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In this paper we numerically study the probability Pac of the occurrence of car accidents in the Nagel-
Schreckenberg �NS� model with a defect. In the deterministic NS model, numerical results show that there
exists a critical value of car density below which no car accident happens. The critical density �c1 is not related
only to the maximum speed of cars, but also to the braking probability at the defect. The braking probability
at a defect can enhance, not suppress, the occurrence of car accidents when its value is small. Only the braking
probability at the defect is very large, car accidents can be reduced by the bottleneck. In the nondeterministic
NS model, the probability Pac exhibits the same behaviors with that in the deterministic model except the case
of vmax=1 under which the probability Pac is only reduced by the defect. The defect also induces the inho-
mogeneous distribution of car accidents over the whole road. Theoretical analyses give an agreement with
numerical results in the deterministic NS model and in the nondeterministic NS model with vmax=1 in the case
of large defect braking probability.
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I. INTRODUCTION

Recently, traffic problems have attracted much attention
of a community of physicists. A number of models have been
proposed to investigate the dynamical behavior of the traffic
flow, including car-following models, cellular automata �CA�
models, gas-kinetic models, and hydrodynamic models
�1–3�. These dynamical approaches revealed complex physi-
cal phenomena of traffic flow among which are hysteresis,
synchronization of flow, wide moving jams, and phase tran-
sitions, etc. Among these approaches, CA models can be
used very efficiently for computers to perform real simula-
tions �1�. Presently, based on the two basic CA models de-
scribing one-lane traffic flow, the Nagel-Schreckenberg �NS�
model �4� and the Fukui-Ishibasi �FI� model �5�, many CA
models have been extended to investigate real traffic systems
such as road blocks and hindrances, two-level crossing, high-
way junctions, etc. �1,6�.

On the other hand, traffic jams and traffic accidents have
become significant problems in a modern society. In recent
years, the CA models have been extended to investigate the
occurrence of traffic accidents �7–14�. With the help of the
conditions for the occurrence of car accidents proposed by
Boccara et al. �7�, simulations of the probability for car ac-
cidents to occur have been offered in the NS models with
periodic boundary or open boundary and in the FI model
�8–11�. And analytical expressions for car accidents have
also been provided in special cases �12�. Moreover, the prob-
ability for the occurrence of accidents has been studied in the
velocity effect CA model and the two-lane CA model
�13,14�, respectively.

In this paper, we study the probability for car accidents to
happen in the NS model with a bottleneck. CA models with
a bottleneck have been extensively investigated �15–21�, be-

cause bottlenecks often happen in real traffic systems, but the
accident probability has not been explored so far. According
to the previous studies of car accidents �7,10�, the probability
of car accidents is related to stopped cars and traffic flow, the
studies on the probability of the occurrence of car accidents
can lead us to understand traffic flow. On the other hand,
because the bottleneck results in a distinct variety of traffic
flow such as a saturated flow observed in a plateau region in
the fundamental diagram, and vehicle queuing, changes of
traffic flow, and number of stopped cars will certainly influ-
ence the probability of the occurrence of car accidents.
Therefore car accidents in a CA model with a bottleneck
should be further investigated.

The paper is organized as follows. Section II is devoted to
the description of the model and the conditions for the oc-
currence of accidents. In Sec. III, the numerical studies of the
car accidents are given, and effects of the stochastic braking
and speed limiting on the probability of car accidents are
considered. An accident probability at sites and the length of
the sites where car accidents occur are also presented, re-
spectively. Finally, the results are summarized in Sec. IV.

II. MODEL AND CAR ACCIDENTS

Our studies are based on the NS model which is defined
on a single-lane road of L cells of equal size numbered by
i=1,2 , . . . ,L and the time is discrete. Each site can be either
empty or occupied by a car with the integer speed
v=0,1 ,2 , . . . ,vmax, where vmax is the speed limit. Let d de-
note the number of empty cells in front of a car. The follow-
ing four steps for all cars are performed in parallel with
periodic boundary:

�1� Acceleration: v→min�v+1,vmax�.
�2� Slowing down: v→min�d ,v�.
�3� Stochastic braking: if v�0, v→v−1 with the prob-

ability p.
�4� Movement: move car v sites forward.*Email address: xianqyang@sina.com.cn
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A selected cell is designated as the bottleneck, on which
each vehicle reduces the velocity by 1 with a probability pd.
Apparently, if pd= p, the model returns to the NS model. In
general, the value of the probability pd at the defect is larger
than the value of the probability p in the bulk.

In the basic NS model, car accidents will not occur, be-
cause the second rule of the update is designed to avoid
accidents. The safety distance of the drivers is respected in
the driving scheme. However, if the safety distance is not
kept, due to the careless driving of the drivers, car accidents
happen most likely. Based on the assumption, Boccara et al.
�7� proposed that when three conditions �i� d�vmax, �ii�
v�i+1, t��0, and �iii� v�i+1, t+1�=0 are satisfied simulta-
neously, then car i will collide with the front car with a
probability p� and a car accident happens.

Considering the effect of the stochastic braking on car
accidents, one of our authors has proposed the modified ac-
cident conditions which are applicable for both deterministic
and nondeterministic systems to correctly determine car ac-
cidents caused by careless drivers �10�. The first condition is
that over the iterations of the rules �1�–�3�, the velocity of the
car is exactly equal to the number of empty cells in front of
it, which means that the car can reach the position of the car
ahead if the velocity of the car driven by the careless driver
increases by one unit. The second condition is the moving
car ahead. The third condition is that the moving car ahead is
suddenly stopped. If the above three conditions are satisfied
simultaneously and the velocity of following cars increases
by 1 with the probability p�, the collision between the two
cars will occur.

Later, Moussa has investigated the effect of the delayed
reaction time on the probability of car accidents in the NS
model �22�. And Jiang et al. have modified the conditions for
car accidents �23�. Detail analyses exhibit that the conditions
of Jiang et al. for car accidents are similar with ours except
in the case of vmax=1. In the case of vmax=1, they claimed
that no car accident happens because the speed of cars can
never exceed its limit. Obviously, this result does not accord
with the simulated reality. In fact, traffic accidents will hap-
pen only if the conditions for accidents to occur are met, and
will be independent of the velocity limit of cars.

In this paper, we only consider traffic accidents induced
by inattention of drivers. If a driver accelerates stochastically
and ignores the safety distance, a traffic accident is likely to
occur. On the other hand, if reaction time of drivers is de-
layed, even the safety distance of the drivers is respected, a
car accident will also take place. In the NS model, the time
step of the update is fixed. Therefore delayed reaction time
of careless drivers means that there is the additional velocity
of the careless drivers after the iteration of the time step and
the velocity of careless drivers increases accordingly, com-
pared with the speed of other drivers. Thus v�i , t+1�
=vmax+1 does not imply that the velocity of cars can exceed
its limit, and only indicates the fact that the drivers are care-
less.

Thus in this paper we utilize our conditions to simulate
traffic accidents. In the process of simulations, car accidents
do not really happen. When the three necessary conditions
are met simultaneously, the dangerous situations of the oc-
currence of car accidents exist. These dangerous situations

are calculated and considered as the signal of the occurrence
of accidents. Usually, the probability per car per time step for
car accidents to occur is denoted by Pac. Because the occur-
rence of car accidents is proportional to the occurrence of
dangerous situations, and the proportional constant is p�, the
probability of traffic accidents can be scaled by the param-
eter p�. Here, the system size L=1000 is selected and the
results are obtained by averaging over 50 initial configura-
tions and 2�103 time steps after discarding 8�103 initial
transient states. A site of defect is selected at L /2. The model
contains four basic parameters: the speed limit, the stochastic
braking probability p, the average density �=N /L, and the
braking probability at the defect pd.

III. NUMERICAL RESULTS

A. Effects of the defect in the deterministic model

First, we investigate the influence of the defect on the
probability Pac in the deterministic case. In the deterministic
NS model with the defect, the stochastic braking of the driv-
ers is not considered, i.e., p=0. Figure 1 shows the accident
probability Pac as a function of � for various values of pd. In
Fig. 1, there is a critical density below which no car accident
happens, above which the probability for a car accident Pac
increases with the increase of �, and reaches a maximum, but
decreases with further increase of �. The density for the on-
set of Pac is usually named as the critical density �c1

.
Apparently, effects of the probability of braking at the

defect pd on the accident probability Pac are great. As shown
in Fig. 1, the braking probability pd influences not only the
critical density �c1

but the value of the probability Pac. With
the increase of the braking probability pd, the critical density
�c1

decreases accordingly. The results are easily understood.
According to the previous studies for traffic flow in the NS
model with a defect �20,21�, there is a critical density above
which the system exhibits a saturated traffic flow, and the
localized blockage has global effects whereby the traffic ex-

FIG. 1. Probability Pac �scaled by p�� as a function of the den-
sity � in the deterministic NS model with a defect for the case
p=0 and vmax=5. Solid lines correspond to analytical results, and
symbol data are obtained from numerical simulations.
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hibits macroscopic phase segregation into high-density and
low-density regions. The critical density �c1

shifts toward the
low-density region with the braking probability Pd increas-
ing. As prescribed in the conditions of car accidents, the
occurrence of car accidents is directly related to traffic flow
and stopped cars �7,10�, car accidents only happen in the
high-density region, therefore the critical density �c1

de-
creases with the increase of pd. In the low-density region,
there is no stopped car, therefore no car accident occurs.

The most remarkable results of our investigation show
that when the braking probability pd is very small, the defect
induces many more accidents; while when the probability pd
is large, the defect suppresses the occurrence of car acci-
dents, as shown in Fig. 1. The simulation results seem to be
contrary to our intuition of ordinary life which the limited
velocity of cars at one point will always suppress the occur-
rence of car accidents. In fact, since the probability for an
accident is directly related to traffic flow and stopped cars,
when the braking probability pd is small, increasing pd leads
to a larger value of the fraction of stopped cars n0, but small
changes of traffic flow �J�, thus the probability Pac increases
with the increase of the probability pd. However, when the
value of pd is larger, increasing the braking probability pd
leads to a decrease of traffic flow, consequently a decrease of
the occurrence of car accidents.

The simulation results above can be quantitatively ex-
plained. The earlier results indicate that the probability for
the occurrence of car accidents Pac is proportional to the
product of traffic flow �J� and the fraction of the stopped cars
n0 �10�. When the density � is small, all cars freely move at
vmax sites at every time step, no stopped car exists, hence no
car accident occurs.

However, the density � further increases over the critical
density �c1

, traffic jams begin to emerge. In the density in-
terval �c1

����c2
, the traffic flow remains in the saturated

value �J�s, because the bottleneck at the impurity is the flow-
limiting factor. Therefore in this regime, �J�s follows the re-
lation

�J�s = 1 − pd. �1�

Apparently, at the critical density �c1
the mean velocity �v�

reads as

�v� = vmax =
1 − pd

�c1

. �2�

Thus the critical density �c1
= �1− pd� /vmax. Increase of the

value of pd causes a decrease of value of �c1
. This analytical

formula well illustrates the simulation results for the critical
density shown in Fig. 1.

When the value of the density � is larger than the value of
the critical value �c2

, the vehicle queuing extends all of the
road, hence the phase separation vanishes. The effect of the
defect becomes negligible. Actually, in the case of the high-
density region, the drivers move only one site at every time
step. According to the definition about the braking probabil-
ity pd, the probability pd means the probability for a car to be
stopped in the case of high density. Thus 1/ pd indicates the

time interval during which one car stays at the defect. Ap-
parently, when 1/�, which means the number of empty sites
between two near cars, is larger than the number of empty
cells between the defect and its left near car �1/ pd��1,
where 1 denotes the car’s velocity, the traffic flow is limited
by the defect; otherwise, the traffic flow is controlled by the
density. Therefore the critical density �c2

= pd. Our theoretical
analyses about the traffic flow and the critical density �c1

and
�c2

are in good agreement with numerical results �these data
are not shown�. We also notice that the analyses about traffic
flow in the NS model with a defect in the case of vmax�1
have not been reported so far.

Now to derive explicit expression for the probability Pac,
we turn our attention to the fraction of the stopped cars. In
the density interval �c1

����c2
, conservation of the vehicles

demands that

�L = �c1
�L − Lq� + �c2

Lq, �3�

where Lq denotes the length of vehicle queuing, also the
length of high density; L−Lq denotes the length of low den-
sity. The formula �3� demonstrates that the number of cars in
the region of both high density and low density is the total
number of cars. Only in the high-density region, stopped cars
appear. The density of stopped cars in the high-density re-
gime can be obtained by considering that the probability for
a site to be occupied by a stopped car pd is divided by the
empty space between the stopped car and another one
�1/ pd��1, therefore the density of the stopped cars follows
the relation

N0

Lq
= pd�� 1

pd
� 1	 = pd

2. �4�

Substituting formula �4� into Eq. �3�, and using the relation
n0=N0 /N, we obtain the expression of the fraction of
stopped cars:

n0 =
�� − �c1

�pd
2

��c2
− �c1

��
. �5�

According to the previous studies, the probability for the
occurrence of car accidents is proportional to the product of
the traffic flow and the fraction of the stopped cars, therefore
the probability for car accidents Pac is given by

Pac/p� = pd
2
�1 − pd��� − �c1

�

��c2
− �c1

��
. �6�

Good agreement between the numerical results and our
theoretical analyses for the value of Pac is obtained, espe-
cially in the case of the high braking probability. These re-
sults are shown in Fig. 1. According to formula �6�, when the
density � is smaller than the critical density �c1

, there is no
car accident. However, when the value of � is larger than the
value of �c1

, car accidents happen, and the probability Pac

varies nonlinearly with the increase of the density �. More-
over, formula �6� demands that �c2

−�c1
�0 because of no

minus value of the probability for car accidents. Thus Eq. �6�
is only suitable for the situation of the braking probability
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pd�1/ �1+vmax�. Therefore in the case of pd=0.1 for vmax

=5, the theoretical results do not coincide with the computer
simulations.

But in the case of ���c2
and low braking probability at

the defect, the effects of the defect can be ignored, the curves
of the probability Pac do not collapse in the curve of the
probability for the NS model without a defect unless �→1.
This number result indicates that the system exhibits differ-
ent correlations from the one without a defect in the process
of car accidents, although the relationship between traffic
flow and bulk density is the same as that in the model with-
out a defect. When the density is near 1, the accident prob-
ability Pac is proportional to ��1−��.

Obviously, the probability for accidents Pac is not only
related to the braking probability pd, but also determined by
the velocity limit vmax when the stochastic braking probabil-
ity p=0. Figure 2 exhibits the relation of Pac to � with dif-
ferent values of the speed limit vmax. In Fig. 2, the critical
density �c1

which denotes the onset of car accidents, de-
creases with the increase of the speed limit. We have also
observed in Fig. 2 that the probability Pac is also increased
with the increase of the speed limit. The phenomena
can be well explained for our theoretical results. According
to the results presented above, the critical density �c1
= �1− pd� /vmax reveals that increasing the value of vmax leads
to the decrease of the value of �c1

. As the value of the speed
limit vmax increases, the number of the stopped cars in-
creases, and causes more car accidents to happen. As ex-
pected, the formula �6� gives exact results for the value of
Pac except in the case of vmax=1, seen in Fig. 2.

For vmax=1, the particle-hole symmetry in the special
case exists. For ���c1

, the flux is �J�=�, and for ���c2
, the

flux is �J�=1−�. However, for �c1
����c2

, the flux remains
constant. The critical density �c1

and �c2
are different from

those for the case of vmax�1. In Ref. �24�, the value of the
critical density �c1

and �c2
are given, respectively, by

�c1
=

1 − pd

2 − pd
, �c2

=
1

2 − pd
�7�

and the traffic flow reads as

�J� =
1 − pd

2 − pd
. �8�

In the density interval �c1
����c2

, the system is sepa-
rated into two regions of constant density. However, stopped
cars only appear in the high-density region. Owing to the
flow limited by the capacity of the defect site and the sym-
metry of the particle hole, the density of the stopped cars is
the value of the braking probability pd, i.e.,

N0

L
= pd. �9�

Substituting formula �9� into Eq. �3�, we derive the relation
of the fraction of the stopped cars n0 to the density of the
cars �:

n0 =
�� − �c1

�pd

��c2
− �c1

��
. �10�

Therefore the probability for the occurrence of car accidents
Pac follows the relation below:

Pac/p� = pd

�1 − pd��� − �c1
�

�2 − pd���c2
− �c1

��
. �11�

Figure 3 shows the relation between the probability Pac
and the density � with various values of pd. As shown in Fig.
3, formula �11� gives good agreement with the simulation
data.

FIG. 2. Probability Pac �scaled by p�� as a function of the den-
sity � in the deterministic NS model with a defect for various values
of the maximum speed vmax. Solid lines are analytic results, and
symbol data are obtained from numerical simulations.

FIG. 3. The relation of probability Pac �scaled by p�� to the
density � in the deterministic NS model with vmax=1. Symbol data
are obtained from computer simulations, and the solid line corre-
sponds to analytic results.
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B. Effects of the defect in the nondeterministic case

Next, we investigate the probability for the occurrence of
car accidents when the stochastic braking behaviors of driv-
ers are considered, i.e., p�0. Figure 4 shows the relations of
the probability Pac to the density � with various values of the
braking probability pd in the case of vmax=1, where the ran-
domization parameter pd at the blockage is larger than that of
the rest of the system. Compared to the results in the case of
vmax�1, the probability displays different behaviors. In the
system with vmax=1, some cars can be stopped due to the
stochastic braking, even the car density is very small, there-
fore car accidents happen in the whole density region, while
the critical density exists in the systems with vmax�1. More-
over, the effects of blockage probability pd on the accident
probability Pac are much different from those in the deter-
ministic NS model As shown in Fig. 4, the probability Pac is
suppressed by increasing the values of the probability pd
especially in the density region �c1

����c2
, where the traf-

fic flow is maximum and independent of the car density �
and the traffic displays phase separation of high density from
low density. In this density region, the traffic flow is limited
by the blockage, as prescribed by the three conditions for the
occurrence of car accidents, the occurrence of car accidents
is directly related to traffic flow and stopped cars, therefore
the probability Pac is diminished. Outside the density region,
because the bottleneck does not influence the traffic flow, the
probability Pac exhibits the same behaviors with that in the
system without bottlenecks.

The critical density �c1
and �c2

can be given by �1�

�c1
=

qd

q + qd
, �c2

=
q

q + qd
�12�

and the traffic flow

J =
1

2
�1 −
1 −

4q2qd

�q + qd�2	 . �13�

Therefore in the high-density region, the fraction of the
stopped cars can be given

n0h = 1 −
J

�c2

�14�

and the fraction of the stopped cars in the low-density region
reads

n0l = 1 −
J

�c1

. �15�

In the density region �c1
����c2

, the probability for the
occurrence of car accidents per car per time step in the high-
density and low-density region can be read as Jn0h and Jn0l,
respectively. Therefore the probability Pac / p� can be given
by

Pac/p� = J�n0hNh + n0lNl�/N = J�n0h�c2
h + n0l�c1

l�/N

= J�n0h�c2
h/L + n0l�c1

l/L�/� , �16�

where Nh and Nl denote the car numbers in the high-density
region and low-density region, respectively, and h and l
mean the lengths of high-density region and low-density re-
gion. According to the previous results, h /L and l /L are re-
spectively given by �24�

h/L =

��1 +
qd

q
	 −

qd

q

1 −
qd

q

,

l/L = 1 − h/L . �17�

Figure 4 gives a comparison between number results and
Eq. �16�. As shown in Fig. 4, the agreement can be obtained
in the case of large value of the defect braking probability.
But in the case of small defect probability of braking, Eq.
�16� overestimates the accident probability Pac. The differ-
ences may be from the transition region from the high to the
low density.

Figure 5 shows the relations of probability Pac to the den-
sity � with various values of the braking probability pd,
where the randomization parameter pd is larger than that in
the rest of the system. As shown in Fig. 3, the effects of the
defect on the probability for accidents Pac show similar be-
havior with those in the deterministic case. As the defect
probability pd increases, the probability Pac increases accord-
ingly, and decreases with further increase of pd. And the
critical density �c1

shifts toward the low-density region with
the increase of the braking probability pd.

Quantitative expression for the probability Pac is difficult
to be obtained, because the stochastically delayed probability
induces the long length correlations of time-space correla-
tions.

FIG. 4. Probability Pac �scaled by p�� as a function of the den-
sity � in the nondeterministic NS model with vmax=1. Solid lines
are obtained from explicit expression �16�, and symbol data are
numerical results.
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C. Position distribution of Pac induced by the defect

As the braking at the bottleneck results in the inhomoge-
neous density distribution of cars, unlike that of a model
without defects, the occurrence of car accidents depends on
the sites. Figure 6 shows the relations of the accident prob-
ability to sites, the parameters correspond to the maximum
traffic flow and phase segregation into high density and low
density. As shown in Fig. 6, car accidents happen upstream
of the bottleneck, and the probability SPac / p� exhibits very
small fluctuation around a fixed value. The dependence of
the accident probability Pac on sites can be easily under-
stood. The high density appears upstream of the bottleneck,
hence car accidents happen; while downstream of the bottle-
neck, there is low-density region, no car accident takes place,
because of free flow and no stopped cars.

As the car density increases, the length of region where
car accidents happen expands because length of the high-
density region increases. As shown in Fig. 7, the length LPac
of accident region displays a linear increase with the density

until the critical density �c2
. When ���c2

, the occurrence of
car accidents extends to the whole road.

But, the value of the probability SPac / p� at high-density
sites approaches a constant with the density increasing until
���c2

. Figure 8 exhibits the accident probability SPac / p� at
the high-density sites varies with the density �. In Fig. 8, the
probability in the density interval �c1

����c2
shows to be

an approximate constant, because traffic flow and stopped
cars in this region do not vary. When ���c2

, the probability
increases with the increase of the car density, reaches to a
maximum, but decreases with further increase in density.

IV. SUMMARY

In this paper, we study the probability for the occurrence
of car accidents in the NS model with a defect. According to
the previous studies of car accidents, the probability of car
accidents is directly related to stopped cars and traffic flow

FIG. 5. Probability Pac �scaled by p�� as a function of the den-
sity � in the nondeterministic NS model with vmax�1.

FIG. 6. Distribution of the accident probability Pac �scaled by
p�� in the deterministic NS model with vmax=5.

FIG. 7. Accident length LPac �scaled by p�� as a function of the
density � in the case of vmax=5.

FIG. 8. Probability SPac �scaled by p�� at the sites as a function
of the density � in the case of vmax=5.
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�10�, the studies on the probability of the occurrence of car
accidents can lead us to understand traffic flow. On the other
hand, because the bottleneck results in a distinct variety of
traffic flow such as a saturated flow observed in a plateau
region in the fundamental diagram, and vehicle queuing,
changes of traffic flow and number of stopped cars in a
model with a bottleneck certainly will influence the probabil-
ity of the occurrence of car accidents. Therefore car acci-
dents in a CA model with a bottleneck should be further
investigated.

Numerical results show that there is a critical density be-
low which no car accident happens. The critical density �c1

is
not related only to the maximum speed of cars, but also to
the braking probability at the defect. The defect can enhance,
not suppress, the occurrence of car accidents when its value
is small. Only the braking probability at the defect is very
large, car accidents can be reduced by the defect. But in the
case of ���c2

and low defect braking probability, the num-
ber results exhibit the system exhibits different correlations
from the one without a defect in the process of car accidents,
although the relationship between traffic flow and bulk den-
sity is the same as that in the model without a defect.

The probability for accidents Pac is not only related to the
braking probability pd, but is also determined by the velocity
limit vmax when the stochastic braking probability p=0. The
probability Pac is enhanced with the increase of the speed
limit, because increasing the value of vmax induces the in-
crease in the number of the stopped cars, and hence the in-
crease in car accidents.

In the nondeterministic NS model, the probability Pac ex-
hibits the same behaviors with that in the deterministic

model except the case of vmax=1 under which the probability
Pac is only reduced by the defect. As the defect probability pd
increases, the probability Pac increases accordingly, and de-
creases with further increase of pd. And the critical density
�c1

shifts toward the low-density region with the increase of
the braking probability pd.

The defect also results in the inhomogeneous distribution
of car accidents over the whole road. Car accidents happen
only in the high-density region. In the region of maximum
traffic flow, as the density increases, the length of the occur-
rence of car accidents displays a linear increase, but the
value of the accident probability shows to be an approximate
constant until the critical density �c2

.
A phenomenological mean-field theory is presented to de-

scribe the accident probability Pac in deterministic NS
model. Theoretical analyses give an excellent agreement
with numerical results in a deterministic NS model with a
defect. In a nondeterministic NS model with vmax=1, we also
obtained the explicit expression only suitable for the case of
large defect braking probability. But in the nondeterministic
NS model with vmax�1, explicit expressions which deserve
further investigation are not obtained because of effects of
long length of time-space correlations.
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