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Exact Markovian kinetic equation for a quantum Brownian oscillator
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We derive an exact Markovian kinetic equation for an oscillator linearly coupled to a heat bath, describing
quantum Brownian motion. Our work is based on the subdynamics formulation developed by Prigogine and
collaborators. The space of distribution functions is decomposed into independent subspaces that remain
invariant under Liouville dynamics. For integrable systems in Poincaré’s sense the invariant subspaces follow
the dynamics of uncoupled, renormalized particles. In contrast, for nonintegrable systems, the invariant sub-
spaces follow a dynamics with broken time symmetry, involving generalized functions. This result indicates
that irreversibility and stochasticity are exact properties of dynamics in generalized function spaces. We
comment on the relation between our Markovian kinetic equation and the Hu-Paz-Zhang equation.
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I. INTRODUCTION

A well-known model of quantum Brownian motion is a
harmonic oscillator linearly coupled to a bath of field modes.
The Hamiltonian is (with 2=1)
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where g, and p; are the positions and momenta of the har-
monic oscillator and ¢, and p;, are positions and momenta of
the field oscillators. Here k are the wave numbers, and \ is a
dimensionless coupling constant."

The Hamiltonian (1) has been considered in numerous
papers (see Dekker’s review [1]). Hu, Paz, and Zhang have
obtained an exact equation for the reduced density matrix of
the oscillator using a path-integral method,
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'Note that for a finite system the wave numbers k are not integers
[see Eq. (6)]. Thus the bath variables (e.g., ¢; and p;) do not take
the “1” index reserved for the harmonic oscillator variables ¢g; and
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are dimensionless coordinates, and the time-dependent coef-
ficients are defined in Ref. [2].

The terms with I'(¢) and I'(¢)A(z) on the right hand side of
Eq. (2) suggest the existence of damping and diffusion pro-
cesses characteristic of Brownian motion. Strictly speaking
though, the Hu-Paz-Zhang (HPZ) equation (2) is time-
reversal invariant and it corresponds to a deterministic evo-
lution of wave functions. Indeed, the solution of the HPZ
equation is equivalent to the solution obtained from
Schrodinger’s equation, i.e.,

p,(1) = Tre[e™p(0)e™] )
where Trp means the trace over the field and
p(0) = 2 poltha) (el (5)

is the initial density matrix, diagonalized in a suitable basis
of wave functions |,). The wave functions |,) form a com-
plete orthonormal basis of the whole system of harmonic
oscillator and heat bath. Due to the equivalence (4), the HPZ
equation describes a time-reversible, deterministic evolution
of each wave function. This contrasts with true Brownian
motion, described by a Markovian equation with broken time
symmetry, which corresponds to a stochastic evolution of
each wave function |¢,) [3].

The derivation of irreversible Markovian equations from
dynamics has been a great challenge [4]. This is related to
the apparent incompatibility between the second law of ther-
modynamics and time-reversible dynamics. One point of
view is that Markovian equations appear as an approxima-
tion of the dynamical equations. This is the so-called Mar-
kovian approximation, valid for weak coupling between in-
teracting particles, and for time scales of the order of the
relaxation time to equilibrium [5].

However, one can take a different point of view, where
Markovian equations are formally derived from dynamical
equations without any approximation. This is the subdynam-
ics formulation developed by Prigogine and collaborators
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[4,6-11]. In this approach, essential elements are the distinc-
tion between integrable and nonintegrable systems in the
sense of Poincaré, and the use of generalized functions [12].
In this paper we derive an exact Markovian equation for the
quantum Brownian oscillator, based on this approach. This
equation is valid for both weak and strong coupling. As we
will show, for weak coupling, it agrees with the HPZ equa-
tion.

A few exact results using subdynamics have already been
obtained [4,13]. However, to our knowledge, there was no
derivation of an exact Markovian equation for quantum
Brownian motion. Previous formulations were centered on
density operators. Here we focus on the observables, that is,
on products of creation and annihilation operators. This al-
lows us to consider arbitrary N-particle sectors in a nonper-
turbative way.

This paper is organized as follows. In Sec. II we introduce
our formulation of subdynamics. As in the original formula-

tion, we introduce the projection superoperators Il and 1
=1-1II, which define invariant subspaces of the Liouville
superoperator. In Sec. III we define integrability and nonin-
tegrability in Poincaré’s sense. In Secs. IV and V, we con-
struct the II projector for the integrable case and derive re-
cursive relations, for this projector. Extending these
relations, we construct II for the nonintegrable case in Sec.
VI. This leads to our Markovian equation in Sec. VII. In Sec.
VIII we compare this equation with the HPZ equation. Con-
cluding remarks are presented in Sec. IX. Additional calcu-
lations are presented in the Appendixes.

II. SUBDYNAMICS

In this section we introduce the main ideas of our ap-
proach. We focus on the quantum Brownian oscillator model.

We consider a one-dimensional space. We start with the
system in a box of size L and impose periodic boundary
conditions. Then in Eq. (1) we have

k=2mm/L (6)

with integer n. We are interested in the limit L — %, where
the spectrum of field frequencies w; becomes continuous. We
will assume that C;,=C_;, and wy=w_;. This allows us to
restrict k=0, keeping only the symmetric part of the g; op-
erators, i.e., we set g,=¢_;. We will assume as well that there
is no degeneracy in the spectrum of w; for k=0.

It will be convenient to express the Hamiltonian (1) in
terms of annihilation and creation operators. We express the
coordinates g, as

1
\“”ZMiwi

qi (ai+aj)’ i= 1’k7 (7)
where aj and a; are bosonic creation and annihilation opera-
tors of the particle (i=1) and field ({i}={k}). These operators

satisfy the usual commutation relations
i
[aisaj] = 61]9 (8)

for i, j=1 or k. For the momenta we have
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pi=—i Méwi(a,»—aj), i=1k. )
Introducing the notation
Vi= Cd\AM 0, M0, (10)
the Hamiltonian takes the form [14,15]
H=wdla, + i W ay + )\i Vi(al +a))(a} + ap) + Eyge,
k=0 k=0
(11)

where E,,. is the vacuum energy. The interaction has the
following volume dependence:

2 12
Vk=(T) Uk (12)

with v, independent of L. In the limit L— o, the sum over
discretized field modes turns into an integral and the Kro-
necker ¢ function turns into a Dirac ¢ function,

2

fdk L 1) ok—k") (13)
— — — O 1 — - .
L~ 2w kK

Hereafter, whenever we write summations or Kronecker &
functions, it is understood that we take the limit L — o using
Eq. (13). Also from now on, when we take the limit L—
we will keep the energy density of the field finite. This
means that [with (A)=Tr(Ap)]

(aja)y ~L° for L — oo, (14)

This condition is known as the thermodynamic limit.
Moreover, we consider density operators that have diagonal
(6-function) singularities in field-mode representation
[10,16]. An example of this class of ensembles is the equi-
librium Gibbs distribution. For these density operators,

> (ajay) ~(afar) ~ O(LO). (15)
k!

Diagonal observables are as important as sums of off-
diagonal observables. Due to this property the separation of
diagonal and off-diagonal observables, which we consider
below, is well defined in the thermodynamic limit.”

The Hamiltonian in Eq. (11) has the form

H=Hy+\V (16)

where H is the unperturbed part describing free motion, and
V is the interacting part. Corresponding to this Hamiltonian
we have the Liouville superoperator (or “Liouvillian™)

From the Liouville equation

It is possible to avoid summations altogether, and use integrals
from the beginning [17]. The results are the same.
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J
i P(0)=Lyp(0), (18)

we obtain the time evolution of averages of observables W,

(W()) =Tt Wp(1)]. (19)

We will consider observables depending only on particle op-
erators, expandable in monomials,

W=al"dy, (20)
with m, n=0 integers. Then we have
(W(2)) =Ti[WPp(1)] (21)

where P is a linear projection superoperator defined by

P(a'mla"IH akaa"k) = aTmla 11_[ oy, U m‘amk (22)
k=0

for m;, n;=0. This projector singles out products of creation
and annihilation operators with diagonal field operators. Ev-
ery creation operator a,t present in the product has to be
paired with the annihilation operator ;.

The projector P commutes with the free Liouvillian Ly,

PL()ZL()P. (23)

Introducing the complementary projector Q=1-P we have
PO=0QP=0. Thus under the unperturbed time evolution
(with A=0), any density operator can be decomposed into
two components that evolve independently,

p=Pp+Q0p. (24)

Each component remains invariant under the free time evo-
lution. For A=0 we have

P
i&—th(t) =LyPp(1),

£ 0p(0) = Lo0p). (25)

Each component follows its own subdynamics, with closed
time evolution. This separation allows us to calculate (W())
knowing only the Pp component of p, without the comple-
mentary Qp component.

On the other hand, the interacting Liouvillian (with X\
#0) does not commute with P. We have

- Ppli) = PLyp(1) = PLyPp(0) + PLyOP(D).  (26)

This is no longer a closed equation for the component Pp(r).
This is the main problem of nonequilibrium statistical me-
chanics. A common approach to deal with this problem is to
write a hierarchy of equations of the Bogoliubov-Born-
Green-Kirkwood-Yvon type [4]. Alternatively, one can try to
obtain closed non-Markovian equations (with memory
terms), such as the Prigogine-Resibois generalized master
equation [18]. As shown by Hu, Paz, and Zhang, for the
quantum Brownian oscillator it is indeed possible to obtain
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the closed non-Markovian equation (2) for the reduced den-
sity matrix. The non-Markovian character of the equation is
manifested in the time-dependent coefficients.

In the subdynamics approach, we introduce a projector 1T
satisfying the following three conditions:

(A) II>=II,
(B) HLH=LHH,

(C) M=P+N\I;+NT,+ -+,
I 2

where II, are independent of A. The last condition means
that limy_,oII=P and II is analytic at A=0.°

Using IT we can decompose a density operator into two
components that evolve independently:

p=THp+Ip (27)

where I1=1-11. Each component obeys a closed equation

P
i—Ip=L,llp, 28
i~ Hp=Lyllp (28)

d .
i—Ip=Lylp. 29
i~ Hp=Lyllp (29)

Hereafter we will focus on the IT component. As we will see,
this component gives the closed Markovian equation describ-
ing quantum Brownian motion. The complementary compo-

nent I1 gives memory effects associated with dressing [19]
We focus on the equation

d
iETr(WHp) =Tr(WLyI1p). (30)

In the following, we will derive an explicit form of this
equation. Using the property

Tr(A - Sp) = Tr{(SA")p], (31)

where S is a superoperator and A is an arbitrary operator, we
have

i(%Tr( WIlp) = Te[(L,ITTW)7p]. (32)

To obtain the kinetic equation, we need to calculate the quan-
tity LyIT'W' with W=a]"a". This will be done in the follow-
ing sections.

We note that [see Eq. (21)]

3As shown in Ref. [4] condition (A) actually follows from condi-
tions (B) and (C). In this paper we will verify that all three condi-
tions are satisfied.

*In a more detailed formulation of subdynamics (see Ref. [11])
both I and II are further decomposed into a sum of orthogonal
projectors TT== ,T1%) and ﬁ:EVﬂ(”), Each subcomponent gives a
closed Markovian equation. However, sums of these projectors can

give a non-Markovian equation, as is the case for II.
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Tr(WL,TIp) = Tr(WPL,TIp). (33)
As shown in Refs. [4,10], we have
PLyIIp = 6lp, (34)

where 6 is a “collision” superoperator satisfying the relation
[6,P]=0. We get an exact, closed Markovian equation

J
i—Pllp= 6PIlp (35)

for the component PIIp. This will be verified through the
direct calculation of Eq. (30).

In the construction of II we will consider two cases dis-
cussed next: the integrable and nonintegrable cases. As we
will show, the Markovian dynamics of Brownian motion oc-
curs in the nonintegrable case. Our approach will be to first
obtain II for the integrable case, and then extend this result
to the nonintegrable case.

III. INTEGRABLE AND NONINTEGRABLE CASES

In this section we specify what we mean by integrable and
nonintegrable cases.

For the integrable case, the P and II projectors can be
related by a similitude transformation

Mn=v'pru (36)

where U is a time-independent unitary transformation. This
is the same transformation that puts the Hamiltonian in a
diagonal form with no interactions [see Egs. (42) and (43)
below]. In this way the interacting system can be mapped to
a noninteracting system through a unitary transformation. We
call this case “integrable” because there exists a one-to-one
correspondence between unperturbed and perturbed invari-
ants of motion. Furthermore, the perturbed invariants are ex-
pandable around A=0. These properties were studied by
Poincaré in the context of celestial mechanics, so when we
speak about integrability, it is in Poincaré’s sense [20].

In contrast, for the nonintegrable case the interactions
cannot be transformed away through a unitary transforma-
tion. There is no longer a one-to-one correspondence be-
tween unperturbed and perturbed invariants. The P and II
projectors are now related by a nonunitary transformation A,

I[I=A"PA. (37)

As shown in Refs. [21,22] the transformation A is “star uni-
tary.” In this paper we will construct the IT projector directly,
without using the A transformation. Let us just make a few
remarks on this transformation. Rather than transforming
away the interactions, A takes us from the original represen-
tation in terms of bare particles to a new representation in
terms of dressed particles which obey stochastic equations
breaking time symmetry. In this representation the effects of
noise appear due to the nondistributive character of A with
respect to multiplication [21-24].

For the quantum Brownian oscillator we can have both
integrable and nonintegrable cases, depending on the relation
between the frequency of the particle and the frequencies of
the field modes.
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We assume that the field frequencies w, take the values

Here o, is the lower bound of the spectrum of w,; for k=0.
The integrable and nonintegrable cases correspond, re-
spectively, to the following two possibilities [14]:

(@) o <, (39)
(b) w,< o, (40)
where
* 4w.o\vl
wg=w5+f OOV (41)
0 Wy — Wy

The frequency w, is a threshold frequency for w;, below
which the oscillator becomes undamped. The intermediate
case wy<w;<w, gives undamped oscillations as well. In
this case the II and P projectors are related through a unitary
transformation, but this transformation is not expandable
around A=0. This intermediate case will not be considered
here. Interesting phenomena associated with this case have
been considered in Refs. [25,26].

IV. II IN THE INTEGRABLE CASE

We consider now the integrable case (a) discussed in Sec.
III. In this case the particle cannot resonate with the field
modes. The Hamitonian (11) can be diagonalized through the
unitary superoperator U into the following form [27]:

H=,A[A + 2 0 AjA +E,. (42)
k=0

where @, is the renormalized frequency of the particle, E, .
is the renormalized vacuum energy, and the operators A are
the renormalized operators replacing the bare operators a.
The A operators are given by the unitary transformation

Aj = U_laj,

A_i: U_la,-. (43)

We use overbars to denote variables in the integrable case.
The transformed operators satisfy the relations

LHA_T=(I)1A_T’ LHA_1=—(T)11KI,

LyA; = wA], LyAy=— wA,. (44)

As mentioned in the previous section, we call this case inte-
grable because this system follows Poincaré’s criterion of
integrability. There is a one-to-one correspondence between
the unperturbed invariants of motion ajai and the perturbed

invariants Kjg,». The perturbed invariants are expandable
around A=0.
The superoperator U~' may be written in the form

U'la=u"au (45)

where u is a unitary operator. Thus we have the distributive
property
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Ulab=[U"'a][U"D]. (46)

It follows that the operators A satisfy the commutation rela-
tions

where i, j=1, k.
The transformed operators are given by the linear rela-
tions

- % —x - —x
AT:c”aT+d”a,+Eclkak+2dlkak, (48)
k k

Ak = cklal + dk1a1 + 2 ckk,ak, + 2 d,ap, (49)
k/

with the coefficients ¢ and d written in Appendix A.
The renormalized frequency @, is the solution of the
equation

G(@)™'=0 (50)

satisfying the condition limy_ @;=w;, where G is the
Green’s function,

? Aw N\ 7!
G(a)):(m%—wz—J dkwlz—kzk) ) (51)
0

W, — W

defined here for w<wy. Using the commutation relations
(47) we invert (48) to obtain

aj = Al —d A, + 2 TuA] - X dy Ay (52)
! e

We verify now that in the integrable case, the II projector is
obtained through the relation

n=1"=uv'ru, (53)

where we use an overbar to remind us that this corresponds
to the integrable case. To prove this, we will check that this
expression satisfies the conditions (A)—(C) in Sec. II.

Condition (A) is satisfied, since P=P? itself is a projector.
Condition (B) means that

U'PUL, =L, U 'PU (54)
or
PULyU ' =ULLU'P. (55)

Using the distributive relation (46) together with Eq. (42)
one can show that UL,U~! has the same form as the unper-
turbed Liouvillian Ly, which implies Eq. (55) is true [22].
Condition (C) is satisfied, since the superoperator U reduces
to the unit superoperator when A — 0, as can be seen in the
explicit forms of the coefficients in Eq. (48); see Appendix
A.

The distributive relation (46) together with Eq. (53)

shows that the projector I1 can be defined through the
relation

PHYSICAL REVIEW E 73, 016120 (2006)

ﬁ(fﬂ'm'i’rlﬂﬁi’"’fﬁ?f) ATAYTT 8y LA,
k=0

(56)

since this is equivalent to Eq. (22).

Note that IT"=I1. Henceforth we write IT" anticipating the
extension to the nonintegrable case [see Eq. (32)].

V. RECURSIVE RELATIONS

Before going to the nonintegrable case, we will derive

recursive relations for the IT projector in the integrable case.
Subsequently, these will be extended to the nonintegrable
case as a crucial step in the derivation of our Markovian
equation. The relations are

ﬁ?(am 1= HTal HT(a'm ! ay)+(m- I)XﬁT(aIm_za'f)
+ n)_’l:[T(aim'la'f'l) (57)
and

I (a"a?) =117 (a]"a’™") - TTay + (n - VXTI (a"a}?)

+mYIT (@] 'ai ™), (58)
where
- 5kla;1{gk,52}, (59)
k
Y =2 6 PA{A + |duPAA] (60)
k

and {} are the anticommutator brackets.

In the rest of this section we present the proof of these
relations. To facilitate our construction, we define two new
operators, i.e.,

Bi=1l"aj=2,,A] - d}\A, (61)
[see Eq. (52)] and

D} = cAj - di Ay (62)
with their Hermitian conjugates B, and D,.
We have
al=Bi+> D]. (63)
k
Thus
iT'(a}"a}) = H*[ DEANTED D)]
k

_ ﬁT[ B+ 2 Dk) (1}1 +3 5k>’1]
ﬁT[E 5,1(1}1 3 13,1)’"“(51 +3 Bk)"].
k k k (64)
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Using the projection property (56) of II, the first term of the
last expression equals

ﬁf[é‘[(é}' +3 5;)’"‘1(51 +3 Bk)"]
5. ﬁ*{(é'}' +3 5;)'"‘1@1 +3 Ek)"]

=IT'a] - T (a]™'a}). (65)

Now consider the second term on the right hand side of Eq.
(64). Expanding this in binomial series we have

1| 0L 5+ 2 0l) (B + 2. |
k k k
m—1 .
=l 2D X /"B 2 Dy,
k =0 %
x> C?,E}“I/(E Bk,,>l (66)
I'=0 14

where C/'=m!/[(m—1)!1!]. We have shifted the D freely

among B since the D operators commute with the B opera-
tors [see Eq. (47)].
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Due to I17, in order to produce a nontrivial projection the
term Ekﬁ}z at the beginning of the product must pair up with
one of the X;,D,, with / possible ways or one of the XDy
with " possible ways. Checking the volume dependence, we
can neglect simultaneous pairings of Ekﬁz with three or

more ﬁk or ISZ, because such terms will be of order O(1/L)
in the thermodynamic limit, and therefore can be dropped in
comparison with other more dominant terms. For example,

ﬁ*{z @1)2(2 D)] =3 |eul*A2A2 ~ o(1/L),
k k' k
(67)

where we have used |¢;|*~|V,|*~O(1/L?) and the fact that
(A,tzg,%>~ O(L®) in the thermodynamic limit. This last rela-
tion follows from Eq. (14), together with

(AiA) = (ajay) + OOND), (68)

which is due to the volume dependence of the interaction V.
With this consideration, after suitable relabeling I=1-1 and
I=1"-1, Eq. (66) becomes

m=2 ~
| (m— 1)(2 522) D C%"_ZEI’”_I‘Z(E 5-1-,>1(El B> 5k>n
k 7:0 K k

n—1 ~

ST n(z 5;5k>(§1- Y 5;)’"“ s c;f-léln-l-l<2 15*,)1
k k 7/:0 k'

= (m— 1)>?ﬁ*[<§'; > 5,1)’”‘2(51 £ S Ek)"] " ﬁﬁ*{(é; + S 5;)’”‘1@1 > 13,()”‘1]
k k k k

=(m- 1))_(1:[T(a1m_2a'11) + nl_/ﬁf(awlum_]a'f_l

where

X= ﬁ*(% 5;2) (70)
and

‘:ﬁ*@ zszzsk), (71)

which give Egs. (59) and (60), respectively.
With Egs. (65) and (69), we have proven Eq. (57). Rela-
tion (58) can be proved in a similar way.

VI. II IN THE NONINTEGRABLE CASE

In the nonintegrable case (b) discussed in Sec. III, the
particle frequency w; can resonate with the frequencies w; of

(69)

the field. There is no self-adjoint perturbed invariant
A]LAI corresponding to the unperturbed invariant a}Lal, which
is expandable around A=0. This could be expected, because
now the particle is a damped oscillator. Damping comes
from resonant emission of field modes. Due to damping there
is no invariant of the form AIA] [22]. The Hamiltonian can
now be written as [12,14]

[

H= 2 wngANk + Evac, (72)
k=0

where A, and A}: are renormalized annihilation and creation

operators of the field and Evac is the renormalized vacuum
energy in the nonintegrable case. As in scattering theory we

[T 1]

can choose either “in” or “out” operators [15]. Hereafter we
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will use out operators. As we will see, from the out operators
we will obtain damping for #>0 in the Heisenberg picture.

The explicit form of the operator gk is

T _= 5 - s
Ak= Cr1aq +dk1a1(+2 Cri' Ay +2dkkrak/ (73)
K K’
with the coefficients given in Appendix A. These coefficients
are proportional to the Green’s function G*(w;) where

SV TANAS C AR
G*(z) = <w%—z2— f dklz—kzk) . (74)
0 (wk —Z )1

for general complex argument z with Re(z) > w,. The + (=)
sign means the function is analytically continued from the
upper (lower) sheet of z. The function G*(z) has a pole on
the “second sheet,” obtained by analytic continuation from
the upper to the lower half plane of z across the branch cut
on the positive real axis. Denoting this pole as

1= -1y (75)

(with y>0) we have G*(z;)"'=0. This pole reduces to w,
when A — 0.

By extracting the residue at this pole in Eq. (72) we obtain
the complex spectral representation (see Ref. [15])

o

H=2A[A; + 2 0 AjAL+ Eyye, (76)
k=0

where

Ak=A~k[1+27Ti(wk—Z1)5c(wk—Zl)], (77)

8, is the complex J function, and

ZlAIgl = - Res((l)kgzgk)wk=zl

=- > oA AR (o~ 2)) 0w —z)).  (78)
k=0

To evaluate the complex ¢ function we first go to the con-
tinuous limit so the summations go to integrals. Then we
deform the integration path to a small contour surrounding
the pole z;. ,

By separating the residue at the pole z; (or z;) we obtain

the particle operators AI, A, in the complex spectral repre-
sentation of the Hamiltonian. In this way we obtain a closer
correspondence between the integrable and nonintegrable
cases. Note that the complex & function is a generalized
function.

In terms of the nonunitary transformation A mentioned in
Sec. III we have

Al‘ = A‘laj, g,‘ = A"'af,

14[=A/\_lai7 gi= ATa,-. (79)

The explicit forms of the new operators in Eq. (76) are

LI S .
Al_cllal"'dllal+Eclkak+2d1kak’
k k
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Al =cpa,+ d?la'{ +> Copx + > dyay,
k k

Ak:cklal +dklaJ{+Eckk/ak, +2dkk/az,, (80)
13 1%

with the coefficients presented in Appendix A. The trans-
formed operators satisfy the relations

LH‘K}L = ZTAT’ LHA~1 == ZlA~1 s

LyAl=zA], LyA =-zA,,

LHA; = wkg}i, LHAvk =- ka~k- (81)

Due to the complex & function, the operators in Eq. (80)
do not preserve the Hilbert space. For example one can show
that (see Appendix B)

[A.A]]=0 (82)

and similarly [A;,A]=0.

Provided the test functions for integration do not contain
singularities at w;=z, or w;=z,, the new set of operators
obey the commutation relations [15]

[A.A]]=1,

[gksg/tf] = [/Tk,AZ/] = [AksAZr] = 5k,k'- (83)

Other commutators are zero. If the test functions contain

singularities, then we need a careful consideration [12]. Two

examples are presented in Appendix B. Hereafter we assume

that the density operator p gives no such singularities.
From Eq. (73) we have

aj=2>, D] (84)
k
where
D} =EyA] - djyAy;. (85)

Separating the poles at w,=z,, z; from Eq. (84) we get

aj=B{+2 D] (86)
k
where
Bi=c. Al -d} A, (87)
D] = GuA] - d, Ay (88)

Note that from Eq. (84) we can calculate the exact time
evolution of a]L as

e'lial = 3 (811" WA} - diye ' HA). (89)
k

From Eq. (89) we can calculate the exact time evolution of
any observable associated with the particle, for example its
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energy. Our goal though is to extract the “kinetic” part of the
time evolution, which follows a closed, exact Markovian dy-
namics. This is why we introduce the projector IT (or IT7).
We will calculate the explicit form of the ITI7 projector
acting on products of creation and annihilation operators by
extending the results of the integrable case. As in the inte-
grable case, the projection I17(a{"a}) should keep terms

where the creation operators /TZ are paired with the destruc-
tion operators /Tk. At the same time, II" should leave intact

particle operators /T{ and X 1- As we have seen, the latter are
residues at the poles w;=z,,z;.
To define 1" we start by writing [see Eq. (84)]

fmn DI -..DI D oD
al al - E Dkl kakaH ka+n' (90)
Ky

We decompose this into a sum of all possible pairings. For
example for m=n=2 we have
72 2 NI DT D D NI DT D D
ai’ai= X'D| D} DD+ 2.'Dj D} DDy,
Ky ky kyokaoky
+ E ’5115;{-25](25](4 + o+ 2 /5215;{-25](15](2
kyokooky kyoky

b (91)

where the prime in the summations means that no summation
variables are equal. Once we have done this separation we
can extract the poles of the unmatched operators using Eq.
(86). For example we have
> 'D} D D, Dy, =2 '(B; +> D,§1>
ISESE ky ky

xﬁ,ﬁzﬁkz(El > Dk4>. (92)
4

To get the IT" projection, we simply drop the unmatched field
operators. Thus we have
ot > ’D,ilD,ZZDkZDk4 => B'{'D,szszl. (93)
Ky ky ky
Since the operators with different k; in the left hand side of
Eq. (92) commute, the operators with different index in the

right hand side of Eq. (93) also commute.
In general we can write

I (") = m[(ﬁ; > 13,1)’”(1?1 > Ek)”] (94)
k k
where the projection in Eq. (94) is defined as follows:

Ttm, Am
kAk KA,

HT<A"{‘m'A’71H ;&;mkxzk) ~AmanIl e,
k=0 k

(95)

which corresponds to Eq. (56) in the integrable case.

In the Heisenberg picture, Eq. (95) decays for >0 and
my, ny>0. If we had started with the in operators we would
obtain decay for t<<0. For m;=n;=0, Eq. (95) remains in-
variant.

From Eq. (72) we see that [I'"H=H; hence
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Tr(Hp) = Tr(HIp), (96)

which shows that p.,=IIp,, for the equilibrium distribution.
Similarly to Eq. (96), for any invariant observable I we have

Tr(Ip) = Tr(Illp). (97)

Therefore the state IIp contains the total energy and prob-
ability of p. For noninvariant observables, IIp extracts the
purely exponential terms of the time evolution, which are
associated with the complex energies z;, z}k. In this way, IIp
gives the Markovian dynamics of approach to equilibrium.
The complementary component f[p extracts nonexponential
terms that give memory effects. This non-Markovian compo-
nent contains no net energy or probability.

Following the same steps as in the integrable case we

obtain recursive relations corresponding to Egs. (57) and
(58),

(@™} =TT al I (a]™a}) + mXIT T (a]™ " a?)

+nYIT (ai"a}™), (98)

i (a]"a™") =T (a]"aD)T a; + nXIT (a™a™")

+ mYHT(aJ{m_la'l’) (99)
where
X=- ud, {ALAL, (100)
k
(101)

Y =2 [CulPAJA, + |dPAA]
k

The IT superoperator we introduced satisfies all the con-
ditions of Sec. II. The validity of condition (A) is self-
evident from the identification of II" with the projector in
(95).

The second condition (B) can be verified from the rela-
tions

LyA=zA, TITA=EA, (102)
with
A= KA Ay,
k
z= le}k —mz+ 2 (my = ny) wy,
k
£=0,1. (103)

This implies that Tr(A[Lg,I1]p)=0 for all observables A
and their linear combinations.

The third condition (C) is verified in Appendix C using
the recursive relations for IT7.

VII. EXACT MARKOVIAN KINETIC EQUATION

With all the previous preparations, we are ready now to
derive the explicit form of the Markovian equation (32). As
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we saw in Sec. I, in order to obtain this equation we need to
evaluate LyI[T'W=L,IT (a]"a?).
From the recursive relation (98) we get
LT (a]"a?) = LyB} - 1T (a]™'a") + B} - LT (a]"'a")
+(m— l)XLHHT(aIm_za’f)
+nYLyIT (" a™), (104)

where LyX=0=LyY since X and Y are diagonal in the trans-
formed creation-annihilation operators of the field.
Writing

-~ 1 * =~ * =~ ~ 1 ~ ~.
AI=Z(011BI+d11B1), A1=K(C11B1+d1131),
(105)
where
)
A=leyP-dy 2= N2, (106)
W)
and using Eq. (81), we find that
LBl = o' Bl+ BB,
where
@+ V+o]
a=——"-iv,
2(1)1
~2 2
DT+ Y —w
B:#_i,y_ (108)
2(1)1

From Eq. (104) we then infer that
LIl (a{"d}) = (ma” - na)HT(aTma'f)
+ m,BH+(a1rm_]a’f+l) - nﬁ*HT(aImHa’f_])
—mn[(a’ - &)Y + (8- BHXN (a]"'a ™)
—m(m-1[a"X + ,BY]HT(aTm_Za'I')

+n(n-1)[aX+ IB*Y]HT(aImaT_Z). (109)

The consistency between Egs. (104) and (109) can be
proven by first inserting the recursive relations for
%(a{"a}), i.e., Eqgs. (98) and (99), together with Eq. (109)
into the right hand side of Eq. (104). Then we verify that the
coefficients of H"'(aima'l‘) for all values of m and n on the
right hand side of Eq. (104) are identical to the correspond-
ing coefficients in Eq. (109).

Now we come to our kinetic equation. We have the rela-
tions

i (a{"a} - Y) =Y - T (a]™a}),

' (ai"a" - X) =X - T (a]™d"), (110)

because Y and X are diagonal in the field operators, and IT" is
a projection of the diagonal component of the field operators.
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Using Egs. (110), we write Eq. (109) as
Lyl (a]"a}) =TI'E (111)
2 = (ma" - na)(a"a?) + mBa;" ' a"") = nB (a]" " a )
—mn[(a" - @)Y + (B~ B)X)(a]""'d}™)
—m(m—1)(a"X + BY)(a]" ]
+n(n—1)(aX+ BY)(d]"ad1™).

Defining
p=1Ip, (112)
the Kinetic equation (32) becomes
Jd
i;Tr(Wﬁ) =Tr(E'p). (113)

Using the identities for the trace in Appendix F, and de-
fining ag=Re(a), Br=Re(B), we obtain

i%Tr(Wﬁ) = Tr(W. {aR([aTa,,ﬁ]) - iy(Y—X+ %)

X ([alﬁ»an + [al,ﬁa'ﬂ + [a1-ﬁ’al] + [a-{-,ﬁal])
.Y ~ t ~ + T~ T~
+lg([alp,ad+[a1,pa1]—[alp,a1]—[al,pad)

+ Br(la}.pa}] - [a,p,a,]) + iv[a],pa]]
+lap.a;]) + (aX + BRY)([aTﬁ,aJ{] + [a;(,ﬁa;f]
~[a\p,a,]-[ay,pa]) +iVY - X)([a}p,a]]

+[aI,ﬁaI]+[alﬁ,a1]+[a1,ﬁa1])}). (114)

In this form we can already see an interesting property of this
equation: it is closed for the component Pp, as mentioned
after Eq. (34). To see this, note that Tr(Wp)=Tr(WPp).
Moreover we have [P,Y]~[P,X]~O(1/\L). Thus in the
thermodynamic limit we can move P past X and Y. By its
definition, we can also move P past a;, aI. So in Eq. (114)
we can replace p by Pp. This shows that this is a closed
equation for Pp.

The equation takes a simpler form if we assume that ini-
tially the density matrix is factored into particle and field
components,

P =710 x 1150, (115)
To see this, we write Eq. (114) as
i%Tr(W[ﬁ =Tr(Wép) (116)
with the formal solution
T Wp(r)] = T We " 5(0)]. (117)

The collision superoperator has the following operator de-
pendence:
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6=06(X.Y,al,a,). (118)

Following an argument similar to the one above Eq. (67) (see
also Ref. [23]), we may neglect correlations for ¥ and X
products, i.e.,

(Y"X™ ={(Yy{X)" + O(1/L), (119)
where using Egs. (68) and (115) we have
(r)= TrF(YH 5k(0)), (120)
k

and similarly for X. Thus in Eq. (117) we can replace X and
Y by their initial averages:

_(9~ aR(&z ﬁz ) aR( 2
i—p1=\—-——|—S-——>|+—(x
(7tp1 2 &x% &x'z 2 1

Xy +x"y) = (x; = l)<r9x
1

%)} BR[( -

2
B W’ ( . : ) (
—i— - + + +
12{()51 x'y) ox,  ox' (xp=x"y) o,

2
’ >]+17(<X> (Y))[(xl x')?+ i +L,> ]}51,

s (aR<x>+BR<Y>>{z<x1 —x 1)(;1 A
1

since it is true when averaging over arbitrary polynomial W.
Recollecting terms we finally have our exact Markovian

equation
Zpblp oy (22,
at”! 2w, xi=xp 2 ax% ﬁx'% P

J J
_iy(xl_x,1)<__ , )51—2i?’K(x1—x'1)251
(9.)(1 ax 1

d J \_
+ o J(x; - x 1)( _,)P1~ (125)
&)C] ox 1
The coefficients are given by
1
K=(1)=(X)+ .,
|z )
J=—J'-K,
w
1
J’:(Y>+(X>+5. (126)

Using the identities [14]

—x’%)+iy(<y>—<x>+§>[(§% Of

PHYSICAL REVIEW E 73, 016120 (2006)

0= 0((X),(Y),a},a,). (121)

This means that, neglecting O(1/L) terms, only the particle
component of the density operator evolves in time,

Pp(1) = py(r) X T 1 5(0), (122)
k

and the field density operator drops out after taking the trace.
Using this result and defining the reduced density matrix
P (xp,x7) = x|yl (123)

we write the kinetic equation in the dimensionless coordinate
representation as (see Appendix G)

2
J J
) —(x1 —x,1)2i| +lZ|:<_+_,)
2 ﬁxl o”xl

& ]
X

(9x1 ox 1
&x 1)

124
dx;  dx'y (124)

> olleul +ldu) =0, 2 o@dn =0, (127)
X X

we get

* 1
K= 4f dk )\202|G+(wk)|2w,%<nk + E) ,

0

* 1
J =4f dk 7\20,%|G+(wk)|2w%<nk+ 5),
0

* 1
J=4f dk N3G () [X(|z1])? - o} (nk+5), (128)
0

where n,=(ajay).

Note that for the integrable case, with no particle-field
resonance, we have y=0 and the damping and diffusion
terms in Eq. (125) vanish. Still, the last term remains. This
corresponds to the excitation of the particle due to virtual
processes.

We also note that the kinetic equation (114) is valid for all
field distributions, while Eq. (125) is valid for field distribu-
tions of the form (115), which are more general than Gibb-
sian distributions.
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VIII. COMPARISON WITH THE HU-PAZ-ZHANG
KINETIC EQUATION

In this section we will obtain an expression for the kinetic
equation correct up to O(\?), in the weak coupling limit \
—0. We then compare this to the \?¢ limit of the HPZ equa-
tion and show that they are identical. The A% limit means
that we take N —0, t—oo with N\’ finite. Physically, this
means that we consider times of the order of the relaxation
time f,,;~ 1/\? in a weakly coupled system.

We start by assuming the harmonic oscillator is interact-
ing with a bath of field modes that is in thermal equilibrium,
and the number density of the field degrees of freedom ny
satisfies the Planck distribution. We then have

coth(@), (129)

where B=1/kgT and kg is the Boltzmann constant.

In what follows, we are going to use the approximation of
the function G*(w;) shown in Appendix E. First we consider
the coefficient J,

= 1
]:—4f dk>\20§|G;|2(wi—Iz]|2)<nk+5)- (130)
0

From Eq. (E9) we find that in the zeroth order approxi-
mation
N0p|GH(wp)|(wp - 0]) = 0. (131)

The next order can be found using the expression with € an
infinitesimal [see Eq. (E5)]

1

|G (wy)]* = R (132)
which gives
2 2 2 2 “’1%‘“’%
N02|GH ()| X! — 0?) = Novi—————
(G (@) (wp D) k(wz—w%)2+€2
1
:)\ZviPﬁ. (133)
Wy — W

Thus we have

- I ﬁ
Jz—Zf dk)x%,%P( . 2)c0th<ﬂ;)k>. (134)

0 Wy — W

For the coefficient K we have using Eq. (E9)

1 (7 i)
K=—| dodw,— w)wp coth(M)
2(1)1 0 2
1 i
- —coth(M) (135)
2 2

Therefore, in the A\? approximation, the kinetic equation is
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~2
i£ﬁ= [— ﬂ<£ i) + %(xf—ﬁ) —iylx; —xj)

at 2 c?x% &x'% 2w,
a9 Bﬁwk)
X| — ———] —iycoth x;—x])?
<0x1 &x'1> Y ( 2 ( ! 1)

> 2 \? 7
_Pj dk az)l v2kcoth<'82wl)

0 Wy — W)

N P
X (x, _xl)((bﬁ + 8x'1>]p. (136)

Now we show that this expression is exactly the same as the
\?t limit of the HPZ equation. For weak coupling, the time-
dependent coefficients of the HPZ equation (2) are found to
be [2]

Q1) = o} + 8Q%(1), (137)
80 (1) = 2f ds n(s)cos(w;s), (138)
0
I'(t) =- Lfta’s 7(s)sin(w;s), (139)
w1 Jo
I'(H)h(r) = f ds v(s)cos(w;s), (140)
0
I'(0)f(z) = Lft ds v(s)sin(w,s), (141)
w1 Jo
where
7(s) =— f”’ dow [(w)sin(w,s), (142)
0
v(s) = f’” dw I(w)coth(%)cos(wls), (143)
0
I(w) = Li N w— wy) )\2C£ =2w i 8w — w)\N2V2
Mo oMy, g, v
=20\ 0% (w). (144)

We note that we have added in an extra factor of 1/M in the
expression of I(w) compared to Ref. [2] due to the different
definition of the position x;.

In the \?¢ limit we then take r— . We use the trick in
[11] to evaluate the time integrations. For example we have
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oo

0 0

1

-1
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f ds sin(wls)sin(a)s) — 1im5_>()+_71f ds(ei(w|+w+ie)x + e—i(w1+w—ie)s _ ei(wl—w+ie)s _ e—i(w]—o)—ie)s)

1
= - L2080+ 0) - 2imol; ~ )] = T 8w - ).

The last line is due to the fact that w can only be positive.
In this way we can calculate all the coefficients. Using the
expressions for @; and 7y in Appendix D we find

o] o0 22
mz(t):-zf do I(w)P—2 —4f A PNV

0 w2 - w% B 0 w% - w,%
= o) - o], (146)
1 (7 T T
I'(r) = —J do l(0)= 8w, - ) = —I(w)
wq 0 2 2(1)1
=\ (w)) = , (147)

o

F(0)h(r) = f

do I(w)coth(,Bhw/Z)g Sw— )
0

- 72—Tl(wl)coth(,8hw1/2) = w,y coth(Bhw,/2),

(148)

©

C(f(t) = -\? f dw I(w)coth(Bhwl2)P 21 5

0 (1)_(1)1

- A}
=—2w,P| dk——coth(Bhw/2).

0 Wy — W)

(149)

Upon comparison of the N\?¢ approximation of the HPZ equa-
tion with the N> approximation of our exact Markovian ki-
netic equation (136), we find that they are identical.’
Beyond the weak coupling limit, our equation gives the
Markovian dynamics of the quantum Brownian oscillator
valid even for strong coupling, and also valid for any time
scale. For r— o the solution of our equation gives the equi-

’In Ref. [11] the operators P*)) were used to construct the subdy-
namics. As a result, the “anomalous” diffusion term in the HPZ
equation did not appear in the kinetic equation derived in Ref. [11],
because this term belongs to the “nonprivileged” components. In
order to obtain this term one has to include nonprivileged compo-
nents. In contrast, in the present paper we use the operator P
=E,,]P(”1) and the anomalous diffusion term is included in the privi-
leged components. A detailed calculation shows that both the HPZ
equation and our equation are consistent with Eq. (136) of Ref. [11]
in the one-particle sector. The anomalous diffusion term involves
higher particle sectors, which were not considered in Ref. [11].

1 1 1
= - + +
4<i(w1+w+i€) —i(w+w-ie) i(w;—w+ie) —i(wl—w—ie))

(145)

librium solution of the complete dynamics. This is so be-
cause the equilibrium distribution is a function of the Hamil-
tonian, and any function of the Hamiltonian belongs to the I1

subspace [see Eq. (96)]. The complement component Ilp
gives all the memory effects, which vanish for 7— oo,

IX. CONCLUDING REMARKS

The example presented in this paper shows that irrevers-
ible Markovian dynamics can be regarded as an exact dy-
namics taking place in the subspace of density operators Ilp,
for nonintegrable systems in the sense of Poincaré. The
breaking of time symmetry in the equation

d
i—Ilp=Lyllp (150)
at
is due to II being non-Hermitian, and appears before we take
the trace over the field. Thus from our point of view of
irreversibility, rather than a consequence of coarse graining,
is a property of the invariant subspaces of the Liouvillian.
Time symmetry breaking appears because the construction of
IT involves generalized creation and annihilation operators

(A,A,). These are eigenoperators of the Liouvillian with
complex eigenvalues (z;,z,) in either the lower or upper half
plane. In this formulation we add no extra dissipative terms
to the Liouvillian.

The formulation presented in this paper links stochastic
processes and dynamics in a direct way. Once we have a
Markovian kinetic equation we have a stochastic process de-
scribed by Langevin-type equations without any memory
terms. An interesting question is to see what is the spectrum
of quantum noise associated with such Langevin equations
(see also Ref. [28]).

In this paper we focused on the IIp component of the
density matrix. In a sense, this component corresponds to
traditional thermodynamics. From the Markovian kinetic
equation we can derive a nonequilibrium entropy and the
second law of thermodynamics even for strong coupling.
This could be considered in a subsequent publication.

In contrast to I1p, the complement component ﬁp gives
“nontraditional” thermodynamics including memory effects.
Deviations from thermodynamics in small quantum systems
have been reported in Ref. [29]. It would be interesting to see

how the behavior of f[p is related to these deviations, and
what type of non-Markovian equation is obtained for this
component.
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The model we considered is exactly solvable. For systems
with nonlinear interactions we have to use a perturbative
approach. It is our hope that some of the ideas presented in
this paper will be useful for these systems.
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APPENDIX A: COEFFICIENTS OF TRANSFORMED
OPERATORS

For the integrable case we have

—w;+ow
f=-N—, (A1)
2(1)1
— AV,
C=N—"—, (A2)
W — W
- —W—
dyy=—N—", (A3)
2(1)1
- — AV
dy=-N—"—, (A4)
(J)k+ (OF]
(,_'kk = 1 N (AS)
T == NG (w) (0 + @y), (A6)
diy == \V,GH (o) (0 — o)), (A7)
A,Vk/
Ekk’ = Zwl)\VkG+(wk) N (k * k’), (AS)
Wypr — Wy — 1€
p— Avk/
dkk’ = - 2w1)\VkG+(wk) . (A9)
Wy + Wy
The normalization constant N given by
_ * 4o\ 7!
N2=@(1+f dké—k_22k> . (AI0)
W 0 (wy — @)
For the nonintegrable case we have [15]
2+
cy=- N (A11)
2(1)1
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. AV
c=N——"—, (A12)
((J)k—Z])_
*Z*_ w
dll = N L L s (A13)
2(1)1
AV
dyg=-N'—", (A14)
(.Uk+Z1
e == NV, Gylwp) (o + o)), (A15)
dyy == NV, G (o) (o — @), (A16)

" )\Vk/ ,
Crk! = ZwIKVkGd(wk) (k #*k ), (A17)

Wy — wk—if

XVk!
dkk’ = - 2&)1)\VkG;(wk)—, (AIS)
Wyr + wy
and

Ck1 =Cki>  Crar = Cpger» (A19)
gkl 267/(], Jkk’ :3](/(" (AZO)

We define G)(wy) as

N?

Gilw) = G(w) =i~ =8lw =), (A21)

1

where —N?/(2w,) is the residue of G*(w) at the pole z; in the
second sheet. The normalization constant N is

? 4wy N\
szﬂ(uf dk%) .
21 0 (wk_Z1)+

These coefficients give the out eigenoperators of the

(A22)

Liouvillian, gz, ZI, and their Hermitian conjugates. In previ-
ous publications (e.g., Ref. [12]) the in states were used to
obtain decaying states for >0 in the Schrodinger picture. In
this paper we consider observables in the Heisenberg picture,
where the out operators are the ones that decay for >0.

APPENDIX B: COMMUTATION RELATION

In this appendix we prove the commutation relation
[A.A7]=0. (B1)
Using the explicit forms of A 1s ZT we obtain
- - @,
[A).A7]= |N|2<Z el = 2 ldyl + —) . (B2)
k=0 k=0 W)

We will show that the expression inside parentheses van-
ishes,
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E |Clk|2_
k

®
> |dyl*+—=0. (B3)
k wq

We know that z;=&;—iy is the pole of G*(w), defined in
Eq. (74). Therefore
5 20\V2
o otz

(B4)

4o\ V2 & 20\VE

=
Zl)+ k:o(wk—Z1)+

wl_z%zz

2
k=0 (wk -

Subtracting the complex conjugate expression and dividing
the result by 2w,(z,—z;) we have

N 7 A\2V2 2 +2, )
k k___%4 1=__1’ (B5)

k=0 |wk+Zl|2 2 W)

im0 o =21 |i

which is equivalent to Eq. (B3). This proves the desired ex-
pression (B1).

From Egs. (82) and (86) we find that [al,EJ{]

=[=Dy,B}]. We then deduce the following other commuta-
tion relations

[ALA]=2miNVi(w— 7)) 0w~ 21),

[A;,A T]— 2771)\ng Ew;(
wy,

If the test functions contain singularities at w;=z; or wk=zT,
then these commutators are nonvanishing.

i —2)8(w 7). (B6)

APPENDIX C: PROOF OF ANALYTICITY

In this section we verify condition (C) on the II projector
for the nonintegrable case. This means that

)I\in(l)HT(aIm+la'11)= P(a]™'d)) =a]"™"a}, (C1)

}l\in(l)l—['r(a'('m n+l) P( m +l) alfma'f”, (Cz)

for all m, n=0. Furthermore, II has to be expandable in a
power series of \. If IT satisfies these conditions we will say,
in short, that it is analytic at A=0. This property is not trivial,
because in Eq. (94) there appear nonanalytic terms in the
products or commutators of renormalized operators, as in Eq.
(82) (see also Ref. [12]).

We have, using Egs. (77) and (86),

M'al=B], Mfa,=B,. (C3)

Both expressions are analytic at A=0. Assuming that
¥ (a]™a?), Mi(a]™"a?), and TT(a]"a}™") are analytic at A
=0, we will show that the recursive expression (98) is also
analytic. This will prove Eq. (C1) by recursion.

We start with the first term in the right hand side of Eq.
(98),
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[Wa] - 1T'(a]"a) = B - HT[(ET RRINCED> D)] |
k k
(C4)
As we show now, this product generates nonanalytic terms,
even if its two factors are analytic. In the products between

B] outside the brackets and either B, or B} inside the brack-

ets there appears the term Avfgl, which has the following A
dependence:

/ﬂgl :go()\)a'{'al +A f dk gl(k,)\)a'i'ak+

+A2 f dk g>(k,N)aja,+ -+ (C5)
For the perturbation expansion to exist, the functions gy(\),
g1(k,N), g»(k,\), ... must be analytic at N=0, with g,(0)
=1. However, g,(k,\) is not analytic at A\=0. We have

1
Ngo(kN) = [NPN oy
(= 21)4 (0 — Zl)_
N} 1 1
—|N|2 k*( - % ) (C6)
21— (0 —21)s (o = Zl)—
For A — 0 the term inside large parentheses goes to
1 1 )
—— — =27midwp— w;). (C7)
Wp— W —I€ - w+Ii€
Moreover we have [see Eq. (D6)]
21 -2, == 2iy==27mN5H @) + ONY) (C8)
with
_ dk
7% (wy) = vi—. (C9)
d(l)k
This leads to
. 2 Wy
limA“g,(k,\) =— — 8w — ) (C10)
A—0 dk

which is nonzero.

Coming back to Eq. (C4), the term EI outside brackets in
the right hand side can pair with either m of the EI or n of
the B 1 inside brackets. Thus all the nonanalytic terms involv-
ing ATK 1 are included in

[Ta] - T (a]"a}) Tpon = 1(B{B))yon - 1 (a]"a}™")

Hf(airm_la'f).
(C11)

+ m(EJlrz)non '

In order for Eq. (98) to be analytic, the second and third
terms in the right hand side of Eq. (98) should cancel the
nonanalytic terms of Eq. (C11). Combining Eq. (98) and Eq.
(C11) we obtain
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EXACT MARKOVIAN KINETIC EQUATION FOR A...

[ (a]"™*" a})]pon = (BB} + ¥)pon - 11" (a]"a}™")
+m(BP +X)0n - (@™ 'a).
(C12)
From Eq. (C10) we get

[

}1\irr(1)(§1§ﬁnon =- f dwy 8w, — w))ajay
- 0

(C13)

where we used lim,_o|c;|?=1 and lim,_|d,,|?=0. On the
other hand we have

Yoon = 2 |G Paja, = f dk Nvp| GH(wp)|H(ay + w))ajay
X 0

(C14)
where we replace gzgk by aZak in the thermodynamic limit

[see Eq. (68)].
In the limit A —0 we obtain [see Eq. (E9)]

- 1 .
limY,,, = f dwk4—26(wk — ) + 0)’ajay

A—0 0 )
= fw dwyd o, — w))ajay. (C15)
0
Thus we get
im (B1By +¥)yon =0 (C16)
which shows that the nonanalytic terms cancel.
Similarly one can show that
1im (B}? + X)0n = 0. (C17)

A—0

Since we assume that I17(a]"'a") and I1%(a]"a}™") are
analytic, we conclude that Eq. (98) is analytic at A\=0. Thus,
by recursion [17(a]"*'a}) is analytic for arbitrary m, n.

We can show in the same way that the recursive expres-
sion (99) is analytic at A=0, which proves Eq. (C2).

APPENDIX D: EVALUATING @; AND X TO O(\?)

From Eq. (B4) we have

® 4w oNvi
w%—z%—f dk——5-+=0. (D1)
0 (wk - Z|)+
Approximating zf: wf+ie in the denominator we have
* 4w o\l
- @+ 2i51y—f dk———%=0. (D2)
0 Wp—wj—Iie

Writing
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1 1
_ . 2 2
s =P +imdw; - w))
wi-wi—i€ W -
1 im
=P +5 dap-w),
w, -] 20

(D3)

we then obtain for the real part and imaginary parts of (D2)

* dwoN?
@ =w-P f dk% +O00\Y. (D4)
0 Wy — W
Therefore,
“ 2w’
alzwl—Pf dk——* (D5)
0 Wy — W
and [see Eq. (C9)]
y= N0 (w,) + ONY). (D6)

APPENDIX E: GREEN’S FUNCTION IN THE WEAK
COUPLING APPROXIMATION

In this appendix we find an approximation of Green’s
function G* valid for weak coupling. We start by expanding
the inverse function around the pole z;. Since this function
depends on wi, i.e.,

2.2
v 2 2 ) *® ,4(1)1(1)/(')\ Uk'
[Go)] =0~ wj~ | dk'————, (El)
0 Wy — Wp — L€
we make an expansion in the variable w; around z},
GHwp) ™ =G @)™ + (0 = DG
1
+ (-G @D+ . (E2)

2

We have G{(z])™'=0. The first derivative term is given by
[with N defined in Eq. (A22)]

* 4w1wkrhzvi,
=— 1+J dk’z—22
2=72 0 (wk/_zl)

Y=

d[G* ()]

2
dwj,

(O] 1
=2 E3
AN (E3)

For weak coupling we may neglect the second and higher
derivative terms. This gives

2

N
GHawy) =— R 5 + higher derivatives. (E4)
W1 W =7

Furthermore for weak coupling we have N=1+0(\?), z,
=w,+O(\?). Thus we get
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B. A. TAY AND G. ORDONEZ

1 1
o) = (z1 = 0)(z) + @) - (01 - o~ i€)(w; +wy)
T e
(ES)
and similarly
G (wy) = 2 12 —=-P 21 2 5(wk ).
W] — o, +i€ wp— 0] 20
(E6)

Another useful formula follows from the exact relation
AN T (wp) 01|GHwp)|* = G (w) = G (wy)  (ET)
where §%(w) = v,%dk/dwk. Using Egs. (E5) and (E6), we find
that
. B i
G (wk) -G (wk) = w_5(wk - wl)- (E8)
1

Combining this result with Eq. (E7) we get

1
AN () |GH(wp) | = — 8w~ ) (E9)
w

in the lowest order approximation in N\ expansion.

APPENDIX F: TRACE RELATIONS INVOLVING
aJ{ AND a,

Using the relationships

[ar.ai"]=na}"™", (F1)

[aJ{,a'ﬂ =- ma’f_1 , (F2)

[aJ{al,aJ{”] = na]"’, (F3)

[a{al,a’l”] =—may, (F4)

[a1 ,ai"a'ln =- ZmaT"Ha'l” ' m(m - l)aJlmaT 2, (F5)
[a2.a]"a"] = 2na]" " a™" + n(n - )al"a?,  (F6)

we can show that
(n—m)Tr(al"alp) = Tr([a}a,,a]"a’]p),

(n+ m)Tr(a’I”a’I”ﬁ) = Tr({aJ{al,aJ{”al o) — 2Tr(aI”a’]”alﬁaJ{) ,

anr(aT" Ya'p) = Tr(al"a'lnalpal) (n+m+1)Tr(a"a'p)

—Tr(a]"d}a,pa}),

Tr(ma}"“a'fq 'p)= —Tr(a}L"H[ai,a'l"]ﬁ)

= Tr[al'”a’f’(al'ﬁai - ﬁaiai)],
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Tr(naTn 1 THP):TI'([GI, ]aTm+1 )

=Tr[a|"d}'(a,pa, - a;a,p)].

Ti[m(m - 1)a]"a?>p]
=—Tr(2ma}""'a?'p) - Tr([a}a],a]"a]]p)
=—Tila]"a}

'(2a\paj - ajaip - paja))],

Tt[n(n - 1)a]"*a’'p)
=—Tr(2na]""'a"'p) + Tr([a,a,.a]"a"1p)
=-"Trla}"a}'(2a,pa, — a,a,p - pa,a,)]. (F7)

Furthermore,
P 4 e = Log o oy
aya\p+paja,—apa;—apa;+p= 5(%“1[""!’“1“1
—2a,pd} + aalp+ pa,a; - 2alpa,). (F8)
APPENDIX G: COORDINATE REPRESENTATION OF
aj AND a
1 1

Starting from

M 1 0
aj=\ lw](‘ll—i L ) and Pi=7o" (G1)
2 M, i dq,

for an arbitrary vector |¢), we find that

1
(x)]al|#) = \r_5<x1 - &ixl)@m@, (G2)
(xi]ai|¢p) = (xl +_)<X1|¢> (G3)
(Blaflx’ )= ’12<x 1t ><¢|x 1) (G4)

’ 1 ’ (9 !

(Pla)|x'y) = —,—(x 1- —,>(¢|x - (GS)
V2 Ixy

The ket of the dimensionless coordinate x; is related to g, by

lg1)=(M®,)""|x,). From the relation a,a}—ala,;=1, we also

find that

1 d Jd
<xl|ala”¢>=5<xl+(7_x1)<xl_(9_xl><xl|¢>’
. 1 J Jd
(x1|aia1|¢>=5<x1—&—)ﬁ)(xl+&—)ﬁ>(x1|¢),
1
<¢|alal|x )= 2<X'1 + ﬁ)(xﬂ ai,l)<¢|x'|>,

1 J
T PNy ’
(¢|a1al|x 1) 2<x 1 o"x’l)<x 1

We then deduce that

ai,l)<¢|x'1>. (G6)
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EXACT MARKOVIAN KINETIC EQUATION FOR A...

1 &
<X1|[ﬂ;f11,f~’]|x/1> = ‘{— <_2

2 ax]
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& _
~ 2 + (7 =x'7) | plxpx)),
X

2
(x1|([alﬁ,a1] + [al,ﬁai] + [aif’aaﬂ + [alﬁaﬂﬂx,l) = {— (x = x’1)2 + (i + i) ]5(361,35/1),

(9X1 o'?x’l

(alCanpal] + [arpall - [ap.ar] - [a].pa D' 1) = [— (x —xu)(i - i) v (i s i,)(xl +x'l>}ﬁ(xl,x;>,

(9.X1 (9.x,1 (9)C1 ox 1

2
<x1|([a'{'ﬁ,a'{'] + [a'{',ﬁa'{'] +[a1p,a ]+ [ay.paD|x' ) =- |:(xl —x’1)2 + (i + i) }ﬁ(xl,x;),

(9)(:] (?.x,]

(il ([aip,ail+[a}.pai] - [arpar] = [ar,pa DI’ ) = 2(x, —x’l)(— + i)ﬁ(xl,X{),

— _ , 1 , Jd
<X1|([GJ{,P071L]+[01P’611])|x === —x 1)2+<_+_,
2 (9X1 ox 1

el )Ll =2 =+

;P ) 2 ,)( g d ) Se!)
- | +20 X" ) —+ — X1.X1).
oxt ox'? : Y\ax, " ax', PR

P
(9)(:] é’x’]
ﬁ>2< ’)(‘7 —‘?)(‘9 —‘9)< ' |FCerx)
+(x=x" )| —- +|—+ x| +x X1,X1),
! ! 0”)C1 (9x'1 (9x1 &x'l ! ! P !

(G7)
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