one direction by a pair of parallel boundary planes B1 and
B2 the following situation. Universal quantities such as the
Casimir amplitude 
C or the scaling function � depend �for
given bulk universality class and short-range interactions� on
gross properties of both boundary planes. Let SUCi denote
the universality class pertaining to the surface critical behav-
ior of the semi-infinite system with boundary plane Bi �“sur-
face universality class” SUC�, where i=1 or 2. To specify
universal quantities like the Casimir amplitude, we can write

C

SUC1,SUC2, where possible choices of SUC1 and SUC2 are
“ord,” “sp,” and “norm,” the SUCs of the ordinary, special,
and normal �or extraordinary �52�� transitions, respectively.
The above-mentioned case of Dirichlet boundary conditions
on B1 and B2 corresponds to the choices SUC1=SUC2
=ord.

Systems with O�n�-symmetrical Hamiltonian and short-
range interactions have been studied in such film geometries
for various choices of SUC1 and SUC2 by means of the �
expansion about the upper critical dimension d*=4
�9,31–35�, Monte Carlo simulations �10,53,54�, and other
techniques �11�. A fairly up-to-date survey of pertinent re-
sults may be found in the latter reference. More recent results
are contained in Ref. �54�. Aside from these cases and the
one of periodic boundary conditions, also slabs with antipe-
riodic boundary conditions have been considered for systems
with short-range interactions �31,32�.

Going back to the case of periodic boundary conditions,
we now turn to the question of how to include subleading
long-range interactions.

B. Subleading long-range interactions

We consider long-range two-body interactions with a pair
potential v����x� of the kind �1.1�. Let us begin by recalling
how the relevance or irrelevance of such interactions for bulk
critical behavior can be assessed.

1. Relevance-irrelevance criterion

Let Hsr be the standard �4 Hamiltonian representing the
bulk universality class of the n-vector model with short-
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range interactions for d below d*=4, its upper critical dimen-
sion. At the bulk critical point, the n-component order pa-
rameter field � transforms as �→�−
���� under changes
�→�� of the momentum scale, where the scaling dimen-
sion 
��� is given by


��� = �d − 2 + ��/2. �2.7�

Adding to Hsr a long-range interaction term with pair po-
tential v����x�, we consider the Hamiltonian

H = Hsr + b� O����x�ddx , �2.8�

where O����x� denotes the nonlocal operator

O����x� =� ddy v����y���x −
y

2

��x +

y

2

 , �2.9�

and b is the associated coupling constant.
We now ask under what conditions the short-range fixed

point remains infrared stable with respect to this O��� pertur-
bation. Upon insertion of the limiting form �1.1� into it, we
can use Eq. �2.7� to conclude that the scaling dimension of
the associated scaling operator, at the short-range fixed point,
is given by


�O���� = d − 2 + � + � . �2.10�

The corresponding scaling field g��b varies as �−y� in the
infrared limit �→0, with the RG eigenexponent

y� � − �� = d − 
�O���� = 2 − � − � . �2.11�

Depending on whether the correction-to-scaling exponent
���0 or ���0, the short-range fixed point is locally stable
or unstable to such perturbations. Hence we arrive at the
following irrelevance-relevance criterion: The long-range
perturbation proportional to b is irrelevant at the short-range
fixed point if

� � 2 − � , �2.12�

and relevant if ��2−�. Note that here and elsewhere in this
paper, � always means the correlation exponent of the short-
range case.

The case when this criterion suggests these long-range
interactions to be relevant has been studied in the literature
in the context of bulk critical behavior. For ��2, the upper
critical dimension above which Landau theory holds is low-
ered from d*=4 to dlr

*���=2�. In the regime ��d�dlr
*���,

the values of the critical exponents depend on �, where the
analog of � is given exactly by �lr=2−� �55–60�. For given
d, a crossover from the critical behavior characterized by
these critical exponents to one representative of systems with
short-range interactions is predicted to occur at �=2−�
�56,61–64�. This crossover has recently been reexamined for
d=2 by numerical means �65�.

Since we assume in our subsequent analysis that 2��
�4, the irrelevance criterion �2.12� is satisfied. Associated
with the long-range interaction �2.9� therefore is an irrelevant
scaling field g��b whose RG eigenexponent is given in Eq.
�2.11�. We next generalize the finite-size scaling ansatz for
the free energy by incorporating g�.

2. Finite-size scaling

Allowing a magnetic field H to be present, we consider
the reduced free energy per unit cross-sectional area A
=L�

d−1 of the previously specified slab with periodic bound-
ary conditions, in the thermodynamic limit L�→�. Accord-
ing to the phenomenological theory of finite-size scaling
�50,66,67�, this quantity can be decomposed into a regular
background contribution fL

reg�T ,H� and a singular part
fL

sing�T ,H�:

fL�T,H� = fL
sing�T,H� + fL

reg�T,H� . �2.13�

This decomposition entails analogous decompositions of the
bulk and excess free-energy densities fbk�T ,H� and
fex�T ,H ,L�, respectively.

Before turning to the singular parts, let us briefly com-
ment on the regular background terms. For simple lattice
systems with short-range interactions it has been found that
the regular background terms of the excess free energy in the
case of periodic boundary conditions agree to high accuracy
with those of the bulk free energy �50�. This is understand-
able: Periodic boundary conditions preclude surface and
edge contributions to the total free energy and hence terms of
this kind that are analytic in temperature and magnetic field.
Yet, it must be remembered that free energies and their regu-
lar background contributions are not universal properties, but
depend on microscopic details of the system considered.
Suppose a given system with periodic boundary conditions
that belongs to the bulk universality class of the
d-dimensional, n-component �4 model. Then we can choose
a simple lattice n-vector model with nearest-neighbor inter-
actions to investigate its universal critical behavior. How-
ever, inclusion of any irrelevant interaction—in particular,
long-range interactions—that were dropped when making
the transition from the original system to the lattice model is
expected to modify the regular background contributions of
the �bulk and excess� free energy. In other words, the empiri-
cal fact that the regular background contributions of the bulk
and excess free energies of simple lattice models with short-
range interactions can be chosen to be equal when periodic
boundary conditions are applied does not imply that the same
is true for microscopically more realistic models with addi-
tional �irrelevant� interactions. In particular, this must be
kept in mind when adding irrelevant long-range interactions.

The singular parts fsing, fbk
sing, and fex

sing should have a scal-
ing form. Specifically, fex

sing�T ,H ,L� should take the finite-
size scaling form

fex
sing�T,h,L� = L−�d−1�X�gtL

1/�,ghL
/�;g�L−��,g�L−�, . . . �
�2.14�

on sufficiently large length scales, where � is the previously
mentioned standard correction-to-scaling exponent of short-
range systems. Further, gt, gh, g�, and g� denote scaling
fields. The first two are the leading even and odd relevant
bulk scaling fields �namely, the “thermal” and “magnetic”
scaling fields�. For simple magnetic systems they behave as

gt � att, t = �T − Tc,��/Tc,�, �2.15�

and
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gh � ahh, h = H/kBTc,�, �2.16�

near the bulk critical point �T ,H�= �Tc,� ,0�, where at and ah

are nonuniversal metric factors; for fluid systems, both be-
come linear combinations of t and ��, the deviation of the
chemical potential from the critical point, because of “mix-
ing” �see, e.g., Refs. �68,69��. For simplicity, we will use
magnetic language and work with the above expressions
henceforth.

Likewise, the previously introduced scaling field associ-
ated with the long-range interaction �2.9� is expected to vary
as

g� � a�b �2.17�

for small b. The ellipsis in Eq. �2.14� stands for analogous
expressions involving further scaling fields, all of which we
assume to be irrelevant; this means, in particular, that all
relevant scaling fields other than gt and gh are taken to van-
ish. Moreover, we assume that none of the suppressed irrel-
evant scaling fields is dangerous irrelevant �see, e.g., Appen-
dix D of Ref. �70��, so that all of them may be safely set to
zero.

Current estimates of the correction-to-scaling exponent
��n ,d� of the d-dimensional n-vector model give ��1,3�
�0.81 and somewhat smaller values for n=2 and 3, such as
��3,3��0.80 �71–73�. On the other hand, the well-known
exact spherical-model �SM� value is

�SM�2 � d � 4� = ���,2 � d � 4� = 4 − d . �2.18�

Let us compare these numbers with the appropriate ana-
logs for the correction-to-scaling exponent �� one can derive
from Eq. �2.11�. The cases of nonretarded and retarded van
der Waals interactions in d dimensions correspond to the
choices �=d and �=d+1, giving �d=d−2+� and �d+1=d
−1+�, respectively. Both exponents are positive in the re-
gime of dimensions 2�d�4 we are concerned with. For
finite n, where ��0, the latter remains larger than � in this
whole regime, whereas �d would become smaller than �
slightly below d=3. In the spherical limit n→�, this sign
change of �d−� occurs at d=3 where �d=�=1. In our
analysis of the spherical model given below we shall first
assume that d+��6. Then the possibility that ���� is
ruled out. The borderline case d+�=6 of the spherical model
is special because �=��=4−d. Owing to this degeneracy, it
requires special attention and will be discussed separately.

For the time being we therefore take it for granted that the
irrelevant scaling fields g� and g� yield leading and next-to-
leading corrections to scaling in the critical regime, respec-
tively. However, away from the bulk critical point, the long-
range interaction is expected to modify the large-L behavior
of fex and the Casimir force in a qualitative manner so that
they decay as inverse powers of L rather than exponentially
�44�. To see how this translates into properties of the scaling
function X, let us denote the scaling variables appearing in
Eq. �2.14� as

ť = gtL
1/�,

ȟ = ghL
/�,

ǧ� = g�L−��,

ǧ� = g�L−�, �2.19�

and expand X as

X�ť, ȟ; ǧ�, ǧ�� = X0�ť, ȟ� + ǧ�X��ť, ȟ� + ǧ�X��ť, ȟ� + ¯ ,

�2.20�

where it is understood that all suppressed scaling fields have
been set to zero.

The scaling functions X0 and X� obviously are properties
of the short-range universality class. A similar though some-
what more restricted statement applies to X�: Just like the
other two, it may be viewed as the expectation value of a
quantity, computed at the infrared-stable fixed point of the �4

model with short-range interactions in a periodic slab of
thickness L=1. However, it differs from those inasmuch as,
in its case, this quantity is the nonlocal operator O����x� as-
sociated with the long-range interaction, whereas the other
do not involve this interaction at all.

At the bulk critical point gt=gh=0, all three of these scal-
ing functions are expected to take finite, nonzero values.
Specifically, the critical value of X0 yields the Casimir am-
plitude:


C � X0�0,0� . �2.21�

We denote its analogs for X� and X� as


�,C � X��0,0� , �2.22�


�,C � X��0,0� . �2.23�

The former controls the leading corrections to the asymptotic
behavior of the critical excess free energy, the latter its con-
tribution linear in g� originating from the long-range inter-
action �2.9�.

Next, we turn to a discussion of the behavior as L→�

when T�Tc,�. In this limit, either the scaling variable ť, or

both ť and ȟ, tend to infinity. As explained above, both func-
tions X0 and X� must decrease as �exp�−L /�sr�T ,H��, where
�sr�T ,H� is the true correlation length of the system with
short-range interactions. Let us set gh=0 for the sake of sim-
plicity. As ť→� we then should have

X0�ť,0� �
ť→�

exp�− �const�ť� + O�ln ť�� , �2.24�

and similar asymptotic behavior for X�. However, for the
function X��ť ,0� we anticipate the limiting form

X��ť,0� �
ť→�

c� ť−��. �2.25�

The exponent � introduced here characterizes the asymptotic
dependence on L /� via X���L /��−�. Our results for both the
spherical �n=�� and the Gaussian model �GM� derived in
the following sections yield

�SM = ��n = �� = �GM = 2, �2.26�

in conformity with Ref. �44�.
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In the regime L /��1 where X0 and X� are exponentially
small, the implied contribution �g� to the excess free energy
should become dominant:

fex�Lgt
� � 1� � g� c�L−�d+�+�+�−3�gt

−��. �2.27�

and imply a corresponding large-L behavior

FC � g�L−�d+�+�+�−2�gt
−�� �2.28�

of the Casimir force.
In the cases of the spherical and Gaussian models, where

�=0 and � is given by Eq. �2.26�, the large-L dependence of
fex reduces to �L−�d+�−1�. Our exact results for the spherical
and Gaussian models given below confirm these findings. In
fact, there are reasons to expect that the latter L dependence
applies more generally even when ��0. As proven some
time ago by Iagolnitzer and Souillard �74�, using the
Griffiths-Sherman-Kelly inequalties �75�, the two-point net
correlation function of a ferromagnetic system whose inter-
actions decay as v����x� in Eq. �1.1� cannot decay faster than
the potential. Although we are not aware of any rigorous
proof that they cannot decay slower than the potential either
�76,77�, it seems most natural to us to assume that this cu-
mulant decays as x→� according to the same power law as
the interaction potential, barring eventual logarithmic correc-
tions in special cases.

Now, the correlation function

G�x� � �S�x�S�0�� − �S�x���S�0�� �2.29�

of a slab of size �d−1�L under periodic boundary conditions
can be expressed in terms of its bulk counterpart G� via

GL
PBC�x� = �

j=−�

�

G��x − jLê1� , �2.30�

where ê1 is a unit vector along the finite 1 direction. For
fixed x, the terms with j�0 yield L-dependent deviations
from the j=0 bulk term that decay �L−d−� as L→�, pro-
vided the large-distance behavior �1.1� of v��� carries over to
G�. This suggests that �away from criticality� the excess con-
tribution to the free energy of a d-dimensional volume is
down by a factor L−�, so that the excess density fex behaves
as L1−d−�. To ensure consistency with Eq. �2.27�, we must
therefore have

� = 2 − � . �2.31�

Although our results for the spherical and Gaussian mod-
els described below are in conformity with this prediction,
they do not provide a nontrivial check of it because � van-
ishes. Such a check should in principle be possible within the
framework of the � expansion. To this end, one would have
to compute the scaling function X� using RG improved per-
turbation theory to sufficiently high orders, verify its limiting
behavior �2.25�, and confirm its consistency with Eq. �2.31�.

III. SPHERICAL MODEL

A. Definition of the model

Let L�Zd be the set of sites x of a simple hypercubic
lattice of size L1�L2� ¯ �Ld. Imposing periodic boundary

conditions along all d principal directions, we consider a
spherical model with the Hamiltonian

H
kBT

= −
1

2 �
x,x��L

J�x − x��
kBT

S�x�S�x�� − h �
x�L

S�x� + s �
x�L

S2�x�

�3.1�

whose spin variables S�x��R satisfy the mean spherical
constraint

� �
x�L

S2�x�� = �L� . �3.2�

Here �L�, the cardinality of the set L, is the total number of
sites �or spins�. Further, s is a real positive variable, called
the spherical field, whose value is to be determined from Eq.
�3.2�. For systems such as the one considered here, whose
spins are all equivalent by translational invariance, the con-
straint �3.2� fixes all averages �S2�x��, ∀ x�L, to be unity.

As before, h=H /kBT denotes a reduced magnetic field.
The pair interaction J�x� consists of nearest-neighbor bonds
and a long-ranged contribution of the type v��� specified in
Eq. �1.1�, with 2���4; we use the choice

J�x� = J1�x,1 +
J2

��0
2 + x2��d+��/2 , �3.3�

with J1�0 and J2�0, where �0�0 sets a crossover length
scale beyond which J�x� varies approximately as J2x−d−�.

B. Properties of the interaction potential

In Appendix A we show that the Fourier transform

J̃�q� � �
x

J�x�e−iq·x �3.4�

of this interaction can be written as

J̃�q� = J̃�0� − KkBT ��q� �3.5�

with

K � −
1

kBT
� �J̃�q�

�q2 �
q=0

, �3.6�

where ��q� behaves as

��q� = q2 − bq� + b4q4 + b4,1�
�=1

d

q�
4 + o�q4� �3.7�

for small q, and K�0, b�0, b4�0, and b4+b4,1�0. The
term proportional to b4,1 is anisotropic in q space. It is a
consequence of the fact that the hypercubic lattice breaks the
Euclidean symmetry down to the symmetry of a hypercube.
For other, less symmetric lattices more than two fourth-order
invariants and hence additional anisotropic q4 terms would
appear.

Owing to our choice �3.3� of interaction constants, we
have J�x��0 for all lattice displacements x. A straightfor-
ward consequence is that the Hamiltonian �3.1� has a unique

ground state whose energy for h=0 is given by J̃�0�. Further-
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more, J̃�0�� J̃�q� for all nontrivial wave vectors q in the first
Brillouin zone BZ1. It follows that the resulting values of
b , . . . ,b4,1 must be such that the equation 1−bq�−2+q2�b4

+b4,1���q� /q�4�=0 has no real-valued solutions q.
Since the nonanalytic contribution �q� arises from the

large-distance tail of J�x�, its coefficient kBTKb should not
dependent on the details of how J�x� behaves at small dis-
tances and hence should be independent of �0. Our result

b
kBTK

J2
=

�d/2��− �/2�
2����d + ��/2�

, �3.8�

derived in Appendix A, confirms this expectation. On the
other hand, the coefficients of the analytic terms of orders q2

and q4 of J̃�q� depend, of course, on J1 and �0.
Note that the Fourier transform of the second term on the

right-hand side of Eq. �3.3� yields a contribution to the
nearest-neighbor coupling �J�x��x=1 that depends on �. This
dependence can be utilized to modify this contribution and
hence the nearest neighbor coupling for a given value of J2
by varying �. If we choose, for simplicity, the value zero for
the coupling constant J1 in Eq. �3.3�, then the parameter b
becomes �cf. Appendix A�

b = −
1

�
��− �/2���2 − �/2�sin���/2���0/2��−2, �3.9�

which reduces to

b =
2

3
�0, d = � = 3 �3.10�

for the case of nonretarded van der Waals interactions in
three dimensions.

C. Solution of the model, free energy, and constraint equation

Defining

v2 � −
�

�q2 �ln J̃�q��q=0 =
KkBT

J̃�0�
, �3.11�

we introduce the parameter

r �
1

v2
�2skBT

J̃�0�
− 1� �3.12�

and the mode sum

Ud,��r�L� =
1

2�L� �
q�BZ1

ln�r + ��q�� , �3.13�

where L��L1 , . . . ,Ld�. As is shown in Appendix A, the co-
efficient v2 for our choice �3.3� of interaction constants takes
the value

v2 =
�0

2

2�� − 2�
�3.14�

when J1=0.
Expressed in terms of the above quantities, the total free

energy FL�K ,h� of our model is given by �11�

FL�K,h�
kBT�L�

= f �0��K� +
1

2
sup
r�0
	2Ud,��r�L� − Kr −

h2

Kr


�3.15�

with

f �0��K� =
1

2
�ln

K

2�
−

K

v2

 . �3.16�

To determine the required supremum, we differentiate Eq.
�3.15� with respect to r. This yields as the condition from
which r�rL�K ,h�—or, equivalently, the spherical field s of
Eq. �3.12�—is to be determined the constraint equation

K =
h2

KrL
2 + Wd,��rL�L� �3.17�

with

Wd,��rL�L� =
1

�L� �
q�BZ1

1

rL + ��q�
. �3.18�

The latter quantity is obviously related to Ud,� via

Ud,��rL�L� = Ud,��0�L� +
1

2
�

0

rL

Wd,��x�L�dx . �3.19�

Let us recall that the constraint equation �3.17� can be
recast in the form of an equation of state �11�. To see this,
note that Eq. �3.15� yields for the magnetization density mL
the result

mL�K,h� = −
�

�h

FL�K,h�/�L�
kBT

=
h

KrL�K,h�
, �3.20�

whenever the supremum is attained for the solution rL of Eq.
�3.17�. Using this to eliminate rL in favor of mL and h gives
us the equation of state

�1 − mL
2�K = Wd,�� h

mLK
�L
 . �3.21�

In view of this correspondence between the constraint equa-
tion �3.17� and the equation of state �3.21�, we will take the
liberty of referring to the former henceforth as the equation
of state.

From Eq. �3.20� one can easily read off that rL for h=0
has the familiar meaning of an inverse susceptibility. Let us
define the susceptibility by

�L�K,h� �
�mL�K,h�

�h
. �3.22�

Taking the derivative of the above-mentioned equation with
respect to h at h=0 then gives the desired relation

�rL�K,0��−1 = �L�K,0�K . �3.23�

We are interested in the limit where all linear dimensions
L2 , . . . ,Ld→� while L1 remains fixed at the finite value L1
�L. Let us employ the following convenient convention:
Whenever the bold symbol L in quantities such as Wd,��r �L�
or rL has been replaced by L, it is understood that the so-
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specified thermodynamic limit has been taken. For instance,
Ud,��r �L� stands for

Ud,��r�L� � lim
L2,. . .,Ld→�

Ud,��r�L� , �3.24�

and Ud,��rL �L� means this function, taken at the correspond-
ing limiting value rL� limL2,. . .,Ld→� rL of the supremum rL,
i.e., of the solution to Eq. �3.17�.

IV. FINITE-SIZE BEHAVIOR OF THE EQUATION OF
STATE (3.17)

A. Decomposition of mode sums into bulk and size-dependent
contributions

In order to determine the finite-size behavior of the excess
free energy and its consequences for the Casimir force, we
must investigate the L dependence of the mode sums
Ud,��rL �L� and Wd,��rL �L� for large L. Let us first focus our
attention on the explicit L dependence of these quantities by
considering them at an arbitrary L-independent value of r.
Writing

Ud,��r�L� = Ud,��r��� + 
Ud,��r�L� �4.1�

and

Wd,��r�L� = Wd,��r��� + 
Wd,��r�L� , �4.2�

we split off their L-independent bulk parts

Ud,��r��� =
1

2
�

q�BZ1

�d�

ln�r + ��q�� �4.3�

and

Wd,��r��� = �
q�BZ1

�d� 1

r + ��q�
, �4.4�

where

�
q�BZ1

�d�

� �
�=1

d �
−�

� dq�

2�
�4.5�

is a convenient shorthand, from their L-dependent remain-
ders 
Ud,��r �L� and 
Wd,��r �L�. Using Poisson’s summa-
tion formula �A4� �see Appendix A�, the latter can be written
as


Ud,��r�L� = �
k=1

� �
q�BZ1

�d�

cos�q1kL� ln�r + ��q�� �4.6�

and


Wd,��r�L� = �
k=1

� �
q�BZ1

�d� 2 cos�q1kL�
r + ��q�

, �4.7�

respectively.

B. Bulk equation of state

Next, we consider the equation of state �3.17� in the bulk
limit L→�. At the bulk critical point K=Kc,L=�, h=0, its

solution r�rL=� must vanish. Hence the critical coupling
Kc,� is given by

Kc,��b� = Wd,��0��� . �4.8�

As indicated, this quantity depends on the interaction param-
eter b as well as on all other interaction parameters b4, b4,1,
etc. appearing in ��q�. Defining the scaling fields gt and gh

as

gt = Kc,� − K, gh = h/�K , �4.9�

we find from Eq. �3.17� that the bulk quantity r� is to be
determined from

− gt = �gh/r��2 + Wd,��r���� − Wd,��0��� , �4.10�

the “bulk equation of state.”

1. The case d+��6 with 2�d�4 and 2���4

To study its solutions near the bulk critical point, we must
know how Wd,� behaves for small r. Since the long-ranged
interaction proportional to b does not modify the leading
infrared behavior, it is justified to expand in b. A straightfor-
ward calculation �see Appendix A� shows that provided 2
�d�4, 2���4, and d+��6,

Wd,��r��� − Wd,��0��� �
r→0

− Ad rd/2−1 + �wd + bwd,��r + O�r2�

− bBd,�r�d+��/2−2�1 + o�r�� + O�b2� ,

�4.11�

where

Ad = −
��1 − d/2�

�4��d/2 � 0 �4.12�

and

Bd,� =
��d + � − 2�

2�4��d/2��d/2�sin���d + ��/2�
� 0. �4.13�

We insert the above result into the bulk equation of state
�4.10�, keeping only the explicitly shown contributions. The
resulting equation for the scaled inverse susceptibility r�gt

−�

is expected to take a scaling form. To the linear order of our
analysis in b and the irrelevant scaling fields g� and g�, this
is the case provided a term linear in b is included in g�. Such
a contribution is anticipated on general grounds because in a
�4 theory with coupling constant u, the RG flow of the run-
ning variable ū��� should be affected by terms linear in b;
technically, this may be attributed to the fact that single in-
sertions of the long-ranged operator �2.9� require contribu-
tions linear in b of the �4 counterterm.

On the other hand, the scaling field g� should have no
contribution of zeroth order in b because, given an initial
Hamiltonian without long-range interactions �b=0�, no long-
range interaction can be generated under a RG transforma-
tion.

In conformity with these ideas, the choices
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g��b� = wd + bwd,�, g��b� = b �4.14�

�up to nonlinear contributions and a redefinition of the scales
of these fields� turn out to be appropriate. They entail that the
resulting bulk equation of state scales, so that solutions r� to
it can be written as

r� � gt
� R����ghgt

−
,g�gt
��,g�gt

���� , �4.15�

where the critical exponents �=� �2−��, �, �, 
= �� /2��d
+2−��, ��, and � take the spherical-model values

�SM = 2�SM =
2

d − 2
,

�SM = 0, 
SM =
d + 2

2�d − 2�
,

��,SM = � − 2, �4.16�

and �2.18�, respectively. The function R��� is given by

R����xh,x�,x�� = R0
����xh� + x�R�

����xh� + x�R�
����xh�

+ o�x�,x�� , �4.17�

where R0
����xh� is the solution to the asymptotic scaled bulk

equation of state

1 + xh
2 �R0

����xh��−2 = Ad�R0
����xh���d−2�/2, �4.18�

while the remaining two functions are given by

R�
����xh� =

2�R0
����xh��4

�d − 2�Ad�R0
����xh��d/2+1 + 4xh

2 �4.19�

and

R�
����xh� =

− 2Bd,��R0
����xh���d+�+2�/2

�d − 2�Ad�R0
����xh��d/2+1 + 4xh

2 . �4.20�

For zero magnetic field, the above findings simplify con-
siderably, giving

�r��h=0 � � gt

Ad

��1 +

2g��b�
�d − 2�Ad

� gt

Ad

��

−
2g��b�Bd,�

�d − 2�Ad
� gt

Ad

���� , �4.21�

where again the spherical-model values �4.16� and �2.18�
must be substituted for the critical exponents �, �, ��, and �.

2. Logarithmic anomalies and the case d+�=6 with
2�d�4

The above results get modified by the appearance of loga-
rithmic anomalies when d=4 or d+�=6. Our ultimate inter-
est is to understand the consequences this has for finite-size
scaling and the Casimir force in the latter case. Since loga-
rithmic anomalies occur already in the bulk theory, it will be
helpful to clarify their origin first in this simpler context.

That the finite-size behavior gets modified by the presence
of logarithmic anomalies when d+�=6 was recognized al-

ready in a paper by Chamati and one of us �37�. However, no
explanation of their cause within the general context of RG
theory was given there. Here we wish to fill this gap. As we
shall see, despite some similarities with the situation at the
upper critical dimension d=4, the mechanisms by which
they are produced in the cases d=4 and d+�=6 with 2�d
�4 are different.

Let us begin by recalling the well understood case d=4
�78�. The coefficients Ad and wd both become singular as d
→4 �see, e.g., Ref. �79� and Appendix A�. Although wd is
nonuniversal, its pole part at d=4 �a single pole� is universal
and equal to that of Ad, so that the sum of these two terms in
Eq. �4.11� produces a finite r ln r contribution in the limit
d→4. As a consequence, the leading thermal singularity of
r� takes the form

�r��h=0 � gt/�ln gt� . �4.22�

In the framework of RG theory the appearance of loga-
rithmic anomalies means that the Hamiltonian H transforms
under a change of momentum scale �→�� into a trans-
formed one H(�ḡj���� ,�) whose � dependence cannot fully
be absorbed through scale-dependent scaling fields ḡj��� but
has an additional explicit dependence on �. We follow here
the notational conventions of Wegner �78,80,81�: The ḡj���
are nonlinear scaling fields with initial values ḡj�1�=gj and
eigenexponents yj; i.e.,

ḡj��� = �−yjgj . �4.23�

We denote their linear counterparts as �̄ j���, and let �̄0 with
y0=d be the special field associated with the volume. If the
linearized RG operator is diagonal in the variables �i, then
these fields usually satisfy flow equations, which to quadratic
order can be written as

− �
d�̄i���

d�
= yi�̄i +

1

2�
j,k

aijk�̄ j�̄k, �4.24�

where aijk=aikj and aij0=0 �80�. Provided the conditions

yi � yj + yk �4.25�

are satisfied, one arrives at an expansion of the form

�̄i = ḡi +
1

2�
j,k

bijkḡjḡk + ¯ �4.26�

with

bijk =
aijk

yj + yk − yi
. �4.27�

Similar conditions involving sums of more than two
eigenexponents, e.g., yi�yj +yk+yl, must hold in order that
the contributions of third and higher orders have a corre-
sponding form with scale-independent expansion coeffi-
cients.

When conditions such as Eq. �4.25� are violated so that yi
equals a sum of other RG eigenvalues, the coefficients of the
expansion of the linear fields �̄i in the nonlinear ones ḡi
become scale dependent, involving logarithms of � or even
powers of such logarithms. For example, when yi=yj +yk for
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a single triple �i , j ,k� with aijk�0, then bijk gets replaced by
�78,80�

bijk��� = − aijk ln � . �4.28�

Upon making the usual choice �t=��gt� such that �ḡt��t��=1,
logarithms of t result.

Let us first consider the case d+��6 with d ,�� �2,4�,
and ignore the contributions from all irrelevant fields. Then
the inequalities �4.25� as well as the condition that the lin-
earized RG operator be diagonal at the critical fixed point in
the �relevant� fields are satisfied.

The logarithmic singularities one encounters at the upper
critical dimension d=4 have two sources �78�: �i� The expo-
nent �0=d is equal to twice the thermal RG eigenexponent
yt=1/�; �ii� a marginal operator ��4� must be taken into
account, so that an infinite number of eigenexponent in-
equalities �4.25� and its analogs involving more than three
RG eigenexponents are violated. The known consequences
are that the leading thermal singularities have logarithmic
anomalies which for general values of n consist of nontrivial
powers of ln gt.

Next, we turn to the case d+�=6 with d ,�� �2,4�. A
similarity with the case d=4 is that the coefficient wd,�
�which is again universal� has a single pole at d+�=6 that
cancels with the pole of Bd,� such that a contribution propor-
tional to r ln r is produced in the limit �→6−d of Eq. �4.11�.
Thus the analog of this equation for d+�=6 becomes

Wd,��r��� − Wd,��0��� �
r→0

− Adrd/2−1 + �wd + w̃db�r

+ bKdr ln r + O�b2� �4.29�

with

w̃d =
Kd

2
+ wd,6−d

reg , �4.30�

where Kd denotes the conventional factor

Kd � �
q

���q� − 1� =
2

�4��d/2��d/2�
� 0, �4.31�

while wd,6−d
reg means the regular part

wd,6−d
reg = lim

�→6−d
� 2Kd

� + d − 6
+ wd,�
 �4.32�

of wd,� at �=6−d.
Upon substituting the above result into the bulk equation

of state �4.10�, we see that instead of Eqs. �4.15�–�4.20� we
now have

r� � gt
�
„R0

����xh� + gt
��R�

����xh�

� �wd + bw̃d + bKd ln�gt
�R0

����xh���… , �4.33�

which simplifies to

�r��h=0 � � gt

Ad

��1 +

2

�d − 2�Ad
� gt

Ad

��

� �wd + bw̃d + b
2Kd

d − 2
ln

gt

Ad

� �4.34�

when h=0.
The origin of the logarithmic corrections proportional to b

is due to the previously mentioned mixing of the
b-independent linear part of the irrelevant scaling field g�

�which we denote as ��� with ��	b, which led us to con-
clude that the scaling fields g� and g� can be chosen as in
Eq. �4.14� up to nonlinear contributions. Recalling that �� is
expected to contribute to the change of �� under RG trans-
formations, but �� cannot be generated when 2���4 if the
initial Hamiltonian does not involve any long-range interac-
tions, one concludes that this translates into flow equations
of the form

− �
d

d�
�̄� = y��̄� + a���̄� + ¯ ,

− �
d

d�
�̄� = y��̄� + ¯ , �4.35�

with a���0. As long as d+��6, the eigenexponents y� and
y� differ. In that case these flow equations yield

�̄���� = ḡ���� +
a��

y� − y�

ḡ���� + ¯ , �4.36�

�̄���� = ḡ���� + ¯ , �4.37�

which in turn implies that g� involves a linear combination
of �� and ��, in conformity with Eq. �4.14�.

For d+�=6, the spherical model yields y�=y�=d−4 �cf.
Eq. �2.11��. Owing to this degeneracy, the expansion �4.36�
gets replaced by

�̄���� = ḡ���� − a��ḡ����ln � , �4.38�

which in turns leads to the logarithmic temperature anomaly
in Eq. �4.34�.

The general mechanism we have identified here as pro-
ducing the logarithmic anomalies in the case d+�=6 is, of
course, not new; a brief discussion of it may be found in Sec.
V.E.1 of Ref. �80�.

C. Finite-size scaling form of equation of state

We now proceed with our analysis of the finite-size be-
havior. To this end we must work out the large-L dependence
of the functions 
Wd,� and 
Ud,�. Expanding again to linear
order in b gives


Wd,��r�L� = 
Wd,�
�0� �r�L� + b
Wd,�

�1� �r�L� + O�b2� ,

�4.39�

where the superscripts �0� and �1� on the right-hand side
indicate, respectively, the function 
Wd,��r �L� and its first
derivative with respect to b, taken at b=0. From Eqs. �3.7�
and �4.4� we obtain
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Wd,�
�0� �r�L� = �

k=1

� �
q�BZ1

�d� 2 cos�q1kL�
r + ��q�

�4.40�

and


Wd,�
�1� �r�L� = �

k=1

� �
q�BZ1

�d� 2q� cos�q1kL�
�r + ��q��2 . �4.41�

The q integrations �cosine transforms� appearing in these
equations are well defined as long as r�0 and L�0. In
order to obtain the asymptotic behavior of the functions
�4.40� and �4.41� for r→0, we extend the q integrations to
the full q space Rd and make the replacement ��q�→q2 in
their denominators. This amounts to the omission of contri-
butions that are regular in r or less singular than those re-
tained. The resulting expression for the right-hand side of
Eq. �4.40� is easily evaluated by noting that it is nothing else
than the difference between the free propagator GL

PBC of Eq.
�2.30� and its bulk counterpart G�, given by

G��d�r;x� � �
q

�d� eiq·x

r + q2 = r�d−2�/2 Kd/2−1�x�r�
�2��d/2�x�r�d/2−1

,

�4.42�

with x��x�.
One thus arrives at


Wd,�
�0� �r�L� �

2

Ld−2�
k=1

�

G��d�rL2;k�

=
Kd−1

Ld−2�
0

� pd−2

�rL2 + p2

dp

e
�rL2+p2

− 1
, �4.43�

where the second line follows from the first one with the aid
of the representation

G��d�r;x� = �
q�

�d−1� e−�x1��r + q�
2�1/2

2�r + q�
2�1/2 eix�·q� �4.44�

upon interchanging the summation over k with the integra-
tion over the �d−1�-dimensional wave vector q� conjugate to
x� = �x2 , . . . ,xd�, the component of x perpendicular to ê1.

In order to compute the analogous approximation for

Wd,�

�1� �r �L�, we proceed as follows. Applying the identity

q�

�r + q2�2 = �r� rq�−2

r + q2
 �4.45�

to the integrand of Eq. �4.41�, we see that the right-hand side
of this equation is the derivative �r of an expression that
differs from the right-hand side of Eq. �4.40� merely through
an extra power of q�−2 in the integrand. This tells us that the
roles of the film propagator GL�d �r ;x� and its bulk counter-
part G��d �r ;x� in Eq. �4.43� now are taken over by the modi-
fied film propagator

GL�d,��r;x� =
1

L
�

q1��2�/L�Z
�

q�

�d−1� q�−2eiq·x

r + q2 �4.46�

and its L=� analog, respectively, which obviously reduce to
the former two when �=2.

Let us define the function

Qd,��y� �
y

2
�GL=1�d,��y ;0� − G��d,��y ;0��

= y�
k=1

� �
q

�d� q�−2 cos�q1k�
y + q2 . �4.47�

Here the second representation follows again by Poisson’s
summation formula �A4�.

In terms of this function, the analog of Eq. �4.43� be-
comes


Wd,�
�1� �r�L� �

2

Ld+�−4Qd,�� �rL2� , �4.48�

where the prime indicates a derivative, i.e., Qd,�� �y�
��Qd,��y� /�y. Furthermore, our result �4.43� for

Wd,�

�0� �r �L� can be written as


Wd,�
�0� �r�L� � L−�d−2� 2

rL2Qd,2�rL2� . �4.49�

Explicit results for the propagator G��d ,� �r ;x� and the
functions Qd,��y� are derived in Appendix B. As is shown
there, G��d ,� �r ;x� can be calculated for general values of
�� �2,4� and expressed in terms of generalized hypergeo-
metric functions. From these results the asymptotic behavior
of the functions Qd,��y� for large and small values of y can
be inferred in a straightforward manner �see Appendix B 2�.
We managed to express Qd,��y� for general values of �d ,��
in terms of elementary and special functions up to a series of
the form � j=1

� �·�, but have not been able to obtain closed-
form analytic results for these series in general. However, for
a variety of special choices �d ,��, we succeeded in deriving
explicit analytic expressions for the functions Qd,�. In par-
ticular, all functions Qd,� required for the analysis of the case
d=�=3 of nonretarded van der Waals interactions in three
dimensions are determined analytically in Appendix B.

From the above results the finite-size scaling form of the
equation of state near the bulk critical point follows in a
straightforward fashion. Let us choose the scaling variables ť

and ȟ in Eq. �2.19� as

ť = �Kc,� − K�Ld−2, �4.50�

ȟ = hK−1/2L�d+2�/2, �4.51�

ǧ� and ǧ� in accordance with Eq. �4.14�, and introduce the
scaled inverse susceptibility

řL � rLL�/� = rLL2, �4.52�

where again the spherical-model values �4.16� were utilized
for the exponents 
 /� and � /�.
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Upon subtracting from the equation of state �3.21� its bulk
analog at the critical point and inserting Eqs. �4.2�, �4.11�,
�4.48�, and �4.49�, we obtain for the case 2�d�4, 2��
�4, and d+��6

ť � − �ȟ/řL�2 + AdřL
d/2−1 − 2řL

−1Qd,2�řL� − ǧ�řL

+ ǧ��Bd,�řL
�d+�−4�/2 − 2Qd,�� �řL�� . �4.53�

The result has the expected scaling form. We can solve for řL
�at least in principle� to determine it as a function R of the
other scaled variables. Hence we have shown, to linear order
in g�, g�, and b, that the inverse susceptibility rL can be
written as

rL = L−2R�ť, ȟ, ǧ�, ǧ�� �4.54�

in the appropriate finite-size scaling regime. By analogy with
the expansion �4.17� made in the bulk case, we write

R�ť, ȟ, ǧ�, ǧ�� = R0�ť, ȟ� + ǧ�R��ť, ȟ� + ǧ�R��ť, ȟ� + o�ǧ�, ǧ�� .

�4.55�

Here R0�ť , ȟ� is the solution to Eq. �4.53� with ǧ� and ǧ�

=0 set to zero. The other two functions are found to be given
by

R��ť, ȟ� =
2�R0�ť, ȟ��4

N�ť, ȟ�
�4.56�

and

R��ť, ȟ� =
4R0

3Qd,�� �R0� − 2Bd,�R0
�d+�+2�/2

N�ť, ȟ�
�4.57�

with

N�ť, ȟ� = �d − 2�AdR0
d/2+1 + 4ȟ2 + 4R0�Qd,2�R0�

− R0Qd,2� �R0�� , �4.58�

where R0 stands for R0�ť , ȟ�.
In the large-L limit the foregoing results must reduce to

our above ones for the bulk, Eqs. �4.15� and �4.17�–�4.21�.
This implies the limiting behavior

R�ť�L�, ȟ�L�, ǧ��L�, ǧ��L�� �
L→�

ť2�R����ghgt
−
,g�gt

��,g�gt
����

�4.59�

and corresponding relations between the other R functions
and their bulk counterparts, namely,

Ra�ť�L�, ȟ�L�� �
L→�

ť2�Ra
����ghgt

−
�, a = 0,�,� .

�4.60�

For d+�=6 with 2�d�4 and 2���4, logarithmic
anomalies appear again in the equation of state and its solu-
tion. A simple way to obtain these is to take the limits �
→6−d of Eqs. �4.53�–�4.58�. This yields

ť � − �ȟ/řL�2 + AdřL
d/2−1 − 2řL

−1Qd,2�řL� − �wd + w̃db�Ld−4řL

− ǧ��2Qd,6−d� �řL� + KdřL ln
řL

L2
 �4.61�

and

rL � L−2
„R0�ť, ȟ� + L−�4−d�R��ť, ȟ��wd + w̃db

+ 2bQd,6−d� �R0�ť, ȟ���R0�ť, ȟ��−1 + bKd ln�L−2R0�ť, ȟ���… .

�4.62�

The logarithmic anomalies manifest themselves through
the contributions that depend explicitly on ln L2 �rather than
merely on scaled variables�.

D. Relation between finite-size and bulk inverse susceptibility

The results of the previous section can be combined with
those for the bulk equation of state to express the inverse
scaled finite-size susceptibility řL in terms of its bulk coun-
terpart

ř� � r�L�/� = r�L2, �4.63�

rather than the scaled temperature field ť. The relationship
between řL and ř� will be needed in the next section to
determine the excess free energy as a function of the inverse
bulk susceptibility r�. Since the second-moment correlation
length �� of the spherical model is given by r�

−1/2 �up to a
normalization factor�, this gives us rL and the excess free
energy expressed in terms of ��.

1. The case d+��6 with 2�d�4 and 2���4

We equate the finite-size equation of state �4.53� with its
analog for ř�,

ť � − ȟ2ř�
−2 + Adř�

�d−2�/2 − ǧ�ř� + ǧ�Bd,�ř�
�d+�−4�/2,

�4.64�

and substitute for řL the Ansatz

řL � R0�ř�, ȟ� + ǧ�R��ř�, ȟ� + ǧ�R��ř�, ȟ� . �4.65�

This yields for R0=R0�ř� , ȟ� the equation

2R0
−1Qd,2�R0� = Ad�R0

�d−2�/2 − ř�
�d−2�/2� − ȟ2�R0

−2 − ř�
−2�
�4.66�

and for the other functions the solutions

R��ř�, ȟ� =
2R0

N
�R0 − ř�� �4.67�

and

R��ř�, ȟ� =
2R0

N
�Bd,��ř�

�d+�−4�/2 − R0
�d+�−4�/2� + 2Qd,�� �R0�� ,

�4.68�

where N means the function
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N�ř�, ȟ� = 4ȟ2R0
−2 + �d − 2�AdR0

�d−2�/2 + 4R0
−1Qd,2�R0�

− 4Qd,2� �R0� . �4.69�

2. The case d+�=6 with 2�d�4

The analog of Eq. �4.64� is given by Eq. �4.61� with řL
replaced by ř� and the terms involving Qd,2 and Qd,6−d�
dropped. Owing to the presence of the logarithmic anomaly
	b, the Ansatz �4.65� must be modified so as to allow for an
explicit L dependence of R�:

řL � R0�ř�, ȟ� + ǧ�R��ř�, ȟ;L� + �wd + w̃db�Ld−4R��ř�, ȟ� .

�4.70�

Instead of Eq. �4.68�, we now have

R��ř�, ȟ;L� =
2R0

N
�Kd�R0 ln�R0/L2� − ř� ln

ř�

L2

+ 2Qd,6−d� �R0�� , �4.71�

where the function N continues to be given by Eq. �4.69�.
Likewise, Eqs. �4.66� and �4.67� for R0 and R� remain valid.

In the case of primary interest, d=3, these results can be
augmented by determining the explicit solution to Eq. �4.66�
for h=0. To this end, we substitute the result �B19� derived
in Appendix B 1 for the function Q3,2. Straightforward alge-
braic manipulations then lead to

R0�ř�,0� = 4 arccsch2�2 exp�− �ř�/2��

= 4 ln2�1

2
�e�ř�/2 + �4 + e�ř�/2�� . �4.72�

This and the associated scaling function that follows from it
via Eq. �4.67� are depicted in Figs. 1 and 2, respectively.
Figure 3 shows the function R��ř� ,0 ;L� defined in Eq.
�4.71�.

In conjunction with Eqs. �4.67�, �4.68�, and �4.70�, the
result �4.72� gives us the asymptotic behavior of rL for h
=0 in three dimensions including corrections to scaling, in an
explicit analytic form.

V. FINITE-SIZE BEHAVIOR OF FREE ENERGY AND
CASIMIR FORCE

We now turn to the computation of the finite-size free
energy �3.15�, beginning again with the case d+��6.

A. The case d+��6 with 2�d�4 and 2���4

In order to use Eq. �3.19�, we need the L-dependent part
of Ud,��0 �L�. The calculation is performed in Appendix C,
giving


Ud,��0�L� �
L→�

L−d�
C
GM�d� + ǧ�
�,C

GM�d,�� + O�b2�� .

�5.1�

Here


C
GM�d� = − �−d/2��d/2���d� �5.2�

and

FIG. 1. Scaling function R0�ř� ,0� for d=3, as given by Eq.
�4.72�. The dotted line represents the asymptote R0,as�ř� ,0�= ř� that
this function approaches for large values of ř� in an exponential
manner.

FIG. 2. Scaling function R��ř� ,0� for d=3 that one obtains by
inserting Eq. �4.72� into �4.67�.

FIG. 3. Function R��ř� ,0 ;L� for d=3 and the indicated values
of L, as obtained by insertion of Eq. �4.72� into �4.71�.
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�,C
GM�d,�� = −

2�−2��d + � − 2����d + � − 2�/2�
�d/2��1 − �/2�

�5.3�

are the values of the Casimir amplitudes �2.21� and �2.22� for
our Gaussian model, where ��d� is the Riemann zeta func-
tion.

Upon exploiting the relation �B5� between the derivatives
of Qd+2,2�r� /r and Qd,2�r� /r derived in Appendix B, one can
readily integrate Eq. �4.49� to obtain


Ud,�
�0� �r�L� � − L−d�
C

GM�d� +
4�

rL2Qd+2,2�rL2�
 . �5.4�

Likewise, 
Ud,�
�1� �r �L� follows by integration of Eq. �4.48�. A

simple integration by parts yields


Ud,�
�1� �r�L� � L−�d+�−2�Qd,��rL2� . �5.5�

The above results can now be combined in a straightfor-
ward fashion to determine the scaled free-energy density
fLLd−1. One gets

Ld−1�fL − Lf �0�� � ���ť, ř, ȟ, ǧ�, ǧ���ř=řL
�5.6�

with

��ť, ř, ȟ, ǧ�, ǧ�� �
1

2
řť −

ȟ2

2ř
−

Ad

d
řd/2 −

4�

ř
Qd+2,2�ř�

+
ǧ�

4
ř2 + ǧ��
�,C

GM�d,�� + Qd,��ř�

−
Bd,�

d + � − 2
ř�d+�−2�/2
 , �5.7�

where f �0�� f �0��K� denotes the smooth background term
�3.16�. As indicated, the function Y in the first equation must
be taken at the solution řL of the scaled equation of state

�Y�ť , ř , ȟ , ǧ� , ǧ�� /�ř=0, Eq. �4.53�.
The bulk free-energy density �per volume� fbk follows

from this in a straightforward manner. As is shown in Ap-
pendix B, the functions Qd,2�r� and Qd,��2�r� behave for
large values of r as

Qd,2�r� =
r→�

r�d+1�/4

2�2���d−1�/2e−�r �1 + O�r−1/2�� �5.8�

and

Qd,��r� =
r→�

− 
�,C
GM�d,�� −

D��d�
r

+ O�r−2� , �5.9�

respectively, where

D��d� =
2����d + ��/2�
�d/2��− �/2�

��d + �� , �5.10�

according to Eq. �B33�. Though not needed here, the value of
this coefficient appears in our subsequent analysis; it is posi-
tive for 2���4 and vanishes at both �=2 and 4. Since the
same applies to 
�,C

GM�d+2,��, the results �5.8� and �5.9� are
in conformity with each other.

Hence neither the term 	Qd+2,2 in Eq. �5.6� nor the sum of
Qd,� and 
�,C

GM�d ,�� contribute in the thermodynamic bulk
limit. The remaining terms yield

fbk − f �0� �
r�

2
gt −

gh
2

2r�

−
Ad

d
r�

d/2 +
g�

4
r�

2

− g�

Bd,�

d + � − 2
r�

�d+�−2�/2. �5.11�

The difference of the right-hand sides of Eqs. �5.6� and
�5.11� gives us the scaled excess free-energy density
Ld−1fex

sing. In the result, the scaling function R of Eq. �4.54�
must be substituted for ř, and for r�, we have the scaling
form �4.15� and the relationship �4.59� between the scaling
functions R and R�. Obviously, the resulting expression for
Ld−1fex

sing therefore complies with the scaling form �2.14�.
To derive and describe what this means in terms of ex-

plicit results for scaling functions, it is advantageous to
eliminate the temperature field gt in favor of the inverse bulk
susceptibility r� �which in the spherical model is related to
the bulk correlation length �� via r�	��

−2�. The advantage
originates from the explicit results we have been able to get
for the dependence of řL on ř�. Denoting the corresponding
analogs of the scaling functions X , . . . ,X� in Eqs. �2.14� and
�2.20� by Y , . . . ,Y�, we write

fex
sing � L−�d−1�Y�r�L2,hL
/�,g�L−�,g�L−��� �5.12�

with

Y�ř�, ȟ, ǧ�, ǧ�� = Y0�ř�, ȟ� + ǧ�Y��ř�, ȟ� + ǧ�Y��ř�, ȟ� + ¯ .

�5.13�

The above results in conjunction with those of Secs. IV C
and IV D yield the scaling functions

Y0�ř�, ȟ� = −
Ad

2
ř�

�d−2�/2�ř� − R0�ř�, ȟ�� +
Ad

d
�ř�

d/2

− R0
d/2�ř�, ȟ�� −

4�Qd+2,2�R0�ř�, ȟ��

R0�ř�, ȟ�

−
ȟ2 �ř� − R0�ř�, ȟ��2

2ř�
2 R0�ř�, ȟ�

, �5.14�

Y��ř�, ȟ� =
1

4
�ř� − R0�ř�, ȟ��2, �5.15�

and

Y��ř�, ȟ� = 
�,C
GM�d,�� + Qd,��R0�ř�, ȟ��

+ Bd,�� ř�
�d+�−2�/2 − R0

�d+�−2�/2�ř�, ȟ�
d + � − 2

−
ř� − R0�ř�, ȟ�

2
ř�

�d+�−4�/2
 . �5.16�

Note that ř� is the full inverse bulk susceptibility, which
itself has corrections to scaling �g� and g� according to Eq.
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�4.54�. Expanding it in powers of g� and g� to express fex
sing in

terms of �ř�g�=g�=0 would produce contributions linear in g�

and g�, in addition to those involving Y� and Y�.

1. Behavior at bulk criticality

At the bulk critical point �BCP� T=Tc,�, h=0, the above
results reduce to

fex,BCP
sing �

L→�
L−�d−1��
C

SM�d� + 
�,C
SM �d�

g��b�
L4−d

+ 
�,C
SM �d,��

g��b�
L�−2 + ¯ 
 , �5.17�

where 
C
SM, 
�,C

SM , and 
�,C
SM, the spherical-model values of the

amplitudes �2.21�–�2.23�, are given by �82,83�


C
SM�d� � Y0�0,0� = −

Ad

d
R0,BCP

d/2 −
4�Qd+2,2�R0,BCP�

R0,BCP
,

�5.18�


�,C
SM �d� � Y��0,0� = R0,BCP

2 /4, �5.19�

and


�,C
SM �d,�� � Y��0,0� = 
�,C

GM�d,�� + Qd,��R0,BCP�

−
Bd,�

d + � − 2
R0,BCP

�d+�−2�/2. �5.20�

Here R0,BCP�R0�0,0� is the d-dependent solution to Eq.
�4.66� at the bulk critical point.

Thus at bulk criticality, the scaling fields g� and g� indeed
give leading and next-to-leading corrections to the familiar
first term involving the Casimir amplitude 
C

SM�d� of the
spherical model with short-range interactions.

2. Behavior for T�Tc,� and h=0

Next, we consider the case T�Tc,� and h=0. As L→�,
the scaled inverse finite-size and bulk susceptibilities řL and
ř� both tend toward +�. Hence, to obtain the asymptotic
large-L behavior, we must study the behavior of the func-

tions R0, R�, and R� in the limit ř�→�. Clearly, R0�ř� , ȟ�
→ ř� as ř�→�. To determine the asymptotic large-ř� behav-
ior of R0�ř� ,0�, we choose ř� so large that the function
Qd,2�R0� in Eq. �4.66� can safely be replaced by the first term
of its asymptotic expansion �5.8�. Solving for R0�ř� ,0� then
yields

R0�ř�,0� =
ř�→�

ř� +
2�2���1−d�/2

�d − 2�Ad
ř�

�5−d�/4e−ř�
1/2

�1 + O�ř�
−1/2�� ,

�5.21�

where ř� now also is to be taken at h=0.
Using this result together with Eqs. �5.8� and �5.9�, one

can derive the large-ř� behavior of the scaling functions Y0,
Y�, and Y� in a straightforward fashion. One obtains

Y0�ř�,0� =
ř�→�

−
1 + O�ř�

−1/2�
�2���d−1�/2 ř�

�d−1�/4e−ř�
1/2

, �5.22�

Y��ř�,0� =
ř�→�

�2��1−d

�d − 2�2Ad
2 ř�

�5−d�/2e−2ř�
1/2

�1 + O�ř�
−1/2�� ,

�5.23�

and

Y��ř�,0� =
ř�→�

− D��d�ř�
−1 + O�ř�

−2� , �5.24�

where D��d� is the constant introduced in Eq. �5.10�. Unlike
Y0�ř� ,0� and Y��ř� ,0�, which decay exponentially, the scal-
ing function Y��ř� ,0� decays in an algebraic manner.

Thus the contribution due to this latter slowly decaying
term governs the large-L behavior of the excess free energy
fex

sing for T�Tc,� whenever the coupling constant b of the
long-range potential does not vanish. One has

fex
sing �

L→�
− g��b�

D��d�
r�

L−�d+�−1�

� − g��b�L−�d+�−1�D��d�� gt

Ad

−�

, �5.25�

where we substituted Eq. �4.21� for r� to obtain the second
line. This strongly contrasts with the asymptotic form that
applies in the absence of long-range interactions:

�fex
sing�b=0 �

L→�
− �2�L�−�d−1�/2� gt

Ad

��d−1�/4��

e−�gt/Ad��L.

�5.26�

B. The case d+�=6 with 2�d�4

Proceeding along similar lines as in the foregoing subsec-
tion, one can derive the analogs of Eqs. �5.6� and �5.11�–
�5.13�. They read

Ld−1�fL − Lf �0�� �
1

2
řLť −

ȟ2

2řL

−
Ad

d
řL

d/2 −
4�

řL

Qd+2,2�řL�

+
1

4
�wd + w̃db�Ld−4řL

2 + ǧ��
6−d,C
GM �d�

+ Qd,6−d�řL� +
Kd

4
řL

2 ln
řL

L2
 , �5.27�

fbk − f �0� �
r�

2
gt −

gh
2

2r�

−
Ad

d
r�

d/2 +
wd + bw̃d

4
r�

2

+ g�

Kd

4
r�

2 ln r�, �5.28�

and

Ld−1fex
sing � Y0�ř�, ȟ� + �wd + w̃db�Ld−4Y��ř�, ȟ�

+ ǧ�Y��ř�, ȟ;L� + ¯ , �5.29�

where
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Y��ř�, ȟ;L� = 
�,C
GM�d,6 − d� + Qd,6−d�R0�ř�, ȟ��

+
Kd

4
��ř� − 2R0�ř�, ȟ��řy ln

ř�

L2

+ R0
2�ř�, ȟ�ln

R0�ř�, ȟ�
L2 
 . �5.30�

while the functions Y0 and Y� remain given by Eqs. �5.14�
and �5.15�, respectively. Owing to the presence of logarith-
mic anomalies, the analogs of the scaling functions Y and Y�

in Eq. �5.13� have an additional explicit dependence on L. It
should also be remembered that logarithmic anomalies reside
also in the temperature dependence of the b-dependent cor-
rections to scaling of ř�.

The scaling functions Y0�ř� ,0� and Y��ř� ,0� for the
three-dimensional case are plotted in Figs. 4 and 5, respec-
tively. In Fig. 6, the function Y��ř� ,h=0;L� is displayed for
the case d=�=3 and some values of L.

1. Behavior at bulk criticality

Let us again see how these results simplify at the bulk
critical point. From Eqs. �5.29� and �5.30� one easily deduces
the asymptotic behavior

fex,BCP
sing �

L→�
L−�d−1��
C

SM�d� +
g��b�
L4−d �Kd

4
R0,BCP

2 ln
R0,BCP

L2

+ 
�,C
GM�d,6 − d� + Qd,6−d�R0,BCP�


+ 
�,C
SM �d�

wd + w̃db

L4−d + ¯ � . �5.31�

The leading correction to scaling now results from the
b-dependent contribution involving the logarithmic anomaly.

2. Behavior for T�Tc,� and h=0

Turning to the case of T�Tc,� and h=0, let us again
consider the asymptotic behavior of fex

sing for L→� at fixed
T�Tc,�. Upon inserting the large-ř� form �5.21� of R0 into
the result �5.30� for Y�, one sees that the contribution in large
parentheses decays exponentially and hence is asymptoti-
cally negligible compared to the algebraically decaying con-
tribution from the sum of the two terms in the first line of
this equation. This means that the limiting form �5.24� car-
ries over to the present case, except that we must set �=6
−d. Since the expressions �5.14� and �5.15� for the scaling
functions Y0 and Y�—and hence their limiting forms �5.22�
and �5.23�—continue to hold, the results �5.25� and �5.26�
for the leading asymptotic behavior of fex

sing when b�0 or
b=0, respectively, also remain valid.

3. The case d=�=3

In Fig. 7 the scaled excess free-energy densities �5.29� of
the three-dimensional case with nonretarded van der Waals–
type interactions ��=3� and without are compared for the
chosen value L=50 of the slab thickness L. For simplicity,
we have set the nonuniversal constants wd and w̃d to unity.

FIG. 4. Scaling function Y0�ř� ,0� for d=3 �full line�. The
dashed line represents the asymptote �5.22�. The value Y0�0,0�
=
C

SM�d=3� which Y0�ř� ,0� approaches as ř�→0 is known ex-
actly: According to Ref. �82�, it is given by 
C

SM�3�=−2��3� / �5��
=−0.15305. . ..

FIG. 5. Scaling function Y��ř� ,0� for d=3 �full line�. The
dashed line represents the asymptote �5.23�.

FIG. 6. Function Y��ř� ,0 ;L� for d=�=3 and the indicated val-
ues of L �dashed-dotted and full lines�. The dashed line represents
the corresponding asymptote �5.24� with d=�=3.
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As can clearly be seen from the double-logarithmic plot �b�,
the asymptotic behavior for large L /�� when b�0 is char-
acterized by the asymptote �5.24� and differs strongly from
its counterpart for the short-range case b=0.

In order to illustrate the effect of the explicit dependence
of the scaled excess free-energy density �5.29� for nonvan-
ishing interaction constant b on L, we display in Fig. 8 linear
and double-logarithmic plots of L2fex

sing for a variety of values
of L, including L=�. For the sake of simplicity, we have set
the nonuniversal constants wd and w̃d to unity.

C. The Casimir force

Using the results of the foregoing subsection for the ex-
cess free energy, the large-scale behavior of the Casimir
force �2.3� can be derived in a straightforward fashion. De-
pending on whether d+��6 or d+�=6, we have

FC
sing

kBT
� L−d��0�ř�, ȟ� + g��b�L−� ���ř�, ȟ�

+ g��b�L−�����ř�, ȟ� + ¯ � �5.32�

or

FC
sing

kBT
� L−d��0�ř�, ȟ� + �wd + w̃db�L−� ���ř�, ȟ�

+ g��b�L−� ���ř�, ȟ;L� + ¯ � , �5.33�

where � and �� take their spherical-model values �2.18� and
�4.16�, respectively. The scaling form �5.32� should hold
more generally for the n-vector model with 2�d�4 even
when d+�=6, as long as � and �� are not degenerate. This
applies, in particular, to the case d=�=3 of nonretarded van
der Waals interactions, albeit with the appropriate �different�
values of � and ��, and different scaling functions.

By taking the derivatives of Eqs. �5.12� and �5.29� and
with respect to L, one can express the above functions
�0 , . . . ,�� in terms of the functions Y0 , . . . ,Y�. One finds

FIG. 7. Scaled excess free-energy density �5.29� of the three-
dimensional spherical model in an L��2 slab with periodic bound-
ary conditions for L=50, plotted versus the finite-size scaling vari-
able L /����ř� �a�. The solid line corresponds to the case �=3 of
nonretarded van der Waals–type interactions with g��b��b=2/3;
the dashed line shows results for the short-range case b=0 for com-
parison. In �b� the graphs displayed in �a� are plotted in a double-
logarithmic manner. In this representation the asymptote �5.24�
�dotted line� becomes a straight line with the slope −2. The nonuni-
versal constants wd and w̃d both have been set to unity.

FIG. 8. Scaled excess free-energy densities �5.29� of the three-
dimensional spherical model in an L��2 slab with periodic bound-
ary conditions and nonretarded van der Waals–type interactions
��=3�. The results for various choices of L including L=� are
shown as linear �a� and double-logarithmic plots �b�. The asymp-
totes �dotted lines� correspond to the power-law behavior �5.24�.
The nonuniversal constants wd and w̃d both have been set to unity.
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�0�ř�, ȟ� = �d − 1 − 2ř��ř�
−




�
ȟ�ȟ
Y0�ř�, ȟ� , �5.34�

���ř�, ȟ� = �d + � − 1 − 2ř��ř�
−




�
ȟ�ȟ
Y��ř�, ȟ� ,

�5.35�

���ř�, ȟ� = �d + �� − 1 − 2ř��ř�
−




�
ȟ�ȟ
Y��ř�, ȟ� ,

�5.36�

and

���ř�, ȟ;L�

= �d + �� − 1 − 2ř��ř�
−




�
ȟ�ȟ − L�L
Y��ř�, ȟ;L� ,

�5.37�

where again the spherical-model values �2.18� and �4.16�
must be substituted for �, ��, and 
 /� �84�.

Noting that the limit of R0 as ř� and ȟ approach the bulk
critical point exists,

R0�ř�, ȟ� =
ř�,ȟ→0

R0,BCP + o�ř�, ȟ� , �5.38�

one sees that the same applies to the scaling functions

Yi�ř� , ȟ�:

Yi�ř�, ȟ� =
ř�,ȟ→0

Yi�0,0� + o�ř�, ȟ�, i = 0,�,� . �5.39�

Hence the terms in Eqs. �5.34�–�5.37� involving the deriva-

tives with respect to ř� and ȟ yield vanishing contributions
as the bulk critical point is approached. Using this in con-
junction with Eqs. �5.18�–�5.20� and �5.31�, one finds that
the values of these functions at the bulk critical point become

�0�0,0� = �d − 1�
C
SM�d� , �5.40�

���0,0� = �d + � − 1�
�,C
SM �d� , �5.41�

���0,0� = �d + �� − 1�
�,C
SM �d,�� , �5.42�

and

���0,0;L� = 3�
�,C
GM�d,6 − d� + Qd,6−d�R0,BCP��

+
Kd

4
R0,BCP

2 �2 + 3 ln
R0,BCP

L2 
 . �5.43�

To obtain the critical Casimir forces in the cases d+�
�6 and d+�=6, we must simply substitute the scaling func-
tions �i in Eqs. �5.32� and �5.33�, respectively, by their
above values at the bulk critical point.

The asymptotic forms of the Casimir force as L→� at
fixed temperature T�Tc,� and zero magnetic field can be
inferred in a straightforward fashion from the corresponding
results �5.25� and �5.26� for the excess free-energy density.

Depending on whether a long-range interaction proportional
to b is present or absent, one has

�FC
sing

kBT
�

b�0
�

L→�
− g��b��d + � − 1�

D��d�
Ld+� � gt

Ad

−�

�5.44�

or the exponential decay

�FC
sing

kBT
�

b=0
�

L→�
−

�gt /Ad��d+1��/4

�2�L��d−1�/2 e−L�gt/Ad��
. �5.45�

Here again the spherical-model values �4.16� must be substi-
tuted for � and �.

Figure 9 shows a comparison of the Casimir forces �5.33�
of an �2�L slab of thickness L=50 with and without van
der Waals–type interactions ��=3�, where we have again set
the nonuniversal constants wd and w̃d to unity. The double-
logarithmic plot �b� again nicely demonstrates the approach

FIG. 9. Scaled Casimir force �5.33� of the three-dimensional
spherical model in an L��2 slab with periodic boundary condi-
tions for L=50, plotted versus the finite-size scaling variable
L /����ř� �a�. The solid line corresponds to the case �=3 of non-
retarded van der Waals–type interactions with g��b��b=2/3; the
dashed line represents results for the short-range case b=0 for com-
parison. In �b� the graphs displayed in �a� are plotted in a double-
logarithmic manner. In this representation the asymptote �5.44�
�ř�

−1 �dotted line� becomes a straight line with the slope −2. The
nonuniversal constants wd and w̃d both have been set to unity.
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to the asymptote �ř�
−1 and the qualitatively different behav-

ior in the short-range case.
In Fig. 10 we illustrate how the scaled Casimir force for

the case with van-der-Waals-type interactions ��=3� varies
under changes of the slab thickness L.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the effects of long-range
interactions whose pair potential decays at large distances as
x−d−� with 2���4. Prominent examples of such interac-
tions are nonretarded and retarded van der Waals forces. The
latter are ubiquitous in nature; in particular, they are present
in fluids.

Application of the phenomenological theory of finite-size
scaling revealed that such long-range interactions are of the
kind termed “subleading long-range interactions” �36� and
hence should yield corrections to scaling in the critical re-
gime near the bulk critical point.

For systems belonging to the universality class of the
n-component �4 model in d dimensions, the associated

correction-to-scaling exponent ��, given in Eq. �2.11�, has a
larger value than its counterpart � associated with the con-
ventional leading corrections-to-scaling of d�3 dimensional
systems with short-range interactions. Hence the corrections-
to-scaling governed by �� are next to leading.

However, irrespective of whether � is smaller or larger
than ��, the subleading long-range interactions yield a con-
tribution to the Casimir force that decays in a power-law
fashion as a function of the film thickness L, both at and
away from the bulk critical temperature Tc,b. Since the
fluctuation-induced Casimir force one has even in the ab-
sence of these long-range interactions, for T�Tc,b decays
exponentially on the scale of the correlation length, the con-
tribution due to the long-range interactions becomes domi-
nant for sufficiently large L.

To corroborate these findings we solved a mean spherical
model with such long-range interactions—and hence the
limit n→� of the corresponding n-vector model—exactly.
For general values of � ,d� �2,4�, we confirmed the antici-
pated finite-size scaling behavior, and determined the scaling
functions to first order in the irrelevant scaling fields g� and
g�.

A crucial, though not unexpected, discovery was that the
scaling field associated with the conventional leading correc-
tions to scaling, g�, depends on the strength b of the long-
range interactions. This dependence plays a role in the
mechanism producing the logarithmic anomalies by which
the finite-size scaling behavior of our model turned out to be
modified when d+�=6. In these special cases—which in-
clude, in particular, the physically important one of nonre-
tarded van der Waals interactions in three dimensions—
anomalies of this kind showed up in b-dependent �leading�
corrections to scaling. We were able to clarify their origin
�see Sec. IV B 2�: They are caused by the degeneracy �
=�� of the two correction-to-scaling exponents in conjunc-
tion with the b dependence of g�.

Thus, three-dimensional systems belonging to the univer-
sality classes of the scalar �4 model and its O�n� counter-
parts with n�� should not exhibit such logarithmic anoma-
lies because their correction-to-scaling exponents � and ��

are not degenerate.
It would be worthwhile to extend the present work in a

number of different directions. We have focused our atten-
tion here on the case of temperatures T�Tc,�. An obvious
next step is a detailed investigation of the model for tempera-
tures below the bulk critical temperature Tc,�. For the spheri-
cal model with periodic boundary conditions considered
here, such an extension, which we defer to a future publica-
tion, is relatively straightforward.

The scaling forms derived in this paper on the basis of
phenomenological scaling ideas involved nontrivial critical
indices, such as � and � /�=2−�, and the correction-to-
scaling exponent �. Although the exact results for the spheri-
cal model we were able to present are in conformity with the
predicted more general finite-size scaling forms, they permit
us neither to corroborate the appearance of a nontrivial value
of � nor to verify the n dependence of � for the n-vector
model. A desirable complementary check of the phenomeno-
logical predictions that is capable of identifying nontrivial
values of � as well as the n dependence of it and other

FIG. 10. Scaled Casimir force �5.33� of the three-dimensional
spherical model in a L��2 slab with periodic boundary conditions
and nonretarded van-der-Waals-type interactions ��=3�. The results
for various choices of L including L=� are shown as linear �a� and
double-logarithmic plots �b�. The asymptotes �dotted lines� corre-
spond to the power-law behavior �ř�

−1 of Eqs. �5.24� and �5.44�.
The nonuniversal constants wd and w̃d both have been set to unity.
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exponents can be made by performing a two-loop RG analy-
sis for small �=4−d. We have performed such an analysis;
its results will be published elsewhere �48�.

Valuable alternative checks of our phenomenological pre-
dictions should be possible by means of Monte Carlo simu-
lations. Although it is quite a challenge to perform accurate
Monte Carlo simulations of near-critical systems with long-
range interactions, suitable algorithms were developed and
demonstrated to be quite efficient recently �85–87�. We
therefore believe that accurate tests of our predictions via
such simulations are feasible.

An obviously important direction for further research is
the extension of our work to other than periodic boundary
conditions, namely, those of a kind giving a better represen-
tation of typical experimental situations. Important examples
are slabs with Dirichlet boundary conditions on both bound-
ary planes, or more generally, Robin boundary conditions.
Although some aspects of our above findings should carry
over to such boundary conditions—e.g., the form of the
scaled variables encountered here and the power-law de-
crease of the Casimir away from the bulk critical
temperature—it is clear that any quantitative comparison be-
tween theoretical predictions and results of a given experi-
ment requires that appropriate boundary conditions have
been chosen in the calculations. We leave such extensions to
future work.
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APPENDIX A: FOURIER TRANSFORM OF THE
INTERACTION POTENTIAL

In this appendix we wish to derive the small-momentum
behavior of the Fourier transform �3.4� of the pair interaction
J�x� introduced in Eq. �3.3�. To this end we introduce a lat-
tice constant a� for each of the principal directions of the
simple hypercubic lattice in d dimensions we are concerned
with. We assume that the lattice has an odd number 2N�+1
�with N��N� of layers perpendicular to the x� axis, so that
its linear extension along the x� direction is L�= �2N�

+1�a�.
With these conventions the lattice Fourier transform �3.4�

of the pair interaction �3.3� becomes

J̃�q� = �
j1=−N1

N1

¯ �
jd=−Nd

Nd

J�x�j���
�=1

d

e−iq̂�j�, �A1�

where x�j�= �j�a�� and we have introduced the dimensionless
momentum components q̂�=q�a�. The momentum q takes
values in the first Brillouin zone, i.e., q�=2��� /L� with ��

=−N� ,−N�+1, . . . ,N�.

The contribution proportional to J1 of Eq. �3.3� gives the
usual result for nearest-neighbor interactions on a hypercubic
lattice:

J̃1�q� = 2J1�
�=0

d

cos�q̂�� �A2�

=2J1�d −
1

2
q̂2 +

1

24 �
�=1

d

�q̂�
4 + O�q̂�

6��
 . �A3�

To compute the Fourier transform of the remaining part of
the interaction �3.3�, which we denote as J2�x�, it is useful to
recall Poisson’s summation formula ��88�, p. 31�

�
j=−�

�

��t − ja� =
1

a
�

m=−�

�

ei2�mt/a. �A4�

Applying the generalized functions on both sides to a test
function f�t� whose support is restricted to �−L /2 ,L /2� gives

�
j=−N

N

f�ja� = �
m=−�

� �
−L/2

L/2 dt

a
ei2�mt/af�t� . �A5�

Since we are interested in a system of macroscopic lateral
extent, we take the limits N�→� for all ��1, keeping the
associated lattice constants a��0 fixed. We thus obtain

J̃2�q� = �
m�Zd

�
VL

ddx

va
J2�x��

�=1

d

e−i�q�−2�m�/a��x�, �A6�

where va=��=1
d a� is the volume of the unit cell, and the

integration is over a slab VL= �−L /2 ,L /2��Rd−1 of thick-
ness L�L1.

The terms with m�0 reflect the lattice structure of the
model and give contributions anisotropic in q space �as well
as isotropic ones�. Owing to the restricted integration regime,
the m=0 term also yields q-dependent contributions �which,
however, are small for large L�. These anisotropies add to
those originating from the short-range contribution �A2� and
produce, in particular, a nonzero value of the coefficient b4,1
of the anisotropic q�

4 terms in Eq. �3.7�.
We have emphasized the importance of long-range van

der Waals–type interactions for fluids before. Let us therefore
consider the case of simple isotropic fluids. For such systems
it is appropriate to take the continuum limit a�→0. Then the
contributions of the m�0 terms vanish by the Riemann-
Lebesgue lemma. We have

vaJ̃2�q� ——→
�a�→0�

J̃2,L
cont�q� � �

VL

ddx J2�x�e−iq·x. �A7�

In order that J̃2�q� have a nontrivial continuum limit, the
coupling constant J2 must be scaled such that J2 /va ap-
proaches a finite value J2

cont�0.
The Fourier transform has an explicit L dependence due

to the restriction of the x1 integration to a finite interval.
However, the deviation from its bulk analog is small, unless
L is very small: The integration over the parallel coordinates
x� yields a function of x1 that varies �x1

−�−1 for large x1. The
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error resulting from �L
�dx1 therefore decreases as L−�, i.e.,

decays �N1
−� when a1�0. Let us ignore this L dependence

and determine the behavior of its bulk counterpart J̃2,�
cont�q� for

small q.
The calculation of the latter is straightforward. The re-

quired angular integral is

� d�d eiq·x = �2��d/2�qx�1−d/2J�d−2�/2�qx� . �A8�

Performing the remaining radial integration gives

J̃2,�
cont�q� = J2

cont2�d/2� q

2�0

�/2 K�/2��0q�

���d + ��/2�
, �A9�

where K�/2 is a modified Bessel function. From its known
asymptotic behavior for small values of q one easily derives
the limiting form

�0
� J̃2,�

cont�q�
J2

cont =
q→0

A0 + A2��0q�2 + A4��0q�4 − A���0q��

+ O�q�+2,q6� , �A10�

in which

A0 = − 2�� − 2�A2 = − 8�4 − ���� − 2�A4 =
�d/2���/2�

����d + ��/2��
,

�A11�

while A� is given by the right-hand side of Eq. �3.8�.
The ratios −A2 /A0 and A� /A2 yield the values �3.11� and

�3.9� of the coefficients v2 and b, respectively, for the case of
vanishing nearest-neighbor interaction constant J1.

APPENDIX B: CALCULATION OF THE FUNCTIONS
Qd,�„y…

According to Eq. �4.47� the function Qd,��y� can be rep-
resented as

Qd,��y� =
y

2� �
q1�2�Z

�
q�

�d−1�

− �
q

�d� 
 q�−2

y + q2 �B1�

=y�d+�−2�/2�
k=1

�

G��d,��1;k�y� . �B2�

To obtain the second form �B1�, we have utilized the prop-
erty

G��d,��r;x� = r�d+�−4�/2G��d,��1;x�r� �B3�

of the bulk propagator.
The case �=2 is special in that the summation and inte-

gration over q1 in Eq. �B1� can easily be performed to reduce
Qd,2 to a single integral, namely,

Qd,2�y� =
yKd−1

2
�

0

�

dp
pd−2

�e�y+p2
− 1��y + p2

. �B4�

Integrals of this kind were also encountered in Krech and
Dietrich’s work �31,32� on the Casimir effect in systems with
short-range interactions.

From Eq. �B4� it is not difficult to derive a useful relation
between Qd+2,2 and Qd,2:

�

�y

Qd+2,2�y�
y

= −
Qd,2�y�

4�y
. �B5�

To do this, one simply must interchange the differentiation of
Qd+2,2�y� /y with respect to y with the integration over p,
replace the y derivative of the integrand’s y-dependent part
by a derivative with respect to p2, and then integrate by parts.

Returning to the case of general �, we note that the rep-
resentation �B2� has the advantage of linking the asymptotic
behavior of Qd,��y� for large values of y to that of
G��d ,� �1;x�. In addition, there are some special values of
�d ,�� for which it allows one to derive closed-form analyti-
cal expressions for Qd,� in a straightforward fashion. We
therefore begin by computing the bulk propagator.

1. Calculation of the propagator G�„d ,� �r ;x…

We start from Eq. �4.46� and perform the angular integra-
tions using our previous result �A8�. This gives

G��d,��1;x� =
x1−d/2

�2��d/2�
0

�

dq
q�−2+d/2

1 + q2 J�d−2�/2�qx� . �B6�

The required integral can be evaluated with the aid of Eq.
�6.565.8� of Ref. �89� or MATHEMATICA �90�. One obtains

G��d,��1;x� =
� csc���d + ��/2�

�4��d/2 �− 0F1
reg�;

d

2
;
x2

4



+ � x

2

4−d−�

1F2
reg�1;2 −

�

2
,3 −

d + �

2
;
x2

4

� ,

�B7�

where 0F1
reg and 0F1

reg are regularized generalized hypergeo-
metric function which can be expressed as

0F1
reg�;d/2;x2/4� = �x/2�1−d/2I�d−2�/2�x� �B8�

and

1F2
reg��;�,�;z� = 1F2��;�,�;z�

��������
�B9�

in terms of the modified Bessel function of the first kind I�

and the generalized hypergeometric function 1F2�� ;� ,� ;z�,
respectively. Their Taylor expansions read

0F1
reg�;d/2;z� = �

j=0

�
zj

j!��j + d/2�
�B10�

and

1F2
reg�1;2 − �/2,3 − �d + ��/2;z�

= �
j=0

�
zj

��j + 2 − �/2���j + 3 − �d + ��/2�
. �B11�
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For �=2, we recover the familiar result for the free propa-
gator of systems with short-range interactions:

G��d,2�1;x� = �2��−d/2x−�d−2�/2K�d−2�/2�x� . �B12�

The latter is known to decay exponentially; the familiar
asymptotic expansion of the Bessel functions K� implies that

G��d,2�1;x�

=
x→�

x−�d−1�/2e−x

2�2���d−1�/2��
j=0

m−1
���d − 1 + 2j�/2�

j!���d − 1 − 2j�/2�
�2x�−j + O�x−m�
 .

�B13�

When 2���4, the Fourier transform of the propagator
G��d ,� �1;x� is not regular in q at q=0. This entails that the
propagator decays only as an inverse power of x. An easy
way to obtain its asymptotic expansion for this case is to start
from Eq. �B6�, do a rescaling q→Q=qx, expand the factor
�1+Qx−2�−1 of the resulting integrand in powers of x−2, and
integrate the series termwise. This leads to the asymptotic
expansion

G��d,��1;x�

=
x→�

2�−2

�d/2xd+�−2 �
j=0

m−1
��j + �d + � − 2�/2�

��1 − j − �/2�
�− 4� j

x2j + O�x−2m� .

�B14�

Let us see how the above results can be employed to
compute the required Qd,�. To treat the three-dimensional
case, we need Qd,2�y� for d=3 and 5, as well as Q3,3, and
their derivatives. Since Q3,2� �y� involves Q1,2�y�, we also de-
termine the latter. For these choices of d, the result �B12�
reduces to

G��1,2�1;x� =
1

2
e−x, �B15�

G��3,2�1;x� =
1

4�x
e−x, �B16�

and

G��5,2�1;x� =
1 + x

8�2x3e−x, �B17�

respectively. Upon substituting these expressions into Eq.
�B2�, the series can be summed, giving

Q1,2�y� =
1

2

�y

exp��y� − 1
, �B18�

Q3,2�y� = −
y

4�
ln�1 − e−�y� , �B19�

and

Q5,2�y� =
y

8�2 �Li3�e−�y� + �yLi2�e−�y�� , �B20�

where Lip is the polylogarithmic function

Lip�z� = �
j=1

�
zj

jp . �B21�

As can easily be checked, these results �B18�–�B20� are in
conformity with Eq. �B5�. Plots of the functions are dis-
played in Fig. 11.

For other choices of � and d—including �=d=3—the
series �B2� cannot in general be summed analytically. This
suggests that one has to resort to numerical means. To this
end a different representation of Qd,�, which we are now
going to derive from Eq. �B1�, proved to be more effective.
Remarkably, this representation enabled us to derive even a
closed-form analytical expression for Q3,3�y�.

Note, first, that the subtracted q integral in Eq. �B1� is the
bulk propagator at x=0. Both the limit x→0 of Eq. �B7� as
well as the explicit calculation of the integral �q

�d� yield

G��d,��y ;0� = − y�d+�−4�/2�

2
Kd csc���d + ��/2� .

�B22�

When d+��4, this result involves analytic continuation in
d since the integral is ultraviolet �uv� divergent in this case.
The same L-independent uv divergences must occur in the
first term of Eq. �B1�, so that they cancel in the difference.
We find it most convenient to handle uv divergences of this
kind, which occur at intermediate steps, by means of dimen-
sional regularization. Readers preferring to work with a
large-momentum cutoff  are encouraged to utilize a smooth
variant of it, since a sharp cutoff is known to give unphysical
results in treatments of finite-size effects based on the small-
momentum form of the inverse free propagator, i.e., of ��q�
�36�.

Next, consider a term of the series �q1
in Eq. �B1�. It is

given by the integral

FIG. 11. The functions Q5,2�y� �full line�, Q3,2�y� �dashed�, and
Q1,2�y�/10 �dash-dotted�, respectively.
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Id,��q1,y� = Kd−1�
0

�

dq�q�
d−2 �q1

2 + q�
2���−2�/2

y + q1
2 + q�

2 . �B23�

Its calculation for q1=0 is straightforward, giving

Id,��0,y� = Kd−1y�d+�−5�/2 �

2 cos���d + ��/2�
. �B24�

It can also be computed in closed form for q1�0; the
result involves a hypergeometric function 2F1 and algebraic
functions of y and q1. Rather than working with this expres-
sion directly, it is more convenient to split off appropriate
terms containing the uv singularities they contribute to the
series �q1

in Eq. �B1�. Whether and what kind of subtrac-
tions are necessary depends on the values of d and � for
which Qd,� is needed. The Qd,��y� with the largest values of
d+� encountered in our analysis of the three-dimensional
case with �=3 are Q5,2 and Q3,3. Thus the largest value of
d+� for which Qd,� is required is 7. Using power counting
we see that the strongest possible uv singularity of the bulk
integral �q

�d� in Eq. �B1� is � d+�−4. Hence it is sufficient to
subtract from the integral �B23� its Taylor expansion to first
order in y. This ensures that the difference, summed over q1,
produces a uv finite result. All poles must originate from the
subtracted terms and cancel with those of the bulk contribu-
tion in Eq. �B1�.

Accordingly, we decompose Id,��q1 ,y� as

Id,��q1,y� = �
k=0

1

Id,�
�0,k��q1,0�

yk

k!
+ Zd,��q1,y� , �B25�

where Id,�
�0,k� denotes the kth derivative of the function Id,�

with respect to its second argument. Computing the integrals
of the Taylor coefficients and the remainder Zd,� yields

Id,�
�0,k��q1,0� =

�− 1�k

2
k!Kd−1�q1�d+�−5−2k

� B�d − 1

2
,
5 + 2k − d − �

2

 �B26�

and

Zd,��q1,y� =
Kd−1�

2 cos���d + ��/2�� y��−2�/2

�y + q1
2��3−d�/2

−
y2�q1�d+�−7

y + q1
2

���d − 1�/2�
��3 − �/2�

� 2F1
reg�1,

d − 1

2
;
d + � − 5

2
;

q1
2

y + q1
2
� ,

�B27�

where B�a ,b� and 2F1
reg are the Euler beta function and the

regularized hypergeometric function

2F1
reg�a,b;c;z� = 2F1�a,b;c;z�/��c� , �B28�

respectively.

We now substitute the above results into the representa-
tion �B1� of Qd,�, utilizing the fact that series �q1�0 of pure
powers of q1 give � functions:

�
q1�2�Z

�0

�q1�−s = 2
��s�

�2��s . �B29�

The result is

Qd,��y� = y�1

2
y�d+�−5�/2Id,��0,1� + �

j=1

�

Zd,��2�j,y�

+
��5 − d − ��
�2��5−d−� Id,��1,0� + y

��7 − d − ��
�2��7−d−� Id,�

�0,1��1,0�

+
Kd�

4
y�d+�−4�/2 csc���d + ��/2�
 . �B30�

Evaluating this expression for �d ,��= �3,2� and �5,2� with
the aid of MATHEMATICA �90�, we have checked that the pre-
vious results �B18�–�B20� for Q1,2�y�, Q3,2, and Q5,2�y� are
recovered. It can also be utilized to determine Q3,3�y� ana-
lytically. To this end one rewrites the series coefficient Z3,3 as

Z3,3�2�j,y� =
y

4�2j
−

�y

2�
arccos� 2�j

�y + 4�2j2

= �y�

0

y

dt
�t

8�2j�t + 4�2j2�
�B31�

and interchanges the integration over t with the summation
over j. In this manner the series � jZ3,3 can be computed, and
one obtains

Q3,3�y� =
y

12
+

y2

4�2�1 − ln� �y

2�

�

+
y3/2

2�
	�

4
+ Im�ln ��i

�y

2�

�
 . �B32�

A plot of this function is shown in Fig. 12.

2. Asymptotic behavior of Qd,�„y… for small and large values
of y

The asymptotic behavior of the function Qd,2�y� for large
values of y readily follows from the representation �B2� in
conjunction with the asymptotic expansion �B13� of the bulk
propagator �B12�. The result one finds for general values of
d,

Qd,2�y� =
y→�

y�d+1�/4

2�2���d−1�/2e−�y�1 + O�y−1/2�� , �B33�

can be verified to be in accordance with the large-y behavior
of the explicit expressions �B18�–�B20� of these functions
for d=1, 3, and 5.

To determine the large-y behavior of Qd,��y� with 2��
�4, we insert the asymptotic expansion �B14� into Eq. �B2�.
The summations over k can be performed for the expansion
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coefficients, giving � functions. In this way one arrives at the
asymptotic expansion

Qd,��y� =
y→�

2�−2

�d/2 �
j=0

m−1 ���j + �d + � − 2�/2�
��1 − j − �/2�

� ��d + � + 2j − 2�
�− 4� j

yj 
 + O�y−m� .

�B34�

Again, one can employ our explicit result �B32� for Q3,3 to
verify this asymptotic series. Note that the series �B34� trun-
cates when � is even, e.g., when �=2. This ensures the con-
sistency with the exponential decay �B33� one has for �=2.

The asymptotic behavior of Qd,2�y� for small y can be
conveniently obtained from Eq. �B30� for 1�d�7. One
finds that

Qd,2�y� =
y→0

�����3 − d�/2�
�4��d/2 �y�d−1�/2 −

B�1 − d/2,1/2�
2�

yd/2

+
2��3 − d�
�2��3−d y +

�d − 3���5 − d�
�2��5−d y2 + O�y3�
 ,

�B35�

provided d�1,3 ,5. The behavior in the latter cases follows
by expansion about these values of d. The poles that the �
function yields for individual terms at such odd integer val-
ues of d cancel, and logarithms of y emerge when d=3 or 5.
The expansions one gets in this manner,

Q1,2�y� =
y→0

1

2
−

�y

4
+

y

24
−

y2

1440
+ O�y3� , �B36�

Q3,2�y� =
y→0

−
y

8�
ln y +

y3/2

8�
−

y2

96�
+ O�y3� , �B37�

and

Q5,2�y� =
y→0

��3�y
8�2 −

1 − ln y

32�2 y2 −
y5/2

48�2 + O�y3� , �B38�

agree with those of the analytic expressions �B18�–�B20�.
The small-y behavior of Qd,� with 2���4 can be deter-

mined from Eq. �B30� in a similar fashion. One obtains

Qd,��y� =
y→0

Kd−1

4
B�d + � + 1

2
,
1 − d − �

2

	y�d+�−3�/2

+ B�d − 1

2
,
1

2

 cot���d + ��/2�

2�
y�d+�−2�/2

+ B�d − 1

2
,
5 − d − �

2

4 cos����d + ��/2��

�2��6−d−�

� ���5 − d − ��y +
�d + � − 5���7 − d − ��y2

�4 − ���2��2 �
+ O�y3�
 . �B39�

To deal with the case of Q3,3, one can set �=3 and expand
about d=3. This gives

Q3,3�y� =
y→0

y

12
−

y3/2

8
+

y2

8�2�2 − 2CE − ln
y

4�2
 + O�y3� ,

�B40�

where CE=0.777 215 6. . . is the Euler-Mascheroni constant.
The result is consistent with what one obtains from the ana-
lytic expression �B32� for Q3,3.

APPENDIX C: CALCULATION OF �Ud,�„0 �L…

We start from Eqs. �3.13� and �4.1�, take the thermody-
namic limit L�→�, and utilize the continuum approximation.
Upon transforming the discrete sum over the momentum
component q1 by means of Poisson’s summation formula
�A4� we arrive at:


Ud,��0�L� = �
j=1

� �
q

�d�

cos�jq1L�ln �q. �C1�

We substitute for �q its small-momentum form �3.7�, expand
the logarithm as

ln �q = ln�q2 + O�q4�� − bq�−2 + O�b2� , �C2�

drop all suppressed terms, and extend the q integration to Rd.
The contribution from ln q2 is known from the short-range

case �28,31,32�, easily calculated, and given by the
b-independent term on the right-hand side of Eq. �5.1�. The
O�b� contribution involves a difference of critical bulk and
finite-size propagators at x=0 for which one obtains, using
Eqs. �B7�, �B10�, and �B11�,

FIG. 12. The function Q3,3�y�. The inset is a logarithmic-linear
plot of this function, which illustrates the approach to the limiting
value −
�,C

GM�3,3�=−�2 /90 implied by Eqs. �5.9� and �5.3�.
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1

2
�GL − G���d,� + 2�0;0� = �

j=1

�

G��d,� + 2�0; jL� = L2−d−�2�−2���d + � − 2�/2���d + � − 2�
�d/2��1 − �/2�

. �C3�

Adding both contributions yields the result displayed in Eq. �5.1�.
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